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ABSTRACT 
In recent years, real-time data mining for large-scale time-

evolving graphs is becoming a hot research topic. Most of the 
prior arts target relatively static graphs and also process them in 
store-and-process batch processing model. In this paper we 
propose a method of applying on-the-fly and incremental graph 
stream computing model to such dynamic graph analysis. To 
process large-scale graph streams on a cluster of nodes 
dynamically in a scalable fashion, we propose an incremental 
large-scale graph processing model called “Incremental GIM-V 
(Generalized Iterative Matrix-Vector Multiplication)”. We also 
design and implement UNICORN, a system that adopts the 
proposed incremental processing model on top of IBM InfoSphere 
Streams.  Our performance evaluation demonstrates that our 
method achieves up to 48% speedup on PageRank with Scale 16 
Log-normal Graph (vertexes=65,536, edges=8,364,525) with 4 
nodes, 3023% speedup on Random walk with Restart with 
Kronecker Graph with Scale 18 (vertexes=262,144, 
edges=8,388,608) with 4 nodes against original GIM-V. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
Distributed programming, D.2.13 [Software Engineering]: 
Reusable Software – Reusable libraries 

Keywords 
DSMS, Data Stream Management System, Page Rank, Random 
Walk with Restart, Distributed computing, Graph algorithms 

1. INTRODUCTION 
In recent years, real-time data mining for large-scale time-

evolving graphs is becoming a hot research topic. Large-scale 
graph analysis is a hot topic in various application domains such 
as social networks, Twitter, micro-blogs, protein-protein 
interactions, and the connectivity of the Web. 

For example, link analysis has been a popular and widely used 
Web mining technique, especially in the area of Web search. 
PageRank metric has gained a huge popularity with the success of 
Google. Most of the prior arts target relatively static graphs and 
also process them in store-and-process batch processing model.  

We are entering an era in which the number of available sensors 
and their data are growing rapidly. Sensors can vary from 
physical sensors such as medical devices, image and video 
cameras, and RFID sensors to data generated by computer 
InfoSphere Streams such as stock trading data or data from social 
media InfoSphere Streams such as Twitter and SNS.  

Data Stream Processing is the notion of processing incoming 
data from various data sources such as sensor, web click data, IP 
log, etc. on memory to realize real-time computation. This 
computing paradigm is getting important since business 
organizations need to react any event relevant to their revenue. 

In this paper we propose UNICORN system that introduces an 
incremental computation model which we call “Incremental GIM-
V (Generalized Iterative Matrix-Vector multiplication)”. We 
implement a graph processing system using IBM InfoSphere 
Streams [2] which is one of the Data Stream Management System 
(DSMS), and evaluate its performance. The contributions are the 
following: 

   1. Propose an incremental graph processing model 
“Incremental GIM-V”. Our method calculates several graph 
mining operations  such as PageRank, Random Walk with 
Restart (RWR) more effectively and efficiently compared to 
original GIM-V. Moreover, the method maintains linearity on 
the number of edges, and scales up well with the number of 
available machines. 
 
2. UNICORN has been implemented on top of InfoSphere 
Streams, a distributed data stream processing system developed 
by IBM Research.  PEGASUS [6] is a graph mining package for 
handling graphs with billions of nodes and edges is based on 
HADOOP [9], which is based on Distributed File System 
(HDFS). File System Based InfoSphere Streams are too slow in 
applying on-the-fly and incremental stream computing models 
to such dynamic graph analysis. Our implementation is built on 
top of InfoSphere Streams which conducts such analysis in-
memory in much fast manner.  
 
3. Performance analysis, which achieves up to 48% speedup on 
PageRank with a SCALE16 Log-normal Graph (vertexs=65,536, 
edges=8,364,525) with 4 machines, 3023% speedup on Random 
walk with Restart with a SCALE18 Kronecker Graph 
(vertexs=262,144, edges=8,388,608) with 4 machines against 
original GIM-V, which based on Hadoop not on InfoSphere 
Streams. 
 

