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ABSTRACT
The link prediction problem is to predict the existence of a
link between every node pair in the network based on the
past observed networks arising in many practical applica-
tions such as recommender systems, information retrieval,
and the marketing analysis of social networks. Here, we
propose a new mathematical programming approach for pre-
dicting a future network utilizing the node degree distribu-
tion identified from historical observation of the past net-
works. We develop an integer programming problem for
the link prediction problem, where the objective is to max-
imize the sum of link scores (probabilities) while respecting
the node degree distribution of the networks. The perfor-
mance of the proposed framework is tested on the real-life
Facebook networks. The computational results show that
the proposed approach can considerably improve the perfor-
mance of previously published link prediction methods.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Optimization—Integer program-
ming ; F.2 [Analysis of Algorithms and Problem Com-

plexity]: General; I.2 [Artificial Intelligence]: Learn-
ing—Knowledge acquisition

Keywords
analysis of algorithms; data mining; link prediction; opti-
mization;
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1. INTRODUCTION
The link prediction problem is to predict the existence of

a link between every node pair in the network based on the
past observed networks [17]. For example, the aim of in-
formation retrieval is to classify unidentified documents by
predicting the relationships (links) between words and docu-
ment classes, where each node denotes a word or a document
class [23, 18]. The analysis of biological interactions is an-
other example of scientific field in which the link prediction
problem is clearly relevant primarily due to the high experi-
mental costs for large biological networks. In [4], the authors
modeled the problem of predicting the biological relevance
of protein–protein interactions as a link prediction problem
and developed a logistic regression approach using the sta-
tistical and topological properties of the protein network.
The recommender system is another important application
of the link prediction problem. In [11], a number of graph
theoretic measures between the users and the items were
adapted to obtain a recommendation of books. In this case,
the system is represented in a user–item bipartite network,
and a link between a user and a book denotes a preference
between them.

The link prediction problem can also be applied in evolv-
ing networks also. For instance, how the structure of Inter-
net topology is evolving over time has been an important
question in computer science and social science [19, 26]. Re-
cently, large-scale social networks like Facebook and Twitter
have emerged and predicting the future connections (e.g.,
friend or follower) of the users will be of practical interest.
Predicting the prospective links in the co-authorship net-
work was investigated in [2], where the link prediction was
treated as a supervised learning problem.
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2. PREVIOUS ALGORITHMS
The simplest (and arguably most effective) algorithms for

solving the link prediction problem are the so-called scoring
methods. The scoring function assigns a certain score to the
link, while the score itself (often informally) represents the
probability of the existence of the link. The scoring functions
can be defined in various ways, with each method designed
to reflect a specific aspect of the network topology, such as
the number of neighbors, the distance, and/or the clusters.
With the link scores calculated, the prediction can be made
by sorting the link scores in a decreasing order and choosing
a predefined number of links with top scores. A comparison
of the prediction performances of many scoring methods on
the co-authorship network can be found in [16].

Each algorithm for the link prediction problem which has
been proposed up to now can essentially be considered as an
estimation method of each link and, consequently as focus-
ing solely on the probability of each link. In other words,
one calculates the score (e.g., probability or similarity) of
each single link, and the only criterion of prediction is the
score. In this context, those link prediction algorithms are
greedy algorithms. Given that (i) the algorithms completely
depend on a limited amount of data that have already been
observed, and (ii) the prediction is made in a greedy man-
ner, there may be over-fitting issues. Like many data mining
frameworks, the over-fitting issues can often be remedied by
introducing some regularization based on a priori knowledge
of the problem, such as the widely used parsimonious as-
sumption. In other words, the generalization performance
can be improved by regulating (or guiding) the prediction
phase through the use of a priori knowledge of the network.

In this study, we propose a novel link prediction frame-
work that regulates the network by means of node degree
distribution. Extensive research on social networks has re-
cently revealed that an existence of the so-called power-law
of the node degree distribution [5, 7, 12, 15]. We develop
a mathematical programming approach exploiting the node
degree distribution so that the prediction phase will not be
too greedy.

