
Towards Large-Scale Graph Stream Processing Platform
Toyotaro Suzumura

IBM Research / JST CREST

toyo@jp.ibm.com

Shunsuke Nishii
Tokyo Institute of Technology

/ JST CREST

Masaru Ganse
Tokyo Institute of Technology

/ JST CREST

ABSTRACT
In recent years, real-time data mining for large-scale time-

evolving graphs is becoming a hot research topic. Most of the
prior arts target relatively static graphs and also process them in
store-and-process batch processing model. In this paper we
propose a method of applying on-the-fly and incremental graph
stream computing model to such dynamic graph analysis. To
process large-scale graph streams on a cluster of nodes
dynamically in a scalable fashion, we propose an incremental
large-scale graph processing model called “Incremental GIM-V
(Generalized Iterative Matrix-Vector Multiplication)”. We also
design and implement UNICORN, a system that adopts the
proposed incremental processing model on top of IBM InfoSphere
Streams. Our performance evaluation demonstrates that our
method achieves up to 48% speedup on PageRank with Scale 16
Log-normal Graph (vertexes=65,536, edges=8,364,525) with 4
nodes, 3023% speedup on Random walk with Restart with
Kronecker Graph with Scale 18 (vertexes=262,144,
edges=8,388,608) with 4 nodes against original GIM-V.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Distributed programming, D.2.13 [Software Engineering]:
Reusable Software – Reusable libraries

Keywords
DSMS, Data Stream Management System, Page Rank, Random
Walk with Restart, Distributed computing, Graph algorithms

1. INTRODUCTION
In recent years, real-time data mining for large-scale time-

evolving graphs is becoming a hot research topic. Large-scale
graph analysis is a hot topic in various application domains such
as social networks, Twitter, micro-blogs, protein-protein
interactions, and the connectivity of the Web.

For example, link analysis has been a popular and widely used
Web mining technique, especially in the area of Web search.
PageRank metric has gained a huge popularity with the success of
Google. Most of the prior arts target relatively static graphs and
also process them in store-and-process batch processing model.

We are entering an era in which the number of available sensors
and their data are growing rapidly. Sensors can vary from
physical sensors such as medical devices, image and video
cameras, and RFID sensors to data generated by computer
InfoSphere Streams such as stock trading data or data from social
media InfoSphere Streams such as Twitter and SNS.

Data Stream Processing is the notion of processing incoming
data from various data sources such as sensor, web click data, IP
log, etc. on memory to realize real-time computation. This
computing paradigm is getting important since business
organizations need to react any event relevant to their revenue.

In this paper we propose UNICORN system that introduces an
incremental computation model which we call “Incremental GIM-
V (Generalized Iterative Matrix-Vector multiplication)”. We
implement a graph processing system using IBM InfoSphere
Streams [2] which is one of the Data Stream Management System
(DSMS), and evaluate its performance. The contributions are the
following:

 1. Propose an incremental graph processing model
“Incremental GIM-V”. Our method calculates several graph
mining operations such as PageRank, Random Walk with
Restart (RWR) more effectively and efficiently compared to
original GIM-V. Moreover, the method maintains linearity on
the number of edges, and scales up well with the number of
available machines.

2. UNICORN has been implemented on top of InfoSphere
Streams, a distributed data stream processing system developed
by IBM Research. PEGASUS [6] is a graph mining package for
handling graphs with billions of nodes and edges is based on
HADOOP [9], which is based on Distributed File System
(HDFS). File System Based InfoSphere Streams are too slow in
applying on-the-fly and incremental stream computing models
to such dynamic graph analysis. Our implementation is built on
top of InfoSphere Streams which conducts such analysis in-
memory in much fast manner.

3. Performance analysis, which achieves up to 48% speedup on
PageRank with a SCALE16 Log-normal Graph (vertexs=65,536,
edges=8,364,525) with 4 machines, 3023% speedup on Random
walk with Restart with a SCALE18 Kronecker Graph
(vertexs=262,144, edges=8,388,608) with 4 machines against
original GIM-V, which based on Hadoop not on InfoSphere
Streams.

