
Iterative Algorithm for Inferring Entity Types from
Enumerative Descriptions

Qian Chen
Graduate School of Information, Production and Systems

Waseda University
Kitakyushu 808-0135, JAPAN
chenqian@asagi.waseda.jp

Mizuho Iwaihara
Graduate School of Information, Production and Systems

Waseda University
Kitakyushu 808-0135, JAPAN

iwaihara@waseda.jp

ABSTRACT
Entity type matching has many real world applications, especially
in entity clustering, de-duplication and efficient query processing.
Current methods to extract entities from text usually disregard
regularities in the order of entities appearing in the text. In this
paper, we focus on enumerative descriptions which enlist entity
names in a certain hidden order, often occurring in web documents
as listings and tables. We propose an algorithm to discover entity
types from enumerative descriptions, where a type hierarchy is
known but enumerating orders are hidden and heterogeneous, and
partial entity-type mappings are given as seed instances. Our
algorithm is iterative: We extract skeletons from syntactic patterns,
then train a hidden Markov model to find an optimum enumerating
order from seed instances and skeletons, to find a best-fit entity-
type assignment.

Categories and Subject Descriptors
H.8 [Database Management]: Data mining

General Terms
Algorithms, Performance, Experimentation.

Keywords

RDF graph; Information Extraction; Hidden Markov Model

1. INTRODUCTION
We define enumerative descriptions as structured

descriptions which contain listings of entities, where the order of
listings follows a certain unknown order in the class hierarchy,
characterized by a regular expression. There are many forms of
web resources that contain such enumerative descriptions, such as
product descriptions in e-commerce, Infoboxes of Wikipedia,
tables coded by Media Wiki, and listings in web pages which start
with entity names. Infoboxes, tables and listings contain parent
types in areas like section titles and adjoining table cells.
Recognizing entities from web resources and assigning their correct
types are crucial for various applications, such as search result
categorization and disambiguation. As an example of enumerative

descriptions, real product descriptions in e-commerce sites are
shown in Table 1. In the first line, Lumsing Battery is compatible
with a list of smart devices of different classes. In the product title
of ID 1 in Table 1, we notice that the substring starting from
“Apple:iPad Mini, iPad 4, 3, 2, Android …” is listing entities, such
as “Apple”, “iPad mini”, “iPad 3” in a certain order. Using external
knowledge such that “Apple” is an entity of type “Company” and
“iPad 3” is a list of entities “Brand” and “Model”, we can surmise
the types of the rest of entities. We call such texts enlisting entities,
where these entities belong to a certain type hierarchy, as
enumerative descriptions. If a list of enumerated entities are a mix
of known and unknown entities, the type of the latter can be
inferred from that of the former, by capturing the enumerating
orders. As the example of Table 1 indicates, we can find ordering
patterns from syntactic features such as punctuations and
delimiters. We call a regular expression on types and delimiters a
description pattern. In Table 1, we notice that enumerative
descriptions are not unique, but a mixture of heterogeneous
description patterns. However, we can employ an assumption that
these enumerative descriptions arise from a single entity hierarchy,
and thus we can deduce discovered facts across heterogeneous
patterns. In summary, our problem on type inference over
enumerative descriptions is unique and new in the sense that (1)
finding both parent and child entities simultaneously from
enumerative descriptions that obey certain hidden entity
enumeration orders, and (2) finding an entity-type mapping from a
mixture of heterogeneous patterns. Our application scenario is to
find typing information from partially typed, structured information
from web resources, such as e-commerce sites and Wikipedia.

RDF (Resource Description Framework) is a general standard
for describing structured descriptions on Web resources and
capturing their relationships. In RDF, entities are represented as
sets of <subject, predicate, object> or <subject, property, object>
triples. We assume that a type hierarchy represented as an RDF
schema, is given for type inference. Figure 2 shows the RDF
schema describing our running example.

