
Query Interfaces Understanding by Statistical Parsing
Weifeng Su

BNU-HKBU United International
College

Zhuhai, Guangdong Prov., China
wfsu@uic.edu.hk

Yafei Li
BNU-HKBU United International

College
Zhuhai, Guangdong Prov., China

yafeili@uic.edu.hk

Frederick H. Lochovsky
The Hong Kong University of Science

and Technology
Hong Kong, China
fred@cse.ust.hk

ABSTRACT
Users submit queries to an online database via its query interface.
Query interface parsing, which is important for many applications,
understands the query capabilities of a query interface. Since most
query interfaces are organized hierarchically, we present a novel
query interface parsing method, StatParser (Statistical Parser), to
automatically extract the hierarchical query capabilities of query
interfaces. StatParser automatically learns from a set of parsed
query interfaces and parses new query interfaces. StatParser starts
from a small grammar and enhances the grammar with a set of
probabilities learned from parsed query interfaces under the
maximum-entropy principle. Given a new query interface, the
probability-enhanced-grammar identifies the parse tree with the
largest global probability to be the query capabilities of the query
interface. Experimental results show that StatParser very
accurately extracts the query capabilities and can effectively
overcome the problems of existing query interface parsers.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services —
Query Interface, H.5.2 [User Interfaces]: Natural language

Keywords
Query Interface, Maximum Entropy.

1. INTRODUCTION
A typical Web database comprises a back-end database and a
query interface. The user obtains the data from a Web database by
submitting a query via its query interface. Upon receiving the user
query, the relevant data is retrieved from the back-end database
and returned to the user embedded in HTML pages. Hence, the
query interface serves as an intermediary between the user and the
Web database. To submit a query, the user first has to understand
the query capabilities of the query interface including (1) the
semantics of each element in the form that comprises the query
interface, (2) the metadata of each element (such as the data type)
and (3) the element organization. Thereafter, the user submits
his/her query by filling values into corresponding elements in the
query interface.

Many applications require the understanding of query interfaces.
In particular, many applications require a hierarchical
representation of the query interface. Considering that there are
many Web databases available nowadays, and that each domain
has a large number of Web databases, understanding the query
interface manually is an almost impossible task in many
applications that interact with many Web databases. Therefore,
automatic query interface understanding is an indispensible
component in these applications.

In this paper, we propose a novel query interface understanding
method, Statistical Parser (StatParser), which effectively
combines the strengths of rule-based methods and learning-based
methods, to automatically parse the query interface into a
hierarchical representation. This paper is a short version of [3].

2. STATPARSER
2.1 Overview
A query interface includes a form, which is composed of a set of
elements. The elements include text edit boxes, selection lists,
radio buttons and check boxes.

Fig. 1(a) Example of a query interface from the Airline
domain.

Fig. 1(b) Semantic tree for Figure 1(a).

Definition 1 (Query Interface Understanding). Let T={e1, e2, …,
em} be a form in a query interface in which ei is an element in the
form and L={l1, l2, …, ln} is a set of labels embedded in T. Query
interface understanding determines the semantic organization
between elements and labels using a tree representation, i.e., a
semantic tree. Each leaf node in the tree represents an element or
a label and each internal node shows the description relationship
between a label and an element, or between a label and a semantic
unit.

Copyright is held by the International World Wide Web Conference Committee
(IW3C2). IW3C2 reserves the right to provide a hyperlink to the author's site if the
Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579702

1291

Fig 1(a) shows an example of a query interface and Fig 1(b)
shows its corresponding semantic tree.

StatParser consists of two stages: the training stage and the
parsing stage. In the training stage, the important features are
identified and their corresponding parameters are estimated with a
set of parsed query interfaces. In the parsing stage, the features
and parameters are used to understand a new query interface. Both
stages have two steps: the preprocessing step and the
understanding step.

The preprocessing step tries to process the radio buttons and
checkboxes by combining each group of radio buttons or
checkboxes that share the same name value and their
corresponding labels into a single element. The training stage has
two components in the preprocessing step: the Feature Selection
component and the Parameter Estimation component. Given a set
of parsed query interfaces, the Feature Selection component
selects a set Ep of features that are supposed to be important for
radio-button/check-box processing. Thereafter, the Parameter
Estimation component learns the probability parameters for each
of the selected features Ep. We handle radio buttons and check
boxes first for two reasons. First, the pattern to combine radio
buttons/check boxes and labels is different from other elements
and labels. Second, the radio buttons/check boxes that have the
same name value can be safely merged to simplify the query
interface to facilitate further processing.