The rest of the paper is organized as follows. Section 2 presents
the related work. Section 3 describes architecture of InfoSphere
Streams. Section 4 describes an original GIM-V model. In Section
5 we propose our improved model “Incremental GIM-V”. Section
6 we show our implementation of UNICORN. Section 7 we
describe sample application. Section 8 we experiment our data
and in Section 9 we discuss about our system. We conclude in
Section 10.

2. RELATED WORK
Parallel graph data processing has attracted a lot of industrial

and research attention such as Pregel [10], a bulk synchronous
processing model suitable for processing large graphs.
PEGASUS [6], an open source Peta-scale Graph Mining library

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2580051

1321

that performs typical graph mining tasks. PEGASUS is the first
such library implemented on top of the HADOOP platform.
PEGASUS describes a very important primitive called GIM-V
(Generalized Iterated Matrix-Vector multiplication). GIM-V
achieves a good scale-up on the number of available machines
with a linear running time on the number of edges. PEGASUS
solves PageRank with Yahoo’s web graph with 1,413 vertices and
6,636 edges in 50~100 seconds with 90 machines of M45
HADOOP cluster by Yahoo!.

Most of the prior arts target relatively static graphs and also
process them in store-and-process batch processing model.
However there are also many number of dynamic graph mining
algorithms such as Incremental PageRank [13], Adaptive
PageRank [14], Parallel Incremental Graph Partitioning [16], On-
line Hierarchical Graph Drawing[17], Study Community
Dynamics with an Incremental Graph Mining Algorithms [18],
Fast Incremental Minimum-Cut Based Algorithms for Graph
Clustering [19] and so forth. For example, Prasanna, et al
propose Incremental PageRank method to incrementally compute
PageRank for a large graph that is evolving. They note that
although the Web graph evolves over time, its dynamically
change rate is rather slow when compared to its size. They exploit
the underlying principle of first order Markov model on which
PageRank is based, to incrementally compute PageRank for
evolving Web graphs.

Meanwhile, data stream processing has become a hot research
area since early 2000s. As of today, many commercial softwares
are appearing such as IBM InfoSphere Streams [2]. InfoSphere
Streams is a large-scale, distributed data stream processing
middleware under development at IBM Research. It processes
structured and unstructured data streams and can be scaled to a
large numbers of compute nodes. InfoSphere Streams can execute
a large number of long-running jobs (queries) in the form of data-
flow graphs described in its special stream-application language
called SPL (Stream Processing Language). SPL is a stream-
centric and operator-based language for stream processing
applications for InfoSphere Streams, and also supports all of the
basic stream-relational operators with rich windowing semantics.

3. Motivation: GIM-V MODEL
U.Kang et al. [6] proposed GIM-V model, the unification of

seemingly different graph mining tasks. GIM-V model is general
graph mining model and GIM-V analyses very large peta-scale
graphs. Our method, ‘Incremental GIM-V’, is based on GIM-V
model and improves it to compute dynamic graphs. We first
explain how original GIM-V model works in this section. GIM-V,
or ‘Generalized Iterative Matrix-Vector multiplication’, is a
generalization of normal matrix-vector multiplication. Suppose
GIM-V has a n by n matrix M and a vector v of size n. Let mi,j
denote the (i, j)-th element of M. Then the usual matrix-vector
multiplication is

There are three operations in the previous formula, which, if
customized separately, will give a surprising number of useful
graph mining algorithms:

1) combine2: multiply mi,j and vj .

2) combineAll: sum n multiplication results for node i.

3) assign: overwrite previous value of vi with new result to
make v’i.

In GIM-V, let’s define the operator ×G, where the three
operations can be defined arbitrarily. Formally, we have:

v’ = M ×G v where v’i = assign(vi, combineAlli({xj | j = 1..n, and
xj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and assign() have the
following signatures (generalizing the product, sum and
assignment, respectively, that the traditional matrix-vector
multiplication requires):

1) combine2(mi,j, vj) : combine mi,j and vj .

2) combineAlli(x1,...,xn):combine all the results from combine2()
for node i.

3) assign(vi, vnew) : decide how to update vi with vnew.

