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ABSTRACT
The use of social application such as Twitter or FaceBook
becomes popular in recent years. In particular, Twitter in-
creases the number of the users rapidly from 2009 as the
place that users can tweet anything in 140 characters.
In the area of social network analysis, the user network

of Twitter is frequently analyzed. Haewoon, et.al.,[4] ana-
lyzed the Twitter user network from various point of view in
2009, and they show that the Twitter user network has some
different feature from conventional social networks. Bong-
won, et.al., also made a collection of 74 millions tweets in
2010, and investigated the influence that ”retweet” gives for
diffusion of the information. Such analysis not only reveal
the unique characteristics of Twitter user network, but also
make some networking service such as finding users who are
similar to someone, or the recommendation of commodities
by using tweet information.
There are some analysis such as clustering which needs en-

tire data of the network. However, since social networks are
increasing day by day, it becomes impossible to obtain the
entire network by crawling. As a solution of this problem,
there is the network analysis called link prediction. This
enables to predict true network from a given part of the
network. If we use link prediction, we can recover the entire
network from the network data which we already obtained,
and apply some analysis such as clustering to predicted net-
work, then we may get the approximate result of the analysis
for the entire network.
In our research, we implemented one of the link prediction

algorithm named Link Propagation in X10, which is a par-
allel programming language. And evaluated its scalability
and precision with Twitter user network data.
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1. INTRODUCTION
The number of users of social applications is increasing

day by day. Now in 2013, the number of Twitter users ex-
ceeds 500 millions, which was 42 millions in 2009. Analyzing
such a large scale network of social application is difficult
for some certain reason. First, whole data of large network
have to be stored in local storage before analyzing. If we
run some analysis which needs entire data of the network,
the data need to be loaded on memory. But it is generally
prohibitive because the data is too big. Second, we cannot
get the Twitter network data easily because of the limita-
tion of use of Twitter API. Since we can only use Twitter
API 150 times in 1 hour, it will take very long time to get
all of Twitter network, which has 500 millions users.

To solve such a problem, we attempt to use a kind of net-
work analysis called link prediction. It predicts unknown
links from the known links on the network. If we have a
partial data of a social network, we can approximately re-
store the entire network data by using link prediction. Once
we get an approximate entire network, various network anal-
ysis can be applied to it and get some approximate result.
Therefore, it is important to predict the unknown links with
high precision.

Link Propagation algorithm [5] proposed by Raymond and
Kashima is one of the link prediction algorithm, which per-
forms with high precision and can be applied to large scale
networks. In our study, we implemented the Link Propa-
gation algorithm on parallel programming language X10 [3].
But in the paper of Link Propagation, some part of the algo-
rithm are not explained in detail, so we complemented them
appropriately in order to be scalable and precise algorithm.

We will explain link prediction and Link Propagation al-
gorithm in section 2, and describe how to implement Link
Propagation in X10 in section 3. The scalability evaluation
and precision analysis are shown in 4, the related works are
listed in 5, and conclusion in 6.

2. LINK PREDICTION PROBLEM
The link prediction problem is to predict links that will be

added to the given network in the future. Link prediction
has a significant role in the area of social network analysis or
protein interaction analysis. For example, user recommen-
dation service on SNS can be realized by link prediction. To
predict interaction between unknown proteins from known
proteins is also one of the link prediction problem. These
are the example of using link prediction for predicting the
future network from the current network.
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On the other hand, link prediction may be used to predict
lack of links from the partial network. We are focus on
this surface and investigated how precise Link Propagation
predicts the entire Twitter network from the part of it.