2.2 Grammars
Although query interfaces are designed autonomously, they are
usually designed so that users can very easily understand them.
Hence, there are some inherent patterns that almost all designers
follow when designing query interfaces. These patterns may not
be explicit to the designers, but they are used implicitly to
construct query interfaces concisely and to make them easily
understood by the users. We validated the nine patterns listed in [1]
against more than 300 query interfaces from 10 domains both in
Chinese and English and found that the first four patterns listed
below are true in all query interfaces. In addition, we identified
two new patterns (Patterns 5 and 6). The histogram in Fig. 2
shows how confident each pattern is in our survey.

Pattern 1: Query interfaces are presented in a top-down and left-
to-right order.

Pattern 2: Elements and labels in a query interface are organized
into semantic groups.

Pattern 3: Each label describes either an element or a semantic
unit, but not both.

Pattern 4: The label for an element or a semantic unit is located
either above, left, right or below the element or the
semantic unit.

Pattern 5: Each element/semantic-unit is described by no more
than one label in the semantic tree.

Pattern 6: Each radio-button/checkbox is combined with no more
than one label.

Based on the patterns listed above, the grammars for
preprocessing and parsing are presented in Section 2.4.

Fig. 2 Histogram of pattern confidence.

2.3 Context Information Extraction
Given a form for a query interface, StatParser extracts a set of
context information for each element and label. According to our
experiments, the context information is vital to the success of
StatParser. Considering that forms are usually designed to be
quickly understood by users, the relevant labels for an element are
usually located around the element. To facilitate presentation, we
use the term item to represent either an element or a label.

From observing several hundred query interfaces from various
domains and various countries, we found that an item usually is
most correlated with the items immediately around it (Pattern 4).
Hence, we adopt the “field scope” concept in [1], which states that
a label for an element must lie in one of the four positions: above
the element, below the element, left to the element and right to the
element. As shown in Fig. 3, for each item ei, we consider the
items in the following
four positions around ei
as the features for ei.

(1) The item just above
ei. If there are
multiple items just
above ei, only the one
that is left aligned to
ei is selected.

(2) The item just below
ei. If there are
multiple items just
below ei, only the one that is left aligned to ei is selected.

(3) The item just to the left of ei. If there are multiple items to the
left of ei, only the one closest to ei is selected.

(4) The item just to the right of ei. If there are multiple items to
the right of ei, only the one closest to ei is selected.

Each item generates two pieces of context information: the item
type information and the distance information. The item type
information represents the type of the item, whose value can be an
element of {label, editbox, selectionlist, radiobuttons, checkboxes,
null}. The radiobuttons or checkboxes represent a group of radio
buttons or a group of checkboxes that has been constructed in the
preprocessing step. The item type value is null if there is no item
in the corresponding position.

The distance information of an item represents the distance
between the item and ei. Its value can be an element of {far, near,
null}. In the experiments, the distance is far if there is at least one
empty table cell or a line between the item and ei and near
otherwise. If the item type is null, its distance value is also null.

97

98

99

100

1 2 3 4 5 6

Fig. 3. Context information for

an item ei.

1292

Consider the first three items in Fig. 1(a), i.e., (1) the label “What
type of flight do you need?”, (2) the label “type” and (3) the type
radiobuttons. Table 1 shows the context information of these three
items. In the table, the above item type of item_(1) is null because
there is no item above it. The below item type of item_(1) is
item_(2), which is a label and is near item_(1). Both the left items
and right items of item_(1) are null because there are no items to
the left or right of item_(1).

Table 1. Context information for elements in Figure 1(a).

Item
id

Above item Below item Left of item Right of item

type dist. type dist. type dist. type dist.

(1) null null label near null null null null

(2) label near label far null null
Radio

buttons
near

(3) label near label far label near null null

2.4 Maximum-Entropy-Based Parsing
MaxEnt is a modelling technique for approximating an observed
distribution. We represent a single observation with y, whose
value comes from Y, and conditional information with x, whose
value comes from X. We assume that the value of y is influenced
by the value of x. Therefore, the conditional probability p(y|x) is
estimated.

1. RC LabelRadio* | LabelCheck*
2. LabelRadio  label radiobutton |

radiobutton label
3. LabelCheck  label checkbox | checkbox

label
Fig. 4. Production rules for preprocessing.