3. DEGREE DISTRIBUTION
The degree of a node represents the number of incident

links to the node in the network. Let P(d) denote the prob-
ability of any node with node degree d in the network. Since
the seminal work by [5], it has turned out that nearly every
real-life network has a specific form of node degree distri-
bution; the power-law degree distribution [22]. The easiest
way to identify the existence of the power-law degree distri-
bution in the network is by plotting the degree distribution
in a log-log scale, where the power-law distribution appears
like a straight-line with a negative slope. This implies that
the degree distribution function has a form

P(d) ∝ d−α, (1)

where α is a constant that varies with the network type.
Any network that shows the power-law degree distribution
is often referred to as the scale-free network which implicates
that (i) the power-law degree distribution holds regardless of
the size of the network and (ii) the power-law degree distri-
bution property is maintained even if the network is growing
(or shrinking). It can therefore be said that if there is some
power-law-like degree distribution in the past network, the

future network can be expected to follow the same power-law
degree distribution.

The degree distribution may be seen as some sort of global
characteristics of the network, because we naturally expect
that the future graph to be predicted also follows the degree
distribution observed in the past. To achieve this, a link
prediction method should explicitly address a specific node
degree distribution of networks in making predictions. How-
ever, there are very limited studies explicitly addressing de-
gree distribution in the link prediction settings, though some
rare exceptions are found in community detection literature.
In [13], a degree-corrected stochastic blockmodel was pro-
posed to incorporate degree heterogeneity of communities.
in the degree-corrected stochastic blockmodel, a Kullback-
Leibler divergence between pK and pdegree is to minimized
where pK is the probability distribution of given blockmodel
and pdegree is the probability distribution produced by the
preferential attachment model that consequently results in a
power-law degree distribution. The results showed that in-
corporation of degree distribution property in the stochastic
blockmodel performs much better in detecting real-life com-
munity structure.

4. ALGORITHM
Let Gt(V, Et) denote the undirected graph of the network

at time t, where V := {1, . . . , N} is the set of nodes and Et

is the set of observed links at time t. The link prediction
problem is to predict a set of links ET at time T based on
previous knowledge of E1, . . . , ET−1. For each (unordered)
pair of nodes i ∈ V and j ∈ V , let s(i, j) (or se) denote the
score of the link (i, j) (or e) that is computed using various
link scoring methods. Then, in all conventional link predic-
tion algorithms, the sets of predicted links are obtained by
applying a threshold value s∗, which is equivalent to taking
the top n∗ scored links after ordering the links. Hereafter,
we call this kind of algorithm the simple ordering (SO) al-
gorithm. Consider an N ×N matrix S whose element sij is
given as some specific score s(i, j), which We call as a score
matrix. Then the SO algorithms (PSO) is like solving the
following problem:

max
x∈{0,1}|E|

{

∑

e∈E

sexe |
∑

e∈E

xe ≤ n∗

}

. (2)

The set E is the set of link candidates to be predicted; usu-
ally E := {{i, j} | i 6= j, i ∈ V, j ∈ V }. The decision variable
xe is 1 if link e is predicted, and 0 otherwise. In fact, the
above problem can be solved easily by sorting all elements
of the score matrix and choosing top n∗ links.

We now assume that the estimated probability distribu-
tion of node degrees P̂(d) for the network Gt obtained from
the past networksG1, . . . , GT−1. For some nonnegative inte-
ger vector b̂ following the degree distribution P̂ , let B denote
a set of all element-wise permutations of b̂, i.e., B := {b ∈

Z
N
+ | b = P b̂, for some permutation matrix P}. The link

prediction problem (PDD) with preserving the node degree
distribution can then be stated as follows:

max
b∈B

max
x∈{0,1}|E|

{

∑

e∈E

sexe |
∑

e∈σi

xe ≤ bi,∀i = 1, . . . , N

}

,

(3)
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where σi is the set of the links in E adjacent to node i. We
call this problem the degree distributional approach (DD).
The objective of the above problem is to find a network that
maximizes the sum of link scores while respecting the node
degree distribution observed in the pase networks. Note that
we only restrict the distribution of the node degrees, not the
node degree of any given node i. Also note that the inner
maximization problem of (PDD) can be solved polynomial
time algorithms for a maximum weight b-matching problem
[10, 3]. The problem (PDD) is, unfortunately, NP-hard as
shown in the followings.

