
Cross Domain Communication in the Web of Things
A New Context for the Old Problem

Nam Giang, Minkeun Ha, Daeyoung Kim
Korea Advanced Institute of Science and Technology

924, N1 Building, KAIST
Daejeon, Korea

{zang, minkeun.ha, kimd}@kaist.ac.kr

ABSTRACT
Cross domain communication has been a long-discussed sub-
ject in the field of web-based application, especially for any
sort of mashups where a single web app combines resources
from different locations. This issue becomes more impor-
tant in the Web of Things context, where every physical
resources are exposed to the Web and mashed up by other
web applications. In this paper we demonstrate a use case in
which cross domain communication is applied in the Web of
Things using the HTML5 Cross Document Messaging API
(HTML5CDM). In addition, we contribute an advanced im-
plementation of HTML5CDM that brings RESTful commu-
nication model to HTML5CDM and supports better con-
current message exchange, which we believe will be of much
benefit to web developers. In addition, a time/space evalu-
ation that measures CPU and Memory usage for the devel-
oped HTML5CDM library is carried out and the results has
proved our implementation’s practicability.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Web-based
interaction—Web

Keywords
Cross Domain Communication; HTML5 Cross Document
Messaging; Web Apps; Mashups; Web of Things

1. BACKGROUND
Web-based applications (web apps) with web standard

languages such as HTML and JavaScript are becoming a
mainstream apps development beside other native program-
ming languages. One of the best advantages that web apps
offer is the ability to exploit client-side computing capability
so that reduce any possible delay due to network overhead
and servers’ availability. In the Web of Things context, it
is also preferable that the communication between users’
terminal (i.e, web browsers) and physical objects should be

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577032.

low delay and more direct to ensure users’ experiences. Thus
web apps seem to be the most suitable mean for interacting
with physical objects in the Web of Things.

However, web apps that mashup physical resources are
suffered from Same Origin Policy (SOP), which prevents
them to access physical resources that are located at dif-
ferent origins. For example, a mashup web application at
http://mythings.com will have difficulties in accessing re-
sources from http://myroomlamp.com or any IPv6 address,
which is the physical object’s address.

There are several solutions for the SOP to date, includ-
ing 1) Cross Origin Resource Sharing [6], 2) JSON with
Padding [5], 3) some old versions of web browsers provide a
dialog to ask users for allowing cross domain requests and
4) HTML5 Cross Document Messaging API (HTML5CDM)
[3]. The first solution tries to cooperate between web servers
that want to access resources hosted by each other. To
achieve this, a header Access-control-allow-origin is added
to the response so that web browser can accept cross do-
main requests. For second solution, JSON with Padding
is a temporary work-around that uses the script tag dy-
namically to make cross domain requests instead of using
Ajax/XMLHttpRequest. The third solution creates a dia-
log that asks for user’s permission to allow such restriction.
Lastly, the HTML5CDM accomplishes the work by defin-
ing a standard set of rules to send and verify the exchanged
messages’ authenticity.

The HTML5CDM seems to be the most promising option,
especially in the Web of Things context. This is because, 1)
It is part of HTML5 and is going to be standardized, mean-
ing officially accepted and widely spread, thus it ensures
interoperability. Some temporary solutions can work at a
time but are usually not favorable in long term. 2) It does
not need to cooperate between embedded web servers and
the web apps, which should be maximally avoided in em-
bedded systems. 3) It does not require user’s permission to
perform cross-origins requests, which results in better user
experiences. Nonetheless, it is relatively immature for two
reasons. First, there is no limit for which the exchanged
messages can be, they can range from the simplest form as
a character sequence to a more sophisticated form such as a
JSON object. Second, there is a lack of support for concur-
rent message exchange from different threads so that they
need to wait for their turn to send the messages. More-
over, message responses are not automatically dispatched
to the right destination. Thus, in order to exploit HTML5
CDM efficiently in web apps, an extra abstraction layer for
HTML5CDM could be of benefit.