2.1 definition
Let G = ⟨V,E,W ⟩ denotes a network (graph), V denotes

a set of vertices, E = {⟨u, v⟩|u, v ∈ V } denotes a set of edges,
and W : E −→ R denotes a set of edge weight. Then link
prediction is regarded as the problem to predict the network
G′ = ⟨V,E′,W ′⟩(s.t.E ⊂ E′,W ⊂ W ′) from given network
G. When score : (G, u, v) 7−→ r ∈ R denotes the link pre-
diction score and α denotes threshold, the link prediction
function is given by eq.(1).

pred(u, v) =

{
0 : score(G, u, v) < α

1 : score(G, u, v) ≥ α
(1)

2.2 Link Propagation

2.2.1 Abstract
In this section, we describe Link Propagation algorithm

which we implemented. Link Propagation is one of the link
prediction algorithm for large scale graphs proposed by Ray-
mond and Kashima [5]. This algorithm uses the similarity
between two pairs of vertices. If vertex A is similar to C, B
is similar to D, and there is a link between C and D, then
it predicts that the link between A and B may exist. This
concept comes down to matrix calculation and Link Propa-
gation do this in parallel.
Raymond and Kashima proposed exact Link Propagation

and approximate Link Propagation. In exact Link Propaga-
tion, full size of similarity matrix is used. But in approxi-
mate Link Propagation, the similarity matrix is decomposed
to the multiplication of small matrices by low rank approxi-
mation, that reduces the memory usage though the precision
becomes worse than exact one. We employed the approxi-
mate Link Propagation for our research in order to analyze
large scale networks such as Twitter network.

2.2.2 Algorithm
Link Propagation algorithm is as follows.

1. Calculate a similarity matrix S from the adjacency ma-
trix of given network.

2. Decompose the similarity matrix S as S = GGT by
low rank approximation.

3. Calculate a Core Matrix by the matrix operation of
matrix G.

4. Get a prediction score of arbitrarily selected vertex
pairs by the matrix operation of Core Matrix.

2.2.3 Similarity Matrix
A similarity matrix is calculated from an adjacency ma-

trix, however Raymond and Kashima did not show the def-
inition of similarity. Then we defined the similarity as,

S1(u, v) =

{
|Γ(u) ∩ Γ(v)| : (u, v) ∈ E

0 : (u, v) /∈ E
(2)

S2(u, v) =


|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)| : (u, v) ∈ E

0 : (u, v) /∈ E

(3)

where, an adjacency matrix is a symmetrical matrix.
Now, we would like to mention about the sparsity of the

similarity matrix. Generally, it is known that almost all
of the large scale real networks and its adjacency matrices
are sparse. Therefore, the similarity matrix given by above
definition is also sparse matrix. In this paper, we assume
that the similarity matrix is the sparse matrix.

2.2.4 Low Rank Approximation
In the step 2 of the algorithm, S is approximated to the

small matrix G by those which decompose S to GGT . For
this purpose, we used Cholesky factorization.

Cholesky factorization decompose a positive-definite Her-
mitian matrix into a lower triangular matrix. In the range
of real number, a positive-definite Hermitian matrix equals
to a positive-definite symmetrical matrix. The algorithm
of Cholesky factorization is shown in Algorithm 1. In this
algorithm, since j-th column of lower triangular matrix L
is calculated in j-th iteration of outer ”for” loop, it can be
interrupted the calculation at M-th iteration (M < N) and
get an approximate lower triangular matrix (i.e., A ≈ LLT ).
It reduces the memory usage for storing data of matrices.

Algorithm 1 Cholesky factorization

Require: A = {aij} ∈ RN×N

Ensure: L = {lij} ∈ RN×N , A = LLT

for j = 1 to N do

ljj ←

√√√√ajj −
j−1∑
k=1

l2jk

for i = j + 1 to N do

lij ←
aij −

j−1∑
k=1

likljk

ljj
end for

end for

Now we have to mention that Cholesky factorization can-
not be directory applied to a similarity matrix of a network,
because it may not be positive-definite though symmetrical.
If we do Cholesky factorization with a non positive-definite
similarity matrix, L must be a complex matrix, since the

value in the root in ljj ←
√

ajj −
∑j−1

k=1 l
2
jk becomes nega-

tive. Furthermore, L is probably not a sparse matrix though
S is a sparse matrix, and that causes an increase of the mem-
ory usage. To solve these problem, we propose approximate
Cholesky factorization for non positive-definite symmetrical
sparse matrix.