Our algorithm can be implemented as automatically expanding
RDF graphs by augmenting them with discovered entities and their
types. Firstly, since not all type names are captured in the initial
given graph, so the method should capture existing types and
identify new types (classes). Secondly, since not all type names are
listed in the product descriptions, the syntactic structure of the
description patterns should be captured as skeletons. We employ a
conventional assumption that an enumeration of types is according
to a regular order, such as a navigation path in a RDF schema
graph. But we need to reconstruct the most plausible navigation
path from the enumerative description. At last, we need to improve
the accuracy and efficiency of inferring such types on entities.

Copyright is held by the International World Wide Web
Conference Committee (IW3C2). IW3C2 reserves the right to
provide a hyperlink to the author's site if the Material is used in
electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04
http://dx.doi.org/10.1145/2567948.2579706

1285

Table 1 Product descriptions

ID Website Title

1 Amazon

Lumsing 11000mAh 5 x USB External Battery Pack Charger Power Bank For Apple:iPad Mini, iPad 4 3 2, Android
Tablets:Samsung Galaxy Tab 2, Note 10.1; Google Nexus 7,10; Acer B1; iPhone 5 4S 4 3GS, iPod; Android
Smartphone: Samsung Galaxy S4, S3, S2, Ace,Note 2; HTC One, One X, Desire X; LG Optimus 4X HD, I7, I9;Nokia
Lumia 920, Google Nexus 4, Blackberry Z10, Sony Xperia Z; MP3, MP4, GPS, Camera, Game Player

2 Amazon
Anker® Astro3E 10000mAh High Capacity Power Bank Pack Portable External Battery Charger for iPhone 5, 4S, 4,

iPad 4, 3, 2, Mini, iPods; Samsung Galaxy S4, S3, S2, Note 2; HTC One, EVO, Thunderbolt, Incredible, Droid DNA;
Motorola ATRIX, Droid; Google Nexus 4, Nexus 7, Nexus 10; LG Optimus; PS Vita, GoPro

3 Amazon GTMax Black Touch Screen Styli Stylus For Samsung, Blackberry, HTC, LG, Pantech, Huawei, iPhone, Motorola,
Nokia, Smartphone, iPad, Asus, Acer, Toshiba, Archos Tablet

4 Amazon DandyCase White/Grey Waterproof Case for Apple iPhone 4, 4S, iPod Touch 3, 4, iPhone 3G, 3GS, & Other
Smartphones

Exacting hierarchical and diverse entities along with implied
relationships between them with high accuracy is the main goal of
this work. With regards to this, we present an iterative pattern-
based algorithm called HoverTyp (Horizontal-Vertical Type
Extractor). The central paradigm used by HoverTyp is an iterative
framework of starting with an initial labeled RDF graph and given
RDF schema which is used to construct an initial Hidden Markov
Model. They are in turn used to classify more instances from the
dataset and then update the initial Hidden Markov Model until
convergence. At every stage, captured entity types and candidate
HMM are scored, reflecting their degree of likelihoods.

The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 describes our data representation
framework. Section 4 presents each of the proposed techniques in
detail. Experimental evaluations are presented in Sections 5.
Section 6 concludes the paper with future work.

2. RELATED WORKS
RDF is a W3C standard to represent metadata, which has several

equivalent formats, for example, triple store, column store,
property tables, or graphs. In existing graph database researches,
Zhao and Han [10] designed a neighborhood signature to directly
store labels within k hops from each vertex. In contrast, our work
involves uncertain candidate labels. Several previous works in the
semantic web area considered uncertainty in the RDF data.
Furthermore, during data integration [2], the integrated RDF data
from different sources may often contain conflicting or duplicate
information. Therefore, a new probabilistic RDF data graph model
has been proposed. Huang and Liu [3] modeled uncertain RDF data
by a probabilistic database. However, this model assumes that
RDF triples have independent existence probabilities to appear in
reality.

Lian and Chen [4] propose a different format of probabilistic
RDF graphs. The node labels are not deterministic (multiple labels
with probabilities). Probabilistic RDF graphs are related to our
research, because RDF graphs extracted from product descriptions
are not deterministic, in the sense that there can be different
possible labels to tokens. However, our problem involves a
different model of probabilistic RDF graphs which have uncertain
vertex labels (but certain edge labels). We need to assign possible
labels to tokens and calculate likelihoods by simultaneously
aligning with given type hierarchies.