The rest of the paper is organized as follows. Section 2 presents 
the related work. Section 3 describes architecture of InfoSphere 
Streams. Section 4 describes an original GIM-V model. In Section 
5 we propose our improved model “Incremental GIM-V”. Section 
6 we show our implementation of UNICORN. Section 7 we 
describe sample application. Section 8 we experiment our data 
and in Section 9 we discuss about our system. We conclude in 
Section 10. 

2. RELATED WORK 
Parallel graph data processing has attracted a lot of industrial 

and research attention such as Pregel [10], a bulk synchronous 
processing model suitable for processing large graphs.  
PEGASUS [6], an open source Peta-scale Graph Mining library 
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that performs typical graph mining tasks. PEGASUS is the first 
such library implemented on top of the HADOOP platform. 
PEGASUS describes a very important primitive called GIM-V 
(Generalized Iterated Matrix-Vector multiplication).  GIM-V 
achieves a good scale-up on the number of available machines 
with a linear running time on the number of edges. PEGASUS 
solves PageRank with Yahoo’s web graph with 1,413 vertices and 
6,636 edges in 50~100 seconds with 90 machines of M45 
HADOOP cluster by Yahoo!.   

Most of the prior arts target relatively static graphs and also 
process them in store-and-process batch processing model. 
However there are also many number of dynamic graph mining 
algorithms such as Incremental PageRank [13], Adaptive 
PageRank [14], Parallel Incremental Graph Partitioning [16], On-
line Hierarchical Graph Drawing[17], Study Community 
Dynamics with an Incremental Graph Mining Algorithms [18], 
Fast Incremental Minimum-Cut Based Algorithms for Graph 
Clustering [19] and so forth.  For example, Prasanna, et al 
propose Incremental PageRank method to incrementally compute 
PageRank for a large graph that is evolving. They note that 
although the Web graph evolves over time, its dynamically 
change rate is rather slow when compared to its size. They exploit 
the underlying principle of first order Markov model on which 
PageRank is based, to incrementally compute PageRank for 
evolving Web graphs.  

Meanwhile, data stream processing has become a hot research 
area since early 2000s. As of today, many commercial softwares 
are appearing such as IBM InfoSphere Streams [2].  InfoSphere 
Streams is a large-scale, distributed data stream processing 
middleware under development at IBM Research. It processes 
structured and unstructured data streams and can be scaled to a 
large numbers of compute nodes. InfoSphere Streams can execute 
a large number of long-running jobs (queries) in the form of data-
flow graphs described in its special stream-application language 
called SPL (Stream Processing Language). SPL is a stream-
centric and operator-based language for stream processing 
applications for InfoSphere Streams, and also supports all of the 
basic stream-relational operators with rich windowing semantics.  

3. Motivation: GIM-V MODEL 
U.Kang et al. [6] proposed GIM-V model, the unification of 

seemingly different graph mining tasks. GIM-V model is general 
graph mining model and GIM-V analyses very large peta-scale 
graphs. Our method, ‘Incremental GIM-V’, is based on GIM-V 
model and improves it to compute dynamic graphs. We first 
explain how original GIM-V model works in this section. GIM-V, 
or ‘Generalized Iterative Matrix-Vector multiplication’, is a 
generalization of normal matrix-vector multiplication. Suppose 
GIM-V has a n by n matrix M and a vector v of size n. Let mi,j 
denote the (i, j)-th element of M. Then the usual matrix-vector 
multiplication is 

 

There are three operations in the previous formula, which, if 
customized separately, will give a surprising number of useful 
graph mining algorithms: 

1) combine2: multiply mi,j and vj . 

2) combineAll: sum n multiplication results for node i. 

3) assign: overwrite previous value of vi with new result to 
make v’i. 

In GIM-V, let’s define the operator ×G, where the three 
operations can be defined arbitrarily. Formally, we have: 

v’ = M ×G v where v’i = assign(vi, combineAlli({xj | j = 1..n, and 
xj =combine2(mi,j, vj)})). 