The ‘Iterative’ in the name of GIM-V denotes that they apply
the ×G operation until an algorithm-specific convergence criterion
is met. By customizing these operations, we can obtain different,
useful algorithms including PageRank, Random Walk with
Restart, connected components, and diameter estimation.

4. Proposed Method: Incremental GIM-V
We proposed “Incremental GIM-V” model, which is based on

GIM-V (Generalized Iterated Matrix-Vector multiplication), to
compute several graph mining operations. Incremental GIM-V
model reduces runtime by computing only ‘changing portion’ and
eliminating redundant computation. The original GIM-V re-
computes the function Combine2(), CombineAll() and Assign()
unless all vertexes are converged. Incremental GIM-V basically
computes the same as original GIM-V, but Incremental GIM-V
improves several points to compute effectively and efficiently.

The overall image for Incremental GIM-V is illustrated in
Figure 1. The original GIM-V computes for all vertices even if
the value of vertex is unchanged. But, we need not to calculate
unchanged vertices and send calculated data to other distributed
nodes. In Adaptive PageRank, Kamber et al [14] suggest the
running time of the PageRank algorithm can be significantly
reduced by eliminating redundant computation. In Incremental
PageRank, Prasanna et al [13] suggest the computation involves
only the (small) portion of Time-Evolving Large Graph, such as
Web graph, that has undergone change. Incremental GIM-V
solves this problem to store the calculated value and eliminate
redundant computation.

1322

Incremental GIM-V method seems equal to Pregel model,
called Vertex State Machine, but Vertex State Machine does not
store any calculated values and cannot eliminate redundant
computations of several graph analysis, such as PageRank or
Random Walk with Restart. In addition, Vertex State Machine
does not support incremental graph analysis. These points are
different from our proposal.

In fact, Incremental GIM-V method needs more memory space
against original GIM-V. However, such extra memory space is
equal to the number of edges and memory space order is not so
different against original GIM-V. Both Incremental GIM-V and
original GIM-V has Iteration Limit operator, but their means are
different. Iteration Limit of Large-Scale Graph Batch Processing
as a whole terminates when number of the iterations reaches the
limit of the application. In contrast, Iteration Limit of Large-Scale
Graph Stream Processing just stops computation until next
computation is started. Incremental GIM-V keeps the value and
state of last computation to compute the application incrementally.

Our method can compute the incremental process to keep the
value and state of last computation. If the computation needs a
whole converge, we can set a large number enough to converge
all vertexes. In other words, our method can compute both batch
and stream computation. We thus suggest Incremental GIM-V
that is more general computation model than original GIM-V.

5. IMPLEMENTATION
We implement UNICORN with Incremental GIM-V based on

IBM InfoSphere Streams [2][3][4][5] and SPL. In our System, the
vertex IDs are numbered by Integer value (such as 0, 1, 2, …). To
process in a distributed manner, each vertex is split by K tasks,
and each task computes vertices which ID number is (i mod K+1).

5.1 Overview of UNICORN
The abstract image for UNICORN is illustrated in Figure 2. In

Figure 2, each rectangle shows operator (or process), and arrow

shows data flow (such as Graph Stream). Four built-in operators
are used to implement UNICORN, Source (input data), Sink
(output data), Split (split data) and Bundle (bundle graph streams).
And, there are 2 UDOP (User- Defined Operator) operators to
implement UNICORN, Master (control all computation) and
Worker (compute parallel tasks). Now we describe how to
orchestrate these operators. The K parameter shows the number of
tasks of operator, such as Worker, Sink, Split and Bundle. Each
tasks create own process and compute parallel. We can put these
processes on distributed computers.

Source(G) : Execute graph input to the system (graph input
comes as edge list such as Mi,j).

・ Split(G) : Split graph data and send to correct Worker
operator (split Mi,j by i and j).

・ Source(M) : Get the start order of graph analysis from Users.

・ Master(M) : Mastering whole graph analysis and
synchronize process in every iteration.

・ Sink(M) : Output runtime data or the number of iterations.

・ Worker(W1~WK) : Execute main graph analysis. The i
operator has the information of j vertex which satisfy i = (j
mod K + 1). The information of j vertex include Vj, Mi,j for

i .