4.1 Computational Complexity of (PDD)
Let

F (s, b) := max
x∈{0,1}|E|

{

∑

e∈E

sexe |
∑

e∈σi

xe ≤ bi,∀i = 1, . . . , N

}

,

then we formally define a decision version of the problem
(PDD) as follows. Without loss of generality we assume all
data are integer.

Problem 1. Maximum weight b-matching over Per-

mutation Group

Instance: Undirect graph G(V,E), nonnegative integer vec-

tors b̂ ∈ Z
|V |
+ and s ∈ Z

|E|
+ , and positive integer L ≤

∑

e∈E
se.

Question: Determine if maxb∈B F (s, b) ≥ L (i.e., is there

a permutation matrix P such that F (s, P b̂) ≥ L?)

Theorem 1. Problem 1 is NP-complete.

Proof. The problem is clearly in NP because the prob-
lem F (s, b) can be solved in a polynomial time [3]. We use
a reduction from SAT for showing NP-completeness. For
any instance of SAT, let U = {u1, u2, . . . , up} and C =
{c1, c2, . . . , cq} denote the set of variables and the set of
clauses, respectively. We construct graph G(V,E) and pa-
rameters as follows.

V = Vc ∪ Vo ∪ Vr ∪ Vt ∪

{

⋃

i=1,...,p

V i
u

}

,

Vc = {vc1, v
c
2, . . . , v

c
q},

Vo = {vo1,1, . . . v
o
1,q , v

o
2,1, . . . v

o
2,q , . . . , v

o
q,1, . . . v

o
q,q},

V 1
u = {vu1 , v

¬u
1 },

V 2
u = {vu2 , v

¬u
2 },

...

V p
u = {vup , v

¬u
p },

Vr = {vr1 , v
r
2 , . . . , v

r
p},

Vt = {vt1,1, . . . v
t
1,q , v

t
2,1, . . . v

t
2,q , . . . , v

t
p,1, . . . v

t
p,q},

E = Ec,o ∪ Er,t ∪ Eu,r ∪ Ec,u ∪Ec,¬u,

Ec,o = {{vci , v
o
i,j} | i = 1, . . . , q, j = 1, . . . , q},

Er,t = {{vri , v
t
i,j} | i = 1, . . . , p, j = 1, . . . , q},

Eu,r = {{vui , v
r
i } | i = 1, . . . , p} ∪ {{v¬u

i , vri } | i = 1, . . . , p},

Ec,u = {{vci , v
u
j } | j = 1, . . . , p, i = 1, . . . , q,

and clause ci contains variable uj},

Ec,¬u = {{vci , v
¬u
j } | j = 1, . . . , p, i = 1, . . . , q,

and clause ci contains variable ¬uj},

se =







1, if e ∈ Ec,u ∪Ec,¬u

M, if e ∈ Ec,o ∪Er,t

N, if e ∈ Eu,r

, ∀e ∈ E,

b̂i =

{

q + 1, if i ∈ Vc ∪ Vo ∪ Vr ∪ Vt ∪ {vu1 , . . . , v
u
p }

0, if i ∈ {v¬u
1 , v¬u

2 , . . . , v¬u
p }

,

∀i ∈ V,

L = (q2 + pq)M + pN + q,

where N := 2pq+1 and M := 2pN+1. Note that there can
be at most 2pq edges with edge score 1 (i.e., se = 1) while
exactly q2 + pq edges and 2p edges have edge scores M and
N , respectively.