135



Web Document 1

Context Aware 
RESTful HTML5 

CDM

Se
nd

in
g 

Ap
pl

ic
at

io
n

Ca
llb

ac
k

Receiving 
Application

Context Dispatcher
[{context:callback}]

Request Response

Context

Req/Res

Callback

{
"method":"GET",
"resourceUri":"/temp",
"payload":null,
"context":1
} 

Web Document 2

Context Aware 
RESTful HTML5 

CDM

Sending 
Application

CallbackReceiving 
Application

Context Dispatcher
[{context:callback}]

RequestResponse Callback

{
"statusCode":200,
"payload":"21.2",
"context":1
} 

Context Req/Res

Req/Res
Context

Figure 2: Context-aware RESTful HTML5CDM

Web app at 
http://mythings.com

Child frame at 
http://myroomlamp.com

// At mythings.com
childWin.postMessage("get status", 

"http://myroomlamp.com");

// At myroomlamp.com
ajaxReq.open("GET", "http://myroomlamp.com/status");
ajaxReq.send();
ajaxReq.onreadystatechange = function(){

if (ajaxReq.readyState == 4)
parentWin.postMessage(ajaxReq.responseText
, "http://mythings.com");

};

Figure 1: HTML5 Cross Document Messaging API

To this end, we propose an advanced implementation of
HTML5CDM based on RESTful communication model [2].
The implementation helps web developers to easily get use
of the HTML5CDM and supports concurrent message ex-
changes from different browser threads. The advanced im-
plementation leverage the RESTful communication model
in web services to abstract out the HTML5CDM commu-
nication. Thus, exchanging messages are divided into re-
quests and responses with appropriate query verbs and sta-
tus codes. By RESTifying the HTML5CDM, our advanced
implementation features the transparent transition from HT-
ML5CDM to Ajax so that the SOP is seamlessly overcome.
Moreover, the advanced HTML5CDM library uses a context
identifier to match responses with appropriate request orig-
inators so that multiple threads can participate in sending
and receiving messages simultaneously. We demonstrate the
application of cross domain communication, particularly the
application of HTML5CDM in the Web of Things context
using our proposed implementation.

The paper is organized as follows. Section 2 gives the
discussion on cross domain communication in the Web of
Things context and details of the advanced implementation
of HTML5CDM in JavaScript. In section 3, we show the
demonstration of the Web of Things web app and section
4 shows our evaluation results for the proposed solution.
Lastly, section 5 concludes our paper.

2. CROSS DOMAIN COMMUNICATION IN
THE WEB OF THINGS

2.1 The use case
Fig. 1 shows a general use case of cross domain communi-

cation and particularly the use of HTML5CDM in the Web
of Things context. In this figure, the main web app from
http://mythings.com wants to access a resource which is
the lamp status from another location, http://myroomlamp.
com. Due to different origins, the web app’s client script can-
not access the resource directly while a client script at the
page http://myroomlamp.com is free to do so.

HTML5CDM suggests that the site http://myroomlamp.

com could be embedded into the http://mythings.com web
app as an inline frame to act as a proxy so that using
HTML5CDM technique, the web app at http://mythings.
com can access the status resource located at http://myroom-
lamp.com. In detail, the parent web app posts a HTML5CDM
message to its child frame indicating that it wants to get the
status resource. Sequentially, the child page retrieves the re-
source using Ajax communication and posts it back to the
parent page.

This original version of HTML5CDM has two limitations
as introduced in section 1. First, it lacks a message abstrac-
tion layer so that message format is defined by the individ-
ual web app developers. This poses difficulties for different
web apps to interoperate properly with each other. Second,
there is only one event listener for every exchanged message
so that different threads need to wait until their turn to com-
municate. This is very troublesome for heavy event-driven
programming languages like JavaScript.

2.2 RESTifying the HTML5CDM
To realize a standard message format, HTML5CDM mes-

sages are abstracted out following the RESTful communi-
cation model. We add some extra information to the ex-
changed message so that they are not just simple character
sequences but a JSON object. To make the transition to
Ajax communication transparent, the exchanged messages
are divided into requests and responses. Similarly to Ajax,
HTML5CDM requests consist of a method field (e.g, GET,
PUT, POST, DELETE), a resource URI (e.g, /status) and
an optional payload for any ”write” requests. HTML5CDM
responses include a status code (e.g, 200, 404, 403) and a
payload for the actual response. This standard RESTful
communication model helps ease the parsing tasks that are
required to understanding requests and responses between

136



web apps. Thus, one web app can define the resources or
services it wants to expose to other web apps and they will
be consumed under the RESTful communication model.