TYPifier [6] is a method proposed to infer the type semantics of
structured data and build type hierarchy trees. They use complex

pseudo-schema features to indicate missing type information and
learn type hierarchies by proposed systems. RDF schema features
are also used in our approach with different intention. Moreover,
type hierarchies in our RDF graph are more complex and detailed.

Ontologies have played a central role in the development of
semantic web. RDF Sentence Graph[9] has been used to
automatically summarize ontologies which are widely used in
understanding unstructured documents. An ontology typically
includes concepts and hierarchical relationships. One of the
approaches to learning an ontology from unstructured text is using
lexico-syntactic patterns. LASER[5] is an iterative process starting
with ISA and HASA seed patterns to effectively discover new
patterns. However, this method only concentrates on the
hierarchical relationships and ignores horizontal compatible
relationships. On the other hand, seed patterns in our method are
not pre-defined, but partially given in the initial instance graph.
Our algorithm tries to infer types to unknown entities based on
discovered patterns in enumerative descriptions.

In most of real-world extraction applications, a pattern-based
algorithm is used in an iterative process: Starting with a relatively
small set of seed tuples, these extractors iteratively learn patterns
that can be instantiated to identify new tuples. I4E[7] is proposed
as a graph-based framework that integrates tuples, patterns, and
various trace information at each iteration. I4E assigns a
confidence score to each pattern based on individual tuples that
generate the pattern as well as the collective set of tuples produced
by the pattern. In our method we also introduce confidence score on
every iteration to update the patterns and prune candidate type
labels. However, our problem involves a different model of
unknown relationships, and enumerative descriptions contain a list
of entities with heterogeneous entity types.

3. ASSUMPTION AND ARCHITECTURE
In this section we show assumptions used in our algorithms and

outlines the architecture of our system.

3.1 Assumptions
We adopt the following assumptions in HoverTyp:

 An RDF schema for enumerative descriptions is given.
 Entities belonging to top-level types in the RDF schema, such

as companies, operating systems, categories, are given in a
table.

 Relationships connect two classes, but no schema for
relationships is given. That is, any two classes can have a
relationship.

1286

 A portion of the RDF instance graph is given as seed instances.

We try to grow this initial graph.

3.2 System Framework

Figure 1 shows the system framework of HoverTyp, where the
circle indicates the main components. HoverTyp takes
preprocessed descriptions with each word tokenized as input. In
addition, it receives a given RDF schema and initial RDF instance
graph. The system output is an RDF instance graph augmented
with discovered entities and their types. The main part has two
stages:

Figure 1 System framework of HoverTyp

Figure 2 RDF schema of Smartdevices

Extracting description patterns: Skeletons are extracted by
analyzing hierarchical relationships indicated by delimiters in the
descriptions. Here, skeletons do not carry any type information.
Then description patterns are generated by instantiating skeletons
with types and delimiters, using the seed instances.

Assigning candidate labels: We apply the current set of
description patterns to each description in the dataset and assign
candidate labels on each token in the description. A Hidden
Markov Model (HMM) is constructed from the seed instances, and
type assignments are generated by dynamic programming on the
HMM. The HMM is updated as we process succeeding
descriptions.

4. APPROACH AND ALGORITHM
4.1 Preprocessing on tokens
 Certain values may have ambiguous meanings. Multiple

candidate labels need to be assigned. Eg. “White” can be a
color of phones or cases.

 There exist tokens not related to the RDF graph (eg. stop
words, adjectives). We need to preprocess descriptions with
each word tokenized and decide whether a token is an
instance value.

 Tokens like “External Battery Pack” are not used in building
the instance graph. But these tokens are characterizing the
product itself.

4.2 Skeletons
We introduce skeletons that represent syntactical structures of

enumerative descriptions of entities. Skeletons simply capture
hierarchal structures of enumerative descriptions, containing no
type information. In the next step, we consider mapping between
skeletons and the RDF graph. The result is description patterns
that can explain one enumerating pattern of types. Remember that
our target descriptions consist of heterogeneous hidden patterns.