Claim 1.1. For any permutation P , F (s, P b̂) ≤ L holds.

Proof. Assume, for a contradiction, that for some per-
mutation P̂ we have F (s, P̂ b̂) > L with matching solu-
tion x̂. It is obvious that x̂e = 1 for all e ∈ Ec,o ∪ Er,t

so that (P̂ b̂)i = q + 1 for all i ∈ Vc ∪ Vr, that implies
∑

e∈Eu,r
x̂e = q. Thus, F (s, P̂ b̂) = (q2 + pq)M + pN +

∑

e∈Ec,u∪Ec,¬u
x̂e = L− q +

∑

e∈Ec,u∪Ec,¬u
x̂e. we have, by

assumption,
∑

e∈Ec,u∪Ec,¬u
x̂e > q that means there exists

i∗ ∈ Vc such that (P̂ b̂)i∗ > q + 1 which derives a contradic-
tion.

Let P be the set of all permutation matrices. And let
P̂ := {P ∈ P | (P b̂)i = q + 1, for all i ∈ Vo ∪ Vc ∪ Vr ∪

Vt, and (P b̂)vu
j
+ (P b̂)v¬u

j
= q + 1 for all j = 1, . . . , p}, i.e.,

P̂ is a set of perturbations that all nodes in Vo ∪Vc ∪Vr ∪Vt

have degree constraints of q+1 and exactly one of two nodes
in V j

u has node degree constraint of q + 1.

Claim 1.2. P ∈ P̂ if and only if F (s, P b̂) ≥ L− q.

Proof. The sufficient condition is obvious. For showing
the necessary condition, assume that there exists P ∗ ∈ P\P̂

such that F (s, P ∗b̂) ≥ L− q. It is clear that (P ∗b̂)i = q + 1

for all i ∈ Vo ∪ Vc ∪ Vr ∪ Vt (otherwise F (s, P ∗b̂) ≤ L −

M). Since P ∗ ∈ P\P̂ there is some i∗ such that (P ∗b̂)vu
i∗

+

(P ∗b̂)v¬u
i∗

= 0 that implies F (s, P ∗b̂) ≤ L−N which derives
a contradiction.

Claim 1.3. If P ∈ P̂, F (s, P b̂) = L−q+
∑

e∈Ec,u∪Ec,¬u
x∗
e,

where x∗ is a solution of b-matching problem F (s, P b̂).

Proof. This is clear by Claim 1.2.

For any permutation P ∈ P̂, we define truth assignment
TP : U → {true, false} as follows: For all i = 1, . . . , p,

TP (i) =

{

true, if (P b̂)vu
i
= q + 1 and (P b̂)v¬u

i
= 0;

false, if (P b̂)vu
i
= 0 and (P b̂)v¬u

i
= q + 1.

.

We now show that C is satisfiable if and only if there is a
permutation matrix P̃ such that F (s, P̃ b̂) = L.

For a sufficient condition, assume that C is satisfiable for
truth assignment T ∗. We consider a permutation matrix
P ∗ ∈ P̂ corresponding truth assignment T ∗. By Claim 1.1
and 1.2, it is clear that L − q ≤ F (s, P ∗b̂) ≤ L. Let x∗ be

the matching solution of b-matching problem F (s, P ∗b̂). For
each clause i, we have

∑

e∈{{vc
i
,vu

j
},{vc

i
,v¬u

j
}|j=1,...,p} x

∗
e = 1,
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because every clause in C is true and (P ∗b̂)vc
i
= q + 1. By

Claim 1.3, this implies F (s, P ∗b̂) = L.
For a necessary condition, assume that C is not satisfiable.

We should show that for any P ∈ P we have F (s, P b̂) < L.

Assume that, for contradiction, there exists P̃ such that
F (s, P̃ b̂) = L. By Claim 1.2, P̃ ∈ P̂, and by Claim 1.3,
we have

∑

e∈Ec,u∪Ec,¬u
x̃e = q where x̃ is a solution of prob-

lem F (s, P̃ b̂). This means we have a truth assignment TP̃

that satisfies every clause in C which derives a contradiction.
This completes the proof.