Additionally, to support the concurrent message exchanges
between different threads, a context identifier is added in
both request and response in order to pair them together.
This context identifier is supposed to be maintained in both
sender and receiver and it is uniquely created for every
thread/transaction so that responses can be correctly dis-
patched to the right origination. Thus, each time a thread
wants to send a message to another web page, it defines a
callback function that is used to process the response. Then
the callback will be registered to the library and a unique
context identifier will be generated for the transaction. A
dictionary will be maintained to match the identifier with
corresponding callback function so that once a response is re-
trieved, it is dispatched to the correct processor. Due to the
use of context identifier and the RESTful messaging model,
the developed library is also called context-aware RESTful
HTML5CDM.

Fig. 2 fully illustrates the process. In this figure, there are
two web documents are exchanging information with each
other. They can be a normal web page and its child iframe
or two iframes of one page. These two web documents are
originated from different domains so that they cannot access
each other’s information directly. The sending application
of the web document 1 sends a HTML5 CDM message to the
receiving application of the web document 2. The context
identifier-to-callback dictionary is maintained in a compo-
nent called dispatcher. Whenever the dispatcher receives a
request and a corresponding callback from a sending appli-
cation, it generates a unique context identifier and stores it
along with the callback. The dispatcher then attaches the
context identifier in the HTML5CDM message and sends it
out. The receiving application maintains that context iden-
tifier and send it back with the response. Using this context
identifier, the sender’s context dispatcher can dispatch the
response to the appropriate callback of the sending applica-
tion.

2.3 Application
This section details the application of the developed li-

brary. In order to use the library, web pages who want to
communicate with each other using HTML5CDM will em-
bed the library on their <head> element. A simple script el-
ement like <script src=”Ahtml5cdm.js”></script> will sim-
ply do the task. Once the library is referenced, both web
pages can begin with register their accepted peer origin to
make sure only messages that are originated from the spec-
ified peer will be processed. The registration looks like the
following code snippet:

Xdm5.registerPeer(”http://foo.bar”);
Xdm5.registerPeer(”̂ https*://.+\.kaist\.ac\.kr$”);
It is worth noting that the library also supports pattern

matching for origin registration as shown in the second line.
This registration process puts the registered origins into a
whitelist so that the web app can accept them in later trans-
action. After registering the interested peer origin, the web
app can proceed with registering all available resources that
will be exposed. The process is illustrated as follow:

A Flower Pot
Myflowerpot.iot.kr

Internet
PC Client

Apps Server
Mythings.iot.kr

SNAIL 
Gateway

IP-WSN

Figure 3: IP-WSN Testbed for the Demonstration

Figure 4: A web-based mashup application

Xdm5.registerResource(”/test”, testHandler);
function testHandler(event){

var response =
Xdm5.creatResponse(event, 200, ”Some response”);

Xdm5.sendCdmMsg(event, response);
}
As seen in the code snippet, the process is very easy in

development and thus, free web developers from the under-
lying complexity of handling HTML5CDM messages. The
response is created using the library with the three input pa-
rameters. The first parameter is the event that was received
from peer origin, this event is used to maintain the context
of the transaction. The second and the third parameters
are the status code and the response message, which are
designed according to the RESTful messaging model. This
response is then sent back to the sender using the received
event.

3. DEMONSTRATION

3.1 The Demonstration Testbed
The demonstration testbed is shown in Fig. 3, which in-

cludes an Apps server that host the mashup web app and

137



Figure 5: Time and memory analysis of Advanced
HTML5CDM

an IP-based Wireless Sensor Network (IP-WSN) platform.
Our IP-WSN platform called SNAIL [4] is used to repre-
sent physical objects in the Web of Things. SNAIL gateway
is a 6LoWPAN gateway that brings Internet connection to
every sensor, actuator mote. These sensor, actuator motes
are equipped with embedded web servers and assigned glob-
ally unique IPv6 addresses so that they can expose their
resources to the Web and can be accessed directly from
web browsers. These motes are then attached onto every-
day physical objects such as a flower pot or any heater to
capture their contextual information that will eventually be
exposed to the Web.