The functions combine2(), combineAll(), and assign() have the 
following signatures (generalizing the product, sum and 
assignment, respectively, that the traditional matrix-vector 
multiplication requires): 

1) combine2(mi,j, vj) : combine mi,j and vj . 

2) combineAlli(x1,...,xn):combine all the results from combine2() 
for node i. 

3) assign(vi, vnew) : decide how to update vi with vnew. 

The ‘Iterative’ in the name of GIM-V denotes that they apply 
the ×G operation until an algorithm-specific convergence criterion 
is met. By customizing these operations, we can obtain different, 
useful algorithms including PageRank, Random Walk with 
Restart, connected components, and diameter estimation.  

4. Proposed Method: Incremental GIM-V  
We proposed “Incremental GIM-V” model, which is based on 

GIM-V (Generalized Iterated Matrix-Vector multiplication), to 
compute several graph mining operations. Incremental GIM-V 
model reduces runtime by computing only ‘changing portion’ and 
eliminating redundant computation. The original GIM-V re-
computes the function Combine2(), CombineAll() and Assign() 
unless all vertexes are converged. Incremental GIM-V basically 
computes the same as original GIM-V, but Incremental GIM-V 
improves several points to compute effectively and efficiently. 

The overall image for Incremental GIM-V is illustrated in 
Figure 1. The original GIM-V computes for all vertices even if 
the value of vertex is unchanged. But, we need not to calculate 
unchanged vertices and send calculated data to other distributed 
nodes. In Adaptive PageRank, Kamber et al [14] suggest the 
running time of the PageRank algorithm can be significantly 
reduced by eliminating redundant computation. In Incremental 
PageRank, Prasanna et al [13] suggest the computation involves 
only the (small) portion of Time-Evolving Large Graph, such as 
Web graph, that has undergone change. Incremental GIM-V 
solves this problem to store the calculated value and eliminate 
redundant computation. 
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Incremental GIM-V method seems equal to Pregel model, 
called Vertex State Machine, but Vertex State Machine does not 
store any calculated values and cannot eliminate redundant 
computations of several graph analysis, such as PageRank or 
Random Walk with Restart. In addition, Vertex State Machine 
does not support incremental graph analysis. These points are 
different from our proposal. 

In fact, Incremental GIM-V method needs more memory space 
against original GIM-V. However, such extra memory space is 
equal to the number of edges and memory space order is not so 
different against original GIM-V. Both Incremental GIM-V and 
original GIM-V has Iteration Limit operator, but their means are 
different. Iteration Limit of Large-Scale Graph Batch Processing 
as a whole terminates when number of the iterations reaches the 
limit of the application. In contrast, Iteration Limit of Large-Scale 
Graph Stream Processing just stops computation until next 
computation is started. Incremental GIM-V keeps the value and 
state of last computation to compute the application incrementally.   

Our method can compute the incremental process to keep the 
value and state of last computation. If the computation needs a 
whole converge, we can set a large number enough to converge 
all vertexes. In other words, our method can compute both batch 
and stream computation. We thus suggest Incremental GIM-V 
that is more general computation model than original GIM-V.  

5. IMPLEMENTATION 
We implement UNICORN with Incremental GIM-V based on 

IBM InfoSphere Streams [2][3][4][5] and SPL. In our System, the 
vertex IDs are numbered by Integer value (such as 0, 1, 2, …). To 
process in a distributed manner, each vertex is split by K tasks, 
and each task computes vertices which ID number is (i mod K+1). 

5.1 Overview of UNICORN 
The abstract image for UNICORN is illustrated in Figure 2. In 

Figure 2, each rectangle shows operator (or process), and arrow 

shows data flow (such as Graph Stream). Four built-in operators 
are used to implement UNICORN, Source (input data), Sink 
(output data), Split (split data) and Bundle (bundle graph streams). 
And, there are 2 UDOP (User- Defined Operator) operators to 
implement UNICORN, Master (control all computation) and 
Worker (compute parallel tasks). Now we describe how to 
orchestrate these operators. The K parameter shows the number of 
tasks of operator, such as Worker, Sink, Split and Bundle. Each 
tasks create own process and compute parallel. We can put these 
processes on distributed computers. 