4.2 Approximating of (PDD)
Since the problem (PDD) is NP-hard, we develop the fol-

lowing approximating scheme.
For a given number K, the range of the node degrees was

divided into K intervals, where ak for all k = 1, . . . , K + 1
denote the dividing points. Let gk denote the number of
nodes having the node degrees belonging to interval k, which
can be obtained by

gk :=

[

N ×

∫ ak+1

ak

P̂(z)dz

]

, (4)

where [·] is a function which returns the nearest integer.
Introducing binary variables yk

i , whose value is 1 if node i
has node degree ak, and 0 otherwise, the problem (PR

DD) is
obtained sa follows:

maximize
∑

e∈E

sexe −D
∑

i∈V

si (5)

subject to
∑

e∈σi

xe ≤
∑

k=1,...,K

aky
k
i + si, ∀i ∈ V, (6)

∑

k=1,...,K

yk
i ≤ 1, ∀i ∈ V, (7)

∑

i∈V

yk
i ≤ gk, ∀k = 1, . . . , K, (8)

xe ∈ {0, 1}, ∀e ∈ E, (9)

yk
i ∈ {0, 1}, ∀k = 1, . . . ,K, i ∈ V, (10)

si ≥ 0, ∀i ∈ V. (11)

The variables si for all i ∈ V relaxes the node degree restric-
tion, while the parameter D controls the degree of relaxation
of the node degree distribution constraints. Constraints (7)
ensure that no node can belong to more than one node de-
gree interval.

We used a simple rounding heuristic: we solve the linear
relaxation of (PR

DD) and round off the (possibly) fractional
solution xe for all e ∈ E to obtain an integer solution.

5. EXPERIMENTAL RESULTS
In this section, we report the computational results of the

proposed algorithm. All algorithms were implemented using
Matlab, and R was used only for the time–series analysis.
The optimization problems were solved by CPLEX.

5.1 Facebook Networks
Due to the advance of internet technology, the social net-

work like Facebook is becoming increasingly popular re-
cently. Unlike the Enron e-mail network and stock correla-
tion network, the Facebook friend network is an ever growing
network. That is, a network at period T always completely

contains edges of period T − 1. Thus, our goal of link pre-
diction is to predict the newly associated friend-links based
on the past network information. In this study, we used
the Facebook friend network data provided by [25]. From
the original dataset that have 63.731 distinct individuals,
we made two datasets—Facebook500 and Facebook1000—
that contain the first 500 individuals for Facebook500 and
1000 individuals for Facebook1000 and links between only
them. Not all of links in the dataset have the time of link
establishment showing when the link was made. So, we first
constructed a base network G0 having links that do not have
the time information. We then created networks for every
two months having the newly created links only during that
period, which results in 14 networks (G1, . . . , G14) spanning
from Sep. 2006 to Dec. 2008. The goal is to predict the
newly associated friend links at time T from the information
of networks G0, G1, . . . , GT−1. Let Ê ⊆ E denote the set
of edges created before period T . The SO methods choose
all edges in Ê and then take n∗ edges with top score val-
ues among the remaining edges. For the DD approaches,
we first fixed variables xe for all exiting edges by setting
xe = 1, ∀e ∈ Ê.

5.2 Baseline Methods
We aggregated all past networks G0 ∼ GT−1 that rep-

resents the topology of the network just before the time of
prediction, where the probability (score) matrix was calcu-
lated on.

Static Scoring Method (ST).
We built the static scores SADA, SKZ , and SPA using the

scoring algorithms ADA [1], KZ [14], and PA [6, 20, 21],
respectively, from the reduced graph of the past networks.
Then, each scoring matrix was normalised by dividing it
by the maximum score. The static score matrix SST can
then be calculated as the average of all score matrices, i.e.,
SST := (SADA + SKZ + SPA)/3.