Basic ideas of the approximate Cholesky factorization are
to substitute a small positive value for the negative value in
the root described above and to zero the value of lij with
all i, j(i ̸= j) such that aij = 0. The approximate Cholesky
factorization algorithm is shown in Algorithm 2.
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Algorithm 2 Approximate Cholesky factorization

Require: SymmetricalmatrixA = {aij} ∈ RN×N ,M <
N, ϵ > 0

Ensure: LowertriangularmatrixL = {lij} ∈ RN×M , A ≈
LLT

for j = 1 to M do

ljj ← ajj −
j−1∑
k=1

l2jk

if ljj ≥ 0 then
ljj ←

√
ljj

else
ljj ← ϵ

end if
for i = j + 1 to N do

if aij ̸= 0 then

lij ←
aij −

j−1∑
k=1

likljk

ljj
else

lij ← 0
end if

end for
end for

In the next step, Core Matrix is created by the matrix
operation of L, which is calculated by approximate Cholesky
factorization and is regarded as G.

2.2.5 Core Matrix
Core Matrix is the small matrix from which the link pre-

diction scores are easily obtained. Once we calculate the
Core Matrix, thus it is not needed to get it again. How to
calculate the Core Matrix is as follows.

1. d ≡ GGT1

2. G̃ ≡ diag(d)−
1
2G

3. Get eigenvalue decomposition of G̃T G̃
G̃T G̃ = Udiag(λ(1), λ(2), . . . , λ(M))UT

4. V ≡ G̃Udiag(λ(1), λ(2), . . . , λ(M))−
1
2

5. [Λ]i,j ≡ λ(i)λ(j)

6. [D]i,j ≡
σ(1 + σ)[Λ]i,j
1 + σ − σ[Λ]i,j

7. Core Matrix: C ≡ D ∗ (V TWV )

σ appeared in Step 6 in the above is the parameter used for
weighting of the similarity of the node pair. Since Raymond
and Kashima fixed σ to 0.001 in their paper, we also followed
that.
An operator (∗) denotes cell wise multiplication of two

matrices, i.e. when C = A ∗B, cij = aijbij .

2.2.6 Obtaining Link Prediction Scores
Eq. (5) is used to obtain the link prediction scores from

the Core Matrix, where v(i) is the vector which corresponds

to i-th row of V , i.e. V T = (v(1), v(2), . . . , v(N)).

Place 0 Place 1 Place 2

：Activity

：Data

：Local reference

：Remote reference

Figure 1: Illustration of PGAS Model

P =
1

1 + σ
W +

1

(1 + σ)2
V CV T (4)

pred(i, j) = [P ]i,j

=
1

1 + σ
[W ]i,j +

1

(1 + σ)2
vT(i)Cv(j) (5)

3. IMPLEMENTATION OF LINK PROPA-
GATION

3.1 Parallel Programming Language X10
Recently, Using multicore processor is popular, however it

is not easy to write a program that brings out the best per-
formance of the parallel environment consists of such mul-
ticore processors. If you use openMP, it becomes easier to
parallelize the program by adding special directives in the
C or C++ codes, but it may not improve the performance
in some cases. On the other hand, MPI make it possible
with detailed tuning to outperform, but it tend to be more
complicated work than openMP.

X10 is the parallel programming language based on PGAS
model that aimed for achieving both productivity and good
performance. PGAS (Partitioned Global Address Space) is
a parallel programming model where all processors exist on
a single address space (Figure 1). Since the programmers do
not have to pay attention to the address spaces independent
from other process, PGAS language have higher productiv-
ity than MPI.

Other languages based on PGAS model are listed below.

• UPC (Unified Parallel C)

• Co-Array Fortran

• Titanium

• Chapel
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1-dimensional 

distribution by row

2-dimensional block 

cyclic distribution

Figure 2: The example of distributing a matrix into
4 compute nodes. The sub matrices of same color
are stored in same node. The right figure shows the
2-dimensional distribution used in ScaLAPACK.