Source(G) : Execute graph input to the system (graph input 
comes as edge list such as Mi,j). 

・ Split(G) : Split graph data and send to correct Worker 
operator (split Mi,j  by i and j). 

・ Source(M) : Get the start order of graph analysis from Users. 

・ Master(M) : Mastering whole graph analysis and 
synchronize process in every iteration. 

・ Sink(M) : Output runtime data or the number of iterations. 

・ Worker(W1~WK) : Execute main graph analysis. The i 
operator has the information of j vertex which satisfy i = (j 
mod K + 1). The information of j vertex include Vj, Mi,j  for  

i . 

・ Sink(W1~WK) : Output the graph analysis data in each 
Worker operator. 

・ Split(W1~WK), Bundle(W1~WK) : Manage calculated data 
flow between Worker operators internal. Flow of 
Worker(Wa) stream to Worker(Wb) via Split (Wa) and 
Bundle(Wb). 

・ Bundle(M) : Bundle flow form Worker operator to Master 
operator. 

Figure 1, Overview of Incremental GIM-V 
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5.2 Implementation Flow 
We describe computation flow in this subsection. Graph 

processing start when input data comes from Source(M) to Master. 
In whole flow of processing, there are 6 phases, ‘Ready’, 
‘Calculate Combine2’, ‘Check Changed Flag’, ‘Calculate 
CombineAll’, ‘Assign Changed Flag’ and ‘Output Result’. 4 
phases, ‘Calculate Combine2’, ‘Check Changed Flag’, ‘Calculate 
CombineAll’ and ‘Assign Changed Flag’, are iterative 
computation and recomputed iteratively. Master send message of 
starting phase or step to Worker, and Worker send message of 
finishing execution to Master (it include weather process is 
converged or not). Each phases of Graph Processing are defined 
as follows: 

Ready: Ready to input graph data. If input data comes in another 
phase, a worker buffers input data. When all phases are 
terminated and this Ready phases starts, A worker reflects input 
data and goes to next phase. When reflecting input data, a worker 
defines out-degree and in-degree vertexes of reflected edges as 
changed vertices. 

Calculate Combine2: A worker calculates Combine2 whose 
vertexes are defined as changed ones. After Calculation, a worker 
sends calculated data to out-degree vertex of changed vertex. 

Check Changed Flag: A worker defines verteices which 
Combine2 data is sent as changed vertex. 

Calculate CombineAll:  A worker calculates CombineAll and 
assign whose vertexes are defined as changed. 

Assign Changed Flag: Assign the result of Combine2 calculation. 
If the value of vertex is converged, a worker defines the vertex as 
unchanged ones. 

Output Result: A worker outputs their calculated data and goes 
to the Ready phase. In this phase, users can define whether they 
need to change flag of vertexes or not. 

6. APPLICATIONS: PageRank and Random 
Walk with Restart on Incremental GIM-V 

To consider Incremental GIM-V as one computation model, we 
define three GIM-V operations, combine2(), combineAll(), and 
assign(). Our system is based on InfoSphere Streams, so we 
implement these operators as UDOP (User- Defined Operator), 
which is written in C/C++. UNICORN users defined only these 
three operators to implement application. 