Hierarchical Random Graph Model (HRM).
We calculated the connection probability pij for ev-

ery link in the network by using the hierarchical ran-
dom graph model [9] by using the code provided at
www.santafe.edu/∼aaronc/randomgraphs/. Let SHRM de-
note the probability matrix whose (i, j) element represents
the probability of link (i, j).

Hybrid Scoring Method (ALL:ST+HRM).
This method combines the static information and the link

probability based on HRM by summing three score matrices;
i.e., SALL := (SST + SHRM )/2.

For the performance measure of each algorithm, we used
a receiver operation characteristics (ROC) curve [8] which
summarizes the predictive performance of the algorithm by
relating the percentage of true positive predictions (=sensi-
tivity, y-axis) to the percentage of false positive predictions
(=1−specificity, x-axis). After obtaining the ROC curve, we
calculate the area under curve (AUC) value from the plot.
The AUC value ranges between 0 and 1 with the perfect
prediction algorithm having an AUC value of 1, and the
random algorithm having an AUC value of approximately
0.5. There are two methods of link prediction (SO and DD)
and three scoring matrixes (ST, HRM, and ALL). We de-
note XY for the prediction made by prediction method X
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Figure 1: Examples of node degree distributions in

the log-log plot.

and score matrix Y. Consequently, six algorithms were used
in this study: SOST, SOHRM, SOALL, DDST, DDHRM, and
DDALL.

5.3 Estimation of Node Degree Distribution
A power-law node degree distribution appears in the log-

log plot as a straight line with a negative slope [24]. For each
monthly network at period T , we solved the least-square
linear fitting using the function

logP (d) = C − α log d, (12)

over the aggregated node degree histograms of the past net-
works. The value of α varies slightly over time due to envi-
ronmental changes in the networks. Figure 1 shows exam-
ples of node degree distributions and the fitted lines for two
tested networks.

From the axiom of the probability (
∫ u

l
P̂ (z)dz = 1), the

value of Ĉ can then be given as follows:

Ĉ =
1− α̂

u1−α̂ − l1−α̂
, (13)

where l and u denote the minimum and the maximum degree
values, respectively.

It should ne noted that without the scale-free property, it
is not easy to determine the parameter of degree distribu-
tion. For example, in the case of a normal distribution, we
should determine the mean and standard deviation of degree
distribution. However, the parameters of degree distribution
may change with network size, which means the distribution
is not an invariant characteristic of the networks.

5.4 AUC Results for Facebook Networks
Table 1 and 2 summarize the performance of various algo-

rithms, where the best AUC values are shown in bold face.
The last row is for p-values of the paired and one-sided stu-
dent t-test with the alternative hypothesis: the average AUC
of DD approach is better than the average of SO method. The
lower p-value is preferred. All scoring methods except HRM
improved by our approach.

DDALL showed the best performance for the Facebook500
while DDST performed best for the Facebook1000 networks.
The performance of SOST and SOALL was also greatly im-
proved by the degree distributional approach. The HRM
method did not perform well especially for the Facebook1000
because the HRM method relied on hierarchical decompo-

Table 1: Results for the Facebook500 networks.

month-year
Static HRM All

SOST DDST SOHRM DDHRM SOALL DDALL

9-2006∼10-2006 0.9336 0.9529 0.9751 0.9727 0.9638 0.9721
11-2006∼12-2006 0.9030 0.9268 0.8602 0.8607 0.9161 0.9344

1-2007∼2-2007 0.9118 0.9314 0.9161 0.9122 0.9186 0.9255
3-2007∼4-2007 0.9111 0.9392 0.9450 0.9525 0.9216 0.9432
5-2007∼6-2007 0.9139 0.9406 0.9202 0.9232 0.9378 0.9435