3.2 Inplementation

3.2.1 Distributed Sparse Matrix
The important thing when implement Link Propagation

in X10 is the way to store the data of large matrices on
memory. We would like to handle billion scale network, but
it is impossible to store the data of all vertex pairs. There-
fore, it is to be desired that the large matrices are stored as
sparse matrix format. It reduces huge memory usage, be-
cause an adjacency matrix of large scale network has many
non zero values and they are ignored in the sparse matrix
format. Nevertheless, the memory size of such matrices are
still too big to have on one compute node, so matrix data
should be distributed in multiple nodes.
There are some types of matrix distribution method. The

simplest is 1-dimensional distribution, where the rows (or
columns) of a matrix are partitioned (left figure of Fig-
ure 2). 2-dimensional distribution is a generalization of 1-
dimensional distribution, where the rows and columns are
partitioned (right figure of Figure 2). ScaLAPACK library
[1] uses one of 2-dimensional distribution named ”Block Cyclic
Data Distribution”, that makes matrix operation faster than
1-dimensional distribution. Additionally, Yoo et.al. pro-
posed the fast matrix-vector multiplication for special type
of 2-dimensional distribution. An advantage of 2-dimensional
distribution is to decrease the communication cost by data
localization. Thus the larger the matrix is, the bigger the
benefit of reducing communication cost is. However, it is
not effective for a small matrix and implementation tends
to be more complicated than 1-dimensional distribution.
In our implementation of Link Propagation, we employed

1-dimensional distribution, because almost all step in Link
Propagation algorithm are matrix operation for the small
matrix G decomposed from the similarity matrix and it
is enough efficient for a small matrix. Furthermore, in 1-
dimensional distribution, G̃T G̃ is calculated faster than in
2-dimensional distribution. As shown in Figure 3, ATA is
calculated as the sum of results of matrix multiplication in
all place. It is more complex in 2-dimensional distribution
because some fine grained communication is needed.
The X10 code which computes G̃T G̃ is shown in Figure 4.

The matrix object named DenseMatrix is created in line 1,
each place computes the matrix multiplication on parallel,
and team.allreduce gets the sum of the results.

×

× ＋＝ × ＋ ×

AT A

Figure 3: The calculation of ATA.

� �
val result = PlaceLocalHandle.make[DenseMatrix](

Dist.makeUnique(),

() => new DenseMatrix(nCol, nCol));

finish for(p in Place.places()) async at(p) {

val localResult = result();

for(var i:Int = 0; i < m.nRow; i++) {

for(var jj:Int = m.offset(i);

jj < m.offset(i + 1); jj++) {

val j = m.columns(jj);

for(var kk:Int = m.offset(i);

kk < m.offset(i + 1); kk++) {

val k = m.columns(kk);

localResult(j, k) = localResult(j, k)

+ m.vertices(jj) * m.vertices(kk);

}

}

}

team.allreduce(here.id, result().data, 0,

result().data, 0, result().data.size,

Team.ADD);

}

� �
Figure 4: The calculation of G̃T G̃ written in X10

3.2.2 Implementation of Approximate Cholesky De-
composition

The algorithm of approximate Cholesky decomposition
was already described in Algorithm 2, but we modified it
in order to compute more efficiently. When i = j, ajj −∑j−1

k=1 l
2
jk and aij −

∑j−1
k=1 likljk are the same, so the algo-

rithm can be modified to Algorithm 3. In this paper, we call
it Modified Approximate Cholesky Decomposition (MACD).

It is easy to parallelize MACD. The computation step of
parallelized MACD is shown in Figure 5. The only com-
munication occurred in this algorithm is to broadcast the
elements whose value is determined in j-th row of L, and
other parts of the algorithm are completely calculated in
parallel.