PageRank and Random Walk with Restart is already shown in 
PEGASUS paper, so we just describe the abstract of them.  
PageRank is a famous algorithm that was used by Google to 
calculate relative importance of web pages. The PageRank vector 
p of n web pages satisfies the following eigenvector equation: 

p = (cET + (1 − c)U)p 

where c is a damping factor (usually set to 0.85), E is the row-
normalized adjacency matrix (source, destination), and U is a 
matrix with all elements set to 1/n. Original GIM-V pre-compute 
row-normalized adjacency matrix and make input data. However, 
in incremental graph processing, calculating whole row-
normalized adjacency matrix is redundant computation. 
Incremental GIM-V can incrementally normalize all vertexes 
when the vertex is changed. PageRank is calculated by pnext = M 
×G pcur where the three operations are defined as follows: 

1) combine2(mi,j, vj) = c × mi,j × vj 

2) combineAlli(x1, ..., xn) = (1−c) / n +  

3) assign(vi, vnew) = vnew 

Random Walk with Restart(RWR) is an algorithm to measure 
the proximity of nodes in graph . In RWR, the proximity vector 
rk from node k satisfies the equation: 

rk = cMrk + (1 − c)ek  

where ek is a n-vector whose k-th element is 1, and every other 
elements are 0. c is a restart probability parameter which is 
typically set to 0.85. M is a column-normalized and transposed 
adjacency matrix, as in PageRank. In original GIM-V, RWR is 
formulated by  where the three operations are 

defined as follows ( I (x) is 1 if x is true, and 0 otherwise.): 

1) combine2(mi,j, vj) = c × mi,j × vj 

2) combineAlli(x1, ..., xn) = (1−c) I ( i ≠ k) +  

3) assign(vi, vnew) = vnew 

7. PERFORMANCE EVALUATION 
In this section, we measure and evaluate our system. Original 

GIM-V on PEGASUS – file-based system with Hadoop - and it is 
not suitable to compare it against Incremental GIM-V on top of 
IBM InfoSphere Streams – in-memory based system. We thus 
implemented original GIM-V using IBM InfoSphere Streams and 
measure Incremental GIM-V against original GIM-V using 
InfoSphere Streams. We used 4 compute nodes connected by 1 
Gbps Ethernet. The home directories for these nodes are shared 
with an NFS server. The experimental testbed is AMD Phenom 
9850 with 4 cores and 8GB DRAM. Software environments are 
CentOS 5.4 kernel 2.6 for AMD 64, InfoSphere Streams 1.2.0 
(InfoSphere Streams), gcc 4.1.2 with optimization option “-O3”.  

Figure 2, Flow of UNICORN 
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We choose two applications for experiment, PageRank[1], 
Random walk with Restart (RWR)[7]. Two applications need to 
compute large-scale graph and also have the highly demand for 
incremental processing. In detail, PageRank compute directed 
graph, while RWR compute undirected graph. 

7.1 Experimental Graph Data Patterns 
We use Kronecker Graph [12] and log-normal graph for 

experiment. Kronecker Graph is used for artificial data feeding 
into a standard large-scale graph analytics benchmark on 
supercomputers called Graph500. Kronecker Graph generates 
recursively matrix graphs that match degree distributions 
following power-law nature, exhibit a “community” structure and 
have a small diameter, and match other criterias in general social 
networks. Kronecker Graph is undirected graph, so it is suitable 
for input data of RWR as well. 

 Log-normal graph is used for input data of the evaluation of 
Pregel[1]. The paper in [1] describes that log-normal graph 
resembles many real-world large scale graphs, such as the web 
graph or social networks, where most vertices have a relatively 
small degree but some outliers are much larger, a hundred 
thousand or more. We generate the log-normal graph in the sama 

fashion as.  A log-normal graph is a directed graph, thus it is 
suitable for input data of PageRank. 

We use a parameter called “SCALE” for generating graphs used 
by the Graph500 benchmark. SCALE is a parameter that 
represents the number of vertices. The number of vertices is 
defined as the power of 2. The vertex-edge table is following: 

 
We also define the change rate parameter for generating 

dynamically changing graph.  To change graph dynamically, the 
method of adding edges or deleting edges may destruct graph 
characteristic such as “community” structure. Therefore we 
change the edge weight to generate dynamic change of graph. 
Both Kronecker graph and log-normal graph are un-weighted 
graphs whose weight of all vertices is 1. We chose some 
percentage of edges randomly and changed their weight to 2. We 
define that percentage of change as change rate. 