1. Root Conditions Condition | Condition
2. Conditions  Conditions Condition |

Condition
3. Condition  label Condition | Condition

label| Condition Condition | Element
4. Element  editbox | selectionlist| RC

Fig. 5. Production rules for parsing.

In StatParser, the conditional information x refers to context
information that is described in Section 2.3 and y refers to any
production rule in Fig. 4 or Fig. 5, depending on the processing
step. For example, if we observe that in a query interface and its
corresponding parse tree a condition is combined with a label on
its left, which corresponds to the production rule
Conditionlabel Condition in Fig. 5, then we assign x
to be “left item is a label” and y to be Conditionlabel
Condition. As another example, if we observe that an input
text box is combined with a near right label, which corresponds to
the production rule ConditionCondition label in Fig.
5, then we assign x to be “near right item is a label” and y to be
ConditionCondition label. We observe all the parsing
trees and training query interfaces and collect all training pairs (x1,
y1), (x2, y2), …, (xn, yn).

Suppose that each feature fi has a weight λi, i=1…k. Given an
internal node n, the probability of a derivation a and its relevant
features h={f1, …, fm} is set as

 pሺh, aሻ ൌ ∏ λ୨
୤ౠሺ୦,ୟሻ୩

୨ୀଵ

Hence, the conditional probability of a derivation a given h and
n is

 pሺa|hሻ ൌ
୮ሺ୦,ୟሻ

∑ ୮ሺ୦,ୟᇲሻ౗ᇲ∈ఽ

in which A represents the set of all possible derivations of n.

Let T be a parse tree for a query interface I, and Der(T)={a1, …,
am} be the set of derivations contained in T. The score of T is
defined to be the product of the conditional probability

 Pሺaଵ, … , a୫|dଵ, … , d୫ሻ ൌ ∏ pሺa୧|h୧ሻ.
୫
୧ୀଵ

Therefore, the query interface understanding problem is reduced
to searching for the parse tree with the largest probability. That is,
we find the best parse tree T*, defined as

ܶ∗ ൌ arg	max
்∈୲୰ୣୣሺூሻ

	scoreሺܶሻ

3. EXPERIMENTS
We evaluate the performance of our approach and compare it with
some state-of-the-art methods using query interface forms
extracted from multiple domains. The cross-validation between
query interfaces from different domains and the use of different
languages is also reported.

3.1 Data Sets
Four datasets were used to perform the evaluation.

1. TEL-8 is first used in Zhang et al. [2004]. It contains 487
query interfaces from 8 domains: airlines, autos, books, car
rentals, hotels, jobs, movies and music records. Each domain
contains 20 to 80 query interfaces.

2. ICQ [Wu et al. 2004] contains 100 query interfaces from 5
domains: airlines, autos, books, jobs and real estate. Twenty
query interfaces were extracted for each domain.

3. WISE is used in He et al. [2005b] and consists of 147 query
interfaces collected from seven domains: books, electronics,
games, movies, music, toys and watches.

4. CNW is a dataset containing 200 query interfaces in Chinese
from 4 domains: books, movies, airlines and autos. Fifty
query interfaces are extracted for each domain.

In all, 734 query interfaces in English and 200 query interfaces in
Chinese are used.

3.2 Evaluation Metrics
Four metrics are used to evaluate StatParser and compare it with
existing work.

The first metric, parse precision, is the number of correct non-
terminal semantic units divided by the number of non-terminal
semantic units in the semantic tree.

The second metric, tree metric [1], measures the correctness of the
generated semantic tree. A tree edit distance, which counts the
minimum number of insert, delete and relabeling operations
needed to convert one tree into another, is used. For an interface,

1293

its precision is ௧ܲ ൌ ሺ ௚ܰ െ 	/௦ሻܦ ௚ܰ, in which ௚ܰ is the number of
nodes in the generated semantic tree and	ܦ௦	is the edit distance to
the gold standard tree. Its recall is ܴ௧ ൌ ሺ ௚ܰ െ 	/௦ሻܦ ௦ܰ, in which

௦ܰ is the gold standard tree. Finally, the F-score ܨ௧ ൌ
2 ௧ܴܲ௧/ሺ ௧ܲ ൅ ܴ௧ሻ is calculated.