3.2 The Demonstration Scenario
The demonstrated scenario is about a web-based mashup

application that collects data from a vast number of sensor
web services from the SNAIL platform. Each sensor has its
own web app that allows users to access its physical resources
directly on the web browsers [1]. In addition, their web apps
also support the advanced HTML5CDM library so that their
resources can be exposed to the mashup web app. Thus,
by embedding the individual objects’ default page as inline
frames, the mashup application can access its data regardless
of the differences in their origins.

The snapshot of the demonstrated web app is shown in
Fig. 4. From this web app interface, users can chose to add
their own things’ addresses, either IP addresses or domain
names. Then the mashup application will automatically cre-
ate an inline frame of zero size that points to the thing’s web
site. Through this frame, the mashup application can access
the thing’s data and iterate through all available resources
to construct another thing’s section on the web interface.
Therefore, end users will have a dashboard on which they
can directly interact with their physical things without hav-
ing to go through any intermediate backend server.

4. EVALUATIONS
We evaluate the developed library using the Chrome browser’s

built-in CPU and Memory Profiler. The evaluation takes
into account the number of concurrent exchanged messages
between two web apps and evaluate how CPU and Memory

usages are affected. The maximum number of embedded
frames tested is 50 and result is shown in Fig. 5. The exper-
iment is done ten times and average value is reported. From
this figure, it is seen that the time and memory consumption
grow when the number of embedded frames increases, which
is obvious. However, the reported memory and time usage
shows that the developed library and the proposed commu-
nication model is practical since only 70MB of memory is
required for the worst case and all requests are completed
within 2.25ms.

5. CONCLUSIONS
The demo abstract discusses the application of cross do-

main communication in the Web of Things context. We
introduce a practical usage of HTML5 Cross Document Mes-
saging API for the cross domain communication issue. While
the original version of HTML5CDM has some limitations in
terms of messaging model and concurrency, the advanced
implementation has shown significant enhancements. The
messaging model is carefully developed that follows the REST-
ful message formats. This message standard helps reduce
the effort in parsing messages between different web apps
and boosts the interoperability. Besides, the advanced im-
plementation enables the concurrency in message exchanges
so that multiple threads can send and receive messages si-
multaneously. Finally, the demonstrated web-based mashup
application and necessary evaluation has proved the feasi-
bility of the work.

6. ACKNOWLEDGMENTS
This research was supported by the MSIP(Ministry of Sci-

ence, ICT and Future Planning), Korea, under the CITRC
(Convergence Information Technology Research Center) sup-
port program (NIPA-2013-H0401-13-2008) supervised by the
NIPA(National IT Industry Promotion Agency), the IT R&D
program of MSIP/KEIT (10041313, UX-oriented Mobile SW
Platform) and the International Research & Development
Program of the National Research Foundation of Korea(NRF)
funded by the Ministry of Science, ICT&Future Planning of
Korea(2012-0008824).

7. REFERENCES
[1] S. Bae, D. Kim, M. Ha, and S. H. Kim. Browsing

architecture with presentation metadata for the
internet of things. In IEEE International Conference on
Parallel and Distributed Systems, 2011.

[2] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. University of
California, Irvine, 2000.

[3] I. Hickson. Html5 web messaging. w3c working draft.
Online. http://dev.w3.org/html5/postmsg/.

[4] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung,
and J.-E. Kim. Snail: An ip-based wireless sensor
network approach toward the internet of things. IEEE
Wireless Communications, 17(6):34–42, 2010.

[5] B. Ippolito. Json with padding. Online.
http://bob.ippoli.to/archives/2005/12/05/remote-json-
jsonp/.

[6] A. van Kesteren. Cross-origin resource sharing. w3c
working draft. Online. http://www.w3.org/TR/cors/.

138