 

Figure 3, Runtime of PageRank with log-
normal graph varying SCALE from 12 to 
16 

 

Figure 4, Runtime of Random Walk with 
Restart with Kronecker Graph varying 

SCALE from 14 to 18 

 

Figure 5, PageRank with SCALE16 log-
normal graph by iteration step 

 

Figure 6, Random Walk with Restart 
with SCALE18 Kronecker Grapph  by 
iteration step 

 

Figure 7. PageRank with SCALE16 log-
normal graph varying cores from 4 to 16 

 

Figure 8. Random Walk with Restart 
with SCALE18  Kronecker Graph 
varying cores from 4 to 16 

 

Figure 9.  Runtime varying change rate 
from 10% to 90% 

 

Figure 10. Elapsed time by varying 
change rate from 1% to 10% 

Figure 11.  Number of iteration step 
between incremental analysis and batch 
analysis 

Table 1, Vertex-Edge Relation by Graphs 
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7.2 Performance and Scalability 
The time for initializing the cluster, generating the test graphs in-
memory, and verifying results is not included in the 
measurements. 

First, as an indication of how UNICORN scales with SCALE 
parameter which show graph scale, Figure 3 and Figure 4 shows 
the elapased time for PageRank with Kronecker graph and RWR 
with log-normal graph when the number of SCALE varies from12 
to 16  (as for log-normal graph) or from 14 to 18 (as for 
Kronecker Graph). In Figure 3 and 4, both applications show 
good speedups against original GIM method by using Incremental 
GIM-V. Using Incremental GIM-V, PageRank achieves 33% 
speedup with a log-normal graph of SCALE 16, while RWR 
achieves 69% speedup with SCALE 18 Kronecker Graph.  

Second, we calculate runtime by iteration step to show how 
eliminate redundant computation. As shown in the iteration 8 and 
9 of Figure 5, PageRank algorithm can be significantly optimized 
by eliminating redundant computation the number of iteration for 
RWR is different between GIM-V and Incremental GIM-V 
because of the difference of converged assignment.  

Third, we show how UNICORN scales by increasing the 
number of CPU cores, Figure 7 and 8 presents the elapsed time of 
PageRank and RWR by varying # number of cores from 4 to 16 .  

Fourth, we describe dynamic processing of Incremental GIM-V. 
Dynamic processing is not supported by original GIM-V. We use 
change ratio parameter to show dynamically changed graph. We 
change the edge weight to generate dynamic change of graph. 
Both Kronecker Graph and log-normal graphs are un-weighted 
graph whose weight of all vertices is 1. We chose some 
percentage of edges randomly and change their weight to 2. We 
define that percentage of change as change rate. Figure 9, 10 
presents two applications achieve speedup when change rate is 
decreased. Figure 11 presents incremental analysis can 
successfully decreases the number of iteration steps against batch 
analysis. In particular, an application - which is hard to converge 
such as RWR - achieves highly speedup as well. When change 
rate parameter was 1%, PageRank achieves 12% speedup with a 
log-normal graph of SCALE 16, RWR achieves 1900% speedup 
with a Kronecker Graph of SCALE 18. 

  Overall, we successfully achieve speedup by eliminating 
redundant computation and compute dynamically. As a result, 
PageRank achieves 48% speedup with a log-normal graph of 
SCALE 16, while RWR achieve 3023% speedup with a 
Kronecker Graph of SCALE 18. 

8. SUMMARY 
In this paper, we propose an incremental graph processing 

model called “Incremental GIM-V (Generalized Iterative Matrix-

Vector multiplication)”, and implement it on top of a data stream 
processing system, IBM InfoSphere Streams, and then evaluate 
and demonstrates the validity of our approach.  For future work, 
we implement more applications such as graph clustering and 
single-source shortest path. Moreover we will improve GIM-V 
and Incremental GIM-V model to cover a wide variety of graph 
analytics. 
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