3.2.3 Eigenvalue Decomposition by GotoBLAS2
Link Propagation needs eigenvalue decomposition, but the

matrix to be decomposed is so small matrix that it can be
stored in one compute node, thus we did eigenvalue decom-
position by using GotoBLAS2, which is the linear calculation
library [2].
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Algorithm 3 Modified Approximate Cholesky Decomposi-
tion

Require: A = {aij} ∈ RN×N ,M < N, ϵ > 0
Ensure: L = {lij} ∈ RN×M , A ≈ LLT

for j = 1 to M do
for i = j to N do

if aij ̸= 0 then

lij ← aij −
j−1∑
k=1

likljk

else
lij ← 0

end if
end for
if ljj ≥ 0 then

ljj ←
√

ljj
else

ljj ← ϵ
end if
for i = j + 1 to N do

lij ←
lij
ljj

end for
end for

CPU Intel Xeon 2.93GHz (6 cores) x 2
Memory 54GB
MPI MVAPICH2-1.9a2
X10 version 2.3.1
GotoBLAS2 version 1.13

Table 1: The Environment of TSUBAME 2.0

4. EVALUATION

4.1 Environment and Dataset
We run Link Propagation on TSUBAME 2.0 supercom-

puter at Tokyo Institute of Technology in Japan. Table 1
shows the environment of TSUBAME 2.0.
The dataset which used for performance evaluations is the

subset of Twitter user network we obtained in 2012. Each of
vertex represents one user and the edge A→ B denotes that
A follows B. The number of vertices and edges are shown in
Table 2. This network data is distributed into multiple files.
The number of files is 1179, and the size of each file is about
500MB.

4.2 Process of Experiment
The input of Link Propagation is the network in which

some edges are removed. Then we evaluate the precision of
Link Propagation; how precise the removed edges are recov-
ered. The precision of link prediction is generally evaluated
by AUC (Area Under the Curve), so we also use it.
The process of the experiment is as follows.

# of vertices
Dataset A 594,455
Dataset B 2,650,983

Table 2: The Number of Vertices of Each Dataset

w

d

vT

K

Place 0

Place 1

Place 2

w = (w – Kv) / d

(j)

(j)

Figure 5: The computation step of parallelized
MACD. For example, place 2 communicates with
only the place which has v and d to calculate w.

1. Load the Twitter network data and remove some edges.

2. Make an adjacency matrix from the network data.

3. Apply Link Propagation to the adjacency matrix and
get Core Matrix.

4. Get the link prediction scores of removed edges and
some existing edges.

5. Calculate AUC from the prediction results.

4.3 Scalability
Scalability evaluation of Link Propagation is shown in Fig-

ure 6 and Figure 7. It shows the scalability up to 16 nodes
with both dataset A and B. Since almost all process of Link
Propagation are matrix operation, it seems that it gains the
great benefit of parallelization.

4.4 Precision
Precision evaluation is shown in Figure 8. It shows con-

stant precision even if approximation level in Cholesky de-
composition is changed. This result is different from we
expected, but the cause of it is not found yet.

5. RELATED WORKS

5.1 Related with Link Prediction
Song et.al. [6] proposed the link prediction algorithm

based on proximity sketch and proximity embedding. This
algorithm can dynamically predict the links of real time net-
works. But its scalability is worse than Link Propagation,
since it does not aim for distributed environment.

Papadimitriou et.al. proposed FriendLink, which is a link
prediction score like Katzβ or RWR. They showed that cal-
culating FriendLink is two times faster than Katzβ , but the
precision was as low as RWR.

5.2 Related with Low Rank Approximation
Our Link Propagation uses Cholesky decomposition, but

there are some more low rank approximation methods.
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Figure 6: Scalability evaluation with dataset A.
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Figure 7: Scalability evaluation with dataset B.
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Figure 8: Precision evaluation with dataset A.

Drineas et.al. proposed CUR algorithm, where the columns
and the rows of matrix A are sampled and construct sub
matrices C,R, then A is decomposed as A ≈ CUR. This al-
gorithm is very fast but it cannot decompose like A = LLT ,
so it is unsuited for Link Propagation.

6. CONCLUSION
We implemented the Link Propagation algorithm for large

scale social networks in X10. At that time, we proposed orig-
inal type of Cholesky decomposition (MACD) and showed
that it was scalable and keeped the sparsity of the matrix.
Actually, the scalability of Link Propagation became fine,
but the precision was lower than expected. In the next step,
we should investigate what is the cause of low precision.
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