・ Sink(W1~WK) : Output the graph analysis data in each
Worker operator.

・ Split(W1~WK), Bundle(W1~WK) : Manage calculated data
flow between Worker operators internal. Flow of
Worker(Wa) stream to Worker(Wb) via Split (Wa) and
Bundle(Wb).

・ Bundle(M) : Bundle flow form Worker operator to Master
operator.

Figure 1, Overview of Incremental GIM-V

1323

5.2 Implementation Flow
We describe computation flow in this subsection. Graph

processing start when input data comes from Source(M) to Master.
In whole flow of processing, there are 6 phases, ‘Ready’,
‘Calculate Combine2’, ‘Check Changed Flag’, ‘Calculate
CombineAll’, ‘Assign Changed Flag’ and ‘Output Result’. 4
phases, ‘Calculate Combine2’, ‘Check Changed Flag’, ‘Calculate
CombineAll’ and ‘Assign Changed Flag’, are iterative
computation and recomputed iteratively. Master send message of
starting phase or step to Worker, and Worker send message of
finishing execution to Master (it include weather process is
converged or not). Each phases of Graph Processing are defined
as follows:

Ready: Ready to input graph data. If input data comes in another
phase, a worker buffers input data. When all phases are
terminated and this Ready phases starts, A worker reflects input
data and goes to next phase. When reflecting input data, a worker
defines out-degree and in-degree vertexes of reflected edges as
changed vertices.

Calculate Combine2: A worker calculates Combine2 whose
vertexes are defined as changed ones. After Calculation, a worker
sends calculated data to out-degree vertex of changed vertex.

Check Changed Flag: A worker defines verteices which
Combine2 data is sent as changed vertex.

Calculate CombineAll: A worker calculates CombineAll and
assign whose vertexes are defined as changed.

Assign Changed Flag: Assign the result of Combine2 calculation.
If the value of vertex is converged, a worker defines the vertex as
unchanged ones.

Output Result: A worker outputs their calculated data and goes
to the Ready phase. In this phase, users can define whether they
need to change flag of vertexes or not.

6. APPLICATIONS: PageRank and Random
Walk with Restart on Incremental GIM-V

To consider Incremental GIM-V as one computation model, we
define three GIM-V operations, combine2(), combineAll(), and
assign(). Our system is based on InfoSphere Streams, so we
implement these operators as UDOP (User- Defined Operator),
which is written in C/C++. UNICORN users defined only these
three operators to implement application.

PageRank and Random Walk with Restart is already shown in
PEGASUS paper, so we just describe the abstract of them.
PageRank is a famous algorithm that was used by Google to
calculate relative importance of web pages. The PageRank vector
p of n web pages satisfies the following eigenvector equation:

p = (cET + (1 − c)U)p

where c is a damping factor (usually set to 0.85), E is the row-
normalized adjacency matrix (source, destination), and U is a
matrix with all elements set to 1/n. Original GIM-V pre-compute
row-normalized adjacency matrix and make input data. However,
in incremental graph processing, calculating whole row-
normalized adjacency matrix is redundant computation.
Incremental GIM-V can incrementally normalize all vertexes
when the vertex is changed. PageRank is calculated by pnext = M
×G pcur where the three operations are defined as follows:

1) combine2(mi,j, vj) = c × mi,j × vj

2) combineAlli(x1, ..., xn) = (1−c) / n +

3) assign(vi, vnew) = vnew

Random Walk with Restart(RWR) is an algorithm to measure
the proximity of nodes in graph . In RWR, the proximity vector
rk from node k satisfies the equation:

rk = cMrk + (1 − c)ek

where ek is a n-vector whose k-th element is 1, and every other
elements are 0. c is a restart probability parameter which is
typically set to 0.85. M is a column-normalized and transposed
adjacency matrix, as in PageRank. In original GIM-V, RWR is
formulated by where the three operations are

defined as follows (I (x) is 1 if x is true, and 0 otherwise.):