The third metric, condition metric, measures how well the query
conditions are captured. A condition consists of three aspects of
information: the name/label of the condition, the set of domain
elements and the set of constraint elements. This metric has been
applied in He et al. [2] and Zhang et al. [4]. Given a set of query
interfaces, let ܳ௚ be the gold standard query conditions and ܳ௔ be
the automatically extracted query conditions. The precision, recall
and F-score are defined, respectively, as	 ௖ܲ ൌ |ܳ௚ ∩ ܳ௔|/ܳ௔,ܴ௖ ൌ
|ܳ௚ ∩ ܳ௔|/ܳ௚ and ܨ௖ ൌ 2 ௖ܴܲ௖/ሺ ௖ܲ ൅ ܴ௖ሻ.

The fourth metric, element labeling correctness (ELC), measures
the correctness of assigning a label to each element. It is defined
as the ratio of the number of correctly labeled elements to the total
number of elements.

For each query interface in the above datasets, the gold standard
semantic tree and query conditions are constructed manually.

3.3 Experiment Results
Table 2 shows the performance of StatParser on the four datasets
that are trained using 20 randomly selected query interfaces from
the corresponding dataset. It can be seen that StatParser has
excellent performance on all of the four datasets.

Table 2. The performance of StatParser

parse

precision
tree

metric
condition

metric

element
labeling

correctness

TEL-8 96.1% 95.4% 95.4% 96.5%

ICQ 94.5% 93.6% 95.1% 96.4%

WISE 96.4% 96% 96.4% 97.3%

CNW 92.6% 90.8% 90.4% 92.9%

Figure 6 lists the tree metric F-scores of StatParser over the TEL-
8, ICQ, WISE and CNW datasets given different numbers of
training query interfaces. In the experiments, we ran a cross-
validation on each dataset to make full use of it. That is, each
dataset is divided into several subsets with an equal number of
query interfaces. One of the subsets is selected as the training set
to train StatParser and all other subsets are used as the test sets to
evaluate the trained StatParser. In different experiments, the
number of query interfaces in each subset is 5, 10, 15, 20, 25 or 30.
On the one hand, the tree metric F-score of label assignment
initially increases rapidly as the number of training Web sites
increases to 15 because more features are identified and the
probability parameters approach the real distribution. On the other
hand, the tree metric F-score is fairly stable thereafter as most
features have been identified and the probability parameters are
very close to the real distribution.

Fig. 6 The tree metric F-scores with different number of

training interfaces

4. CONCLUSIONS
In this paper, we present a novel query interface understanding
algorithm, StatParser, which effectively parses a query interface
into a hierarchical representation. StatParser uses a simple
grammar enhanced by probabilities that are learned from a set of
parsed query interfaces using the maximum entropy model. The
grammar with probabilities is then used to parse a new query
interface into parse trees that depict the concept relationships in
the query interface. The parse tree with the largest probability is
identified as the one that represents the query capabilities of the
query interface. StatParser has the advantages of both rule- and
learning-based methods. Experimental results show that
StatParser is very precise in capturing the element relationships in
a query interface and is very effective at extracting the query
conditions.

5. ACKNOWLEDGMENTS
This work is partially supported by NSFC grants (No. 61073017)
and UIC internal research grants.

REFERENCES

[1] Dragut, E. C., Kabisch, T., Yu, C., and Leser, U. A
hierarchical approach to model web query interfaces for web
source integration. Proceeding of the VLDB Endowment, 2,
1, 325-336. 2009.

[2] He, H., Meng, W., Lu, Y., Yu, C., and WU, Z. Constructing
interface schemas for search interfaces of web databases. In
Proceedings of the 6th International Conference on Web
Information Systems Engineering, 29-42. 2005.

[3] Su, W., Wu H., Li Y., Zhao J., Lochovsky F., Cai H. and
Huang T. Understanding Query Interfaces by Statistical
Parsing. ACM Transaction on Web (TWeb). 7(2), 1-22. May
2013.

[4] Zhang, Z., He, B., and Chang, K. C.-C. Understanding web
query interfaces: Best-effort parsing with hidden syntax. In
Proceeding of ACM SIGMOD Conference, 107-118. 2004.

[5] Wu, W., Yu, C., Doan, A., and Meng, W. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In Proceedings of the ACM
SIGMOD Conference, 95-106, 2004.

70%

80%

90%

100%

5 10 15 20 25 30

Tr
e
e
 m

e
tr
ic
 F
‐s
co
re

of training query interface

TEL‐8

ICQ

WISE

CNW

1294