7-2007∼8-2007 0.9189 0.9471 0.8887 0.8867 0.9525 0.9652

9-2007∼10-2007 0.8335 0.8733 0.8285 0.8222 0.8574 0.8762

11-2007∼12-2007 0.8781 0.9023 0.8670 0.8696 0.9115 0.9143

1-2008∼2-2008 0.7744 0.7934 0.7220 0.6993 0.7978 0.8026

3-2008∼4-2008 0.8761 0.8963 0.8803 0.8789 0.9122 0.9165

5-2008∼6-2008 0.8433 0.8594 0.8799 0.8756 0.8620 0.8667
7-2008∼8-2008 0.8281 0.9138 0.8903 0.8984 0.8832 0.9241

9-2008∼10-2008 0.8249 0.8781 0.8312 0.8338 0.8586 0.8784

11-2008∼12-2008 0.8425 0.8888 0.8148 0.8160 0.8712 0.8832

average 0.8709 0.9031 0.8728 0.8716 0.8975 0.9104

p-value 0.0000 0.7291 0.0002

Table 2: Results for the Facebook1000 networks.

month-year
Static HRM All

SOST DDST SOHRM DDHRM SOALL DDALL

9-2006∼10-2006 0.9205 0.9421 0.8481 0.8461 0.9169 0.9338
11-2006∼12-2006 0.8763 0.9027 0.8435 0.8432 0.8752 0.8980
1-2007∼2-2007 0.9265 0.9478 0.8827 0.8825 0.9184 0.9375
3-2007∼4-2007 0.8869 0.9082 0.7120 0.7026 0.8789 0.9049
5-2007∼6-2007 0.9132 0.9373 0.7992 0.8005 0.9103 0.9315
7-2007∼8-2007 0.8977 0.9222 0.8152 0.8140 0.8915 0.9106
9-2007∼10-2007 0.8446 0.8859 0.7572 0.7529 0.8446 0.8805
11-2007∼12-2007 0.8419 0.8653 0.7868 0.7761 0.8419 0.8616
1-2008∼2-2008 0.7476 0.8180 0.7310 0.7190 0.7476 0.7815
3-2008∼4-2008 0.8898 0.9223 0.7399 0.7405 0.8898 0.9230

5-2008∼6-2008 0.8341 0.8924 0.7799 0.7745 0.8341 0.8803
7-2008∼8-2008 0.7998 0.8671 0.7074 0.7111 0.7998 0.8675

9-2008∼10-2008 0.8228 0.8740 0.7138 0.7162 0.8228 0.8728
11-2008∼12-2008 0.7587 0.8131 0.6591 0.6616 0.7587 0.8135

average 0.8543 0.8927 0.7697 0.7672 0.8522 0.8855

p-value 0.0000 0.9534 0.0000

sitions (dendrograms) of the given network, of which size is
growing exponentially with the network size.

It should ne noted that our node degree restriction al-
gorithm actually tends to suppress the prediction of high-
scored links. For example, the simple ordering algorithm al-
ways produces better (or equal to) total sum of scores than
our approach when the same number of links were predicted.
However, it is clearly seen from the results that simply max-
imizing of the sum of scores does not necessarily yield a
better prediction performance.

6. CONCLUSION
We propose a novel approach to the link prediction prob-

lem by exploiting a network-wide characteristic to improve
prediction accuracy. Traditional link prediction algorithms
are often based on the likelihood measure of each single
link. These algorithms are relatively simple to implement
and often perform well, however tthey fall short when the
collective characteristics among many links are considered.
More recently, a large number of studies have revealed that
many real-world networks have the power-law of the node
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degree distribution, which indicates that the network is scale
free. We developed a mathematical programming formula-
tion that makes the resulting link prediction solution follow
the node degree distribution estimated from the pase net-
works.

We tested our algorithm using Facebook networks, where
we were able to clearly demonstrate that each node degree
distribution of each network actually follows a power-law.
The computational results show that our approach yielded a
better performance than the traditional algorithm with the
same scoring method. These results are rather surprising
since the added performance boost can be obtained without
introducing a new elaborated scoring method. One of the
most appealing features of our method is that it can be used
in conjunction with any scoring method as presented in this
study.
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