1) combine2(mi,j, vj) = c × mi,j × vj

2) combineAlli(x1, ..., xn) = (1−c) I (i ≠ k) +

3) assign(vi, vnew) = vnew

7. PERFORMANCE EVALUATION
In this section, we measure and evaluate our system. Original

GIM-V on PEGASUS – file-based system with Hadoop - and it is
not suitable to compare it against Incremental GIM-V on top of
IBM InfoSphere Streams – in-memory based system. We thus
implemented original GIM-V using IBM InfoSphere Streams and
measure Incremental GIM-V against original GIM-V using
InfoSphere Streams. We used 4 compute nodes connected by 1
Gbps Ethernet. The home directories for these nodes are shared
with an NFS server. The experimental testbed is AMD Phenom
9850 with 4 cores and 8GB DRAM. Software environments are
CentOS 5.4 kernel 2.6 for AMD 64, InfoSphere Streams 1.2.0
(InfoSphere Streams), gcc 4.1.2 with optimization option “-O3”.

Figure 2, Flow of UNICORN

1324

We choose two applications for experiment, PageRank[1],
Random walk with Restart (RWR)[7]. Two applications need to
compute large-scale graph and also have the highly demand for
incremental processing. In detail, PageRank compute directed
graph, while RWR compute undirected graph.

7.1 Experimental Graph Data Patterns
We use Kronecker Graph [12] and log-normal graph for

experiment. Kronecker Graph is used for artificial data feeding
into a standard large-scale graph analytics benchmark on
supercomputers called Graph500. Kronecker Graph generates
recursively matrix graphs that match degree distributions
following power-law nature, exhibit a “community” structure and
have a small diameter, and match other criterias in general social
networks. Kronecker Graph is undirected graph, so it is suitable
for input data of RWR as well.

 Log-normal graph is used for input data of the evaluation of
Pregel[1]. The paper in [1] describes that log-normal graph
resembles many real-world large scale graphs, such as the web
graph or social networks, where most vertices have a relatively
small degree but some outliers are much larger, a hundred
thousand or more. We generate the log-normal graph in the sama

fashion as. A log-normal graph is a directed graph, thus it is
suitable for input data of PageRank.

We use a parameter called “SCALE” for generating graphs used
by the Graph500 benchmark. SCALE is a parameter that
represents the number of vertices. The number of vertices is
defined as the power of 2. The vertex-edge table is following:

We also define the change rate parameter for generating

dynamically changing graph. To change graph dynamically, the
method of adding edges or deleting edges may destruct graph
characteristic such as “community” structure. Therefore we
change the edge weight to generate dynamic change of graph.
Both Kronecker graph and log-normal graph are un-weighted
graphs whose weight of all vertices is 1. We chose some
percentage of edges randomly and changed their weight to 2. We
define that percentage of change as change rate.

Figure 3, Runtime of PageRank with log-
normal graph varying SCALE from 12 to
16

Figure 4, Runtime of Random Walk with
Restart with Kronecker Graph varying

SCALE from 14 to 18

Figure 5, PageRank with SCALE16 log-
normal graph by iteration step

Figure 6, Random Walk with Restart
with SCALE18 Kronecker Grapph by
iteration step

Figure 7. PageRank with SCALE16 log-
normal graph varying cores from 4 to 16

Figure 8. Random Walk with Restart
with SCALE18 Kronecker Graph
varying cores from 4 to 16

Figure 9. Runtime varying change rate
from 10% to 90%

Figure 10. Elapsed time by varying
change rate from 1% to 10%

Figure 11. Number of iteration step
between incremental analysis and batch
analysis

Table 1, Vertex-Edge Relation by Graphs

1325

7.2 Performance and Scalability
The time for initializing the cluster, generating the test graphs in-
memory, and verifying results is not included in the
measurements.

First, as an indication of how UNICORN scales with SCALE
parameter which show graph scale, Figure 3 and Figure 4 shows
the elapased time for PageRank with Kronecker graph and RWR
with log-normal graph when the number of SCALE varies from12
to 16 (as for log-normal graph) or from 14 to 18 (as for
Kronecker Graph). In Figure 3 and 4, both applications show
good speedups against original GIM method by using Incremental
GIM-V. Using Incremental GIM-V, PageRank achieves 33%
speedup with a log-normal graph of SCALE 16, while RWR
achieves 69% speedup with SCALE 18 Kronecker Graph.

Second, we calculate runtime by iteration step to show how
eliminate redundant computation. As shown in the iteration 8 and
9 of Figure 5, PageRank algorithm can be significantly optimized
by eliminating redundant computation the number of iteration for
RWR is different between GIM-V and Incremental GIM-V
because of the difference of converged assignment.

Third, we show how UNICORN scales by increasing the
number of CPU cores, Figure 7 and 8 presents the elapsed time of
PageRank and RWR by varying # number of cores from 4 to 16 .

Fourth, we describe dynamic processing of Incremental GIM-V.
Dynamic processing is not supported by original GIM-V. We use
change ratio parameter to show dynamically changed graph. We
change the edge weight to generate dynamic change of graph.
Both Kronecker Graph and log-normal graphs are un-weighted
graph whose weight of all vertices is 1. We chose some
percentage of edges randomly and change their weight to 2. We
define that percentage of change as change rate. Figure 9, 10
presents two applications achieve speedup when change rate is
decreased. Figure 11 presents incremental analysis can
successfully decreases the number of iteration steps against batch
analysis. In particular, an application - which is hard to converge
such as RWR - achieves highly speedup as well. When change
rate parameter was 1%, PageRank achieves 12% speedup with a
log-normal graph of SCALE 16, RWR achieves 1900% speedup
with a Kronecker Graph of SCALE 18.

 Overall, we successfully achieve speedup by eliminating
redundant computation and compute dynamically. As a result,
PageRank achieves 48% speedup with a log-normal graph of
SCALE 16, while RWR achieve 3023% speedup with a
Kronecker Graph of SCALE 18.

8. SUMMARY
In this paper, we propose an incremental graph processing

model called “Incremental GIM-V (Generalized Iterative Matrix-

Vector multiplication)”, and implement it on top of a data stream
processing system, IBM InfoSphere Streams, and then evaluate
and demonstrates the validity of our approach. For future work,
we implement more applications such as graph clustering and
single-source shortest path. Moreover we will improve GIM-V
and Incremental GIM-V model to cover a wide variety of graph
analytics.

REFERENCES
[1] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S.

Yu and Myung Cheol Doo, SPADE : the InfoSphere Streams
declarative Stream Procesing Engine, SIGMOD 2008

[2] U Kang, C. E. Tsourakakis and C, Faloutsos, “PEGASUS: A
Peta-Scale Graph Mining System - Implementation and
Observations”, ICDM 2009.

[3] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I.
Horn, N. Leiser and G. Czajkowski, “Pregel: A System for
Large-Scale Graph Processing”, ACM 2010.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters”, OSDI, 2004.

[5] G. Karypis, et.al, Multilevel k-way partitioning scheme for
irregular graphs, JPDC 1998.

[6] P. Desikan, N. Pathak, J. Srivastava and V. Kumar,
“Incremental Page Rank Computation on Evolving Graphs”,
ACM 2005.

[7] S. Kamvar, T. Haveliwala and G. Golub, “Adaptive methods
for the computation of PageRank”, Linear Algebra and its
Applications 386 (2004) 51-65.

[8] Frigioni, Daniele and Marchetti-Spaccamela, Alberto and
Nanni, Umberto, “Incremental algorithms for the single-
source shortest path problem”, Foundation of Software
Technology and Theoretical Computer Science (1994) 113-
124

[9] Chao-Wei Ou and Sanjay Ranka, “Parallel Incremental
Graph Partitioning”, IEEE Transactions on Parallel and
Distributed InfoSphere Streams 1997

[10] Stephen C. North and Gordon Woodhull “Online hierarchical
graph drawing” In: Proc. 9th GD. Vol. 2265 of LNCS(2001)
232-246

[11] Falkowski, Tanja, Anja Barth, and Myra Spiliopoulou,”
Studying Community Dynamics with an Incremental Graph
Mining Algorithm”, AMCIS 2008

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
recursive model for graph mining, SIAM Data Mining 2004.

1326