As an example of skeletons, let us consider the following
description on an external battery pack with compatible
information on smart devices:

PowerGen PGMPP12000 12000mAh External Battery Pack
High Capacity Power Bank Charger Triple USB 3Amps output
for Apple iPhone 5 4s 4 3Gs 3G, iPod Touch, iPad 1 2 3 4, The
New iPad 3/ HTC sensation, XE, XL, One X S V, Thunderbolt,
Inspire 4G , EVO 3D, EVO 4G, Desire S Z HD / Samsung Galaxy
S3 S2 S 2 II ACE Mini, S Advance, Galaxy Nexus, Nexus 7, Tab /
Motorola Atrix 2, Droid 3 X X2 Razr Maxx, Bionic, Triumph

In this description, the delimiters are “ ” (space), “,” (comma)
and “/” (slash). We observe that delimiters are hierarchically
organized in the ascending order of 1: white space, 2: comma, and
3: slush. From the delimiters, we can construct a tree structure to
extract a regular expression.
 We first replace each token with symbol “s”. We record the

original position of each “s” and the symbol s is not assigned
any type. We should note that the proceeding part “… output
for” is not considered. The beginning position of an
enumerative description can be detected by occurrences of
known types in the seed instances, such as companies and
brands. The first part “s s s s s s s, s s, s s s s s, s s s s /”
corresponds to “Apple iPhone 5 4s 4 3Gs 3G, iPod Touch,
iPad 1 2 3 4, The New iPad 3/”.

 We group the lowest level tokens which is separated by
spaces and assign placeholder “X”. The first part “X, X, X,
X / X, X, X,” corresponds to “Apple iPhone…XE, XL,”. Here,
the first “X” corresponds to the first seven tokens “s s s s s s
s”.

 Likewise, we group the sequences of X’s, delimited by
commas, into a placeholder “Y”:Y / Y

 Finally, we group the sequences of Y’s, delimited by slashes,
into a placeholder “Z”.

We obtain the skeleton Z—Y—X—s. The skeleton is not yet
mapped to any types.

Description with each
word tokenized

Given RDF
schema

Seed instances

(Initial RDF
instance graph)

Extracting
description

patterns

Assign
candidate

labels to each
token

Update score of a
pattern match

Complete RDF instance graph

1287

4.3 Description Patterns
We introduce description patterns to describe possible

enumerating orders of types.

Description pattern: A description pattern is a regular
expression that accepts possible enumerating orders of types,
where the orders between types in a hierarchical relationship in the
given RDF schema must be uniform.

Given a seed instance in which each token is marked with correct
types in the RDF graph, we fold repetitions and subexpression to
obtain a description pattern.
-The correct types for the tokens are given as assignment of a type
to each symbol ‘s’.

Skeleton: s s s s s s s, s s, s s s s s, s s s s / s s, s, s, s s s s,
Pattern:c b m m m m m,b m,b m m m m,# # b m/c b,m,m,b m m m,

c: Company b: Brand m: Model, #: non-type tokens (“The New”)
- Fold repetitions: If a pattern contains a list of repeating identical
types, we fold these repetitions.

Pattern: c b m+, b m, bm+, b m/c b, m, m, bm+

（Note: '+' is one or more repetition. '*' is zero or more.）

- Further fold common subexpressions
Pattern: [c[bm*|m+]+]+

(Note: '|' is alternation.)
-We assign types to the skeleton. The skeleton can be translated
into a regulation expression by the following mapping:

X bm*|m+
Y cX+
Z Y+

4.4 Constructing a HMM from seed instances
and description patterns

Here we construct a Hidden Markov Model (HMM) having
states on types. Each edge in the state machine of the HMM is
labeled with a transition probability on types. From the seed
instances, we obtain transition probabilities as follows: We count
how many times each subexpression matches, and determine the
probabilities on edges originating from the same vertex. For
example, regarding the pattern ‘[c[bm*|m+]+]+’, the subexpression
‘bm*’ appears six times in the seed instance, and m+ appears twice.
Except the alternation '[bm*|m+]', the state machine has only one
outgoing edge, so we can assign probability 1 to these edges. But
for the alternation '[bm*|m+]', the ratio between the first and
second terms is 3:1. From this ratio we assign probabilities 0.75
and 0.25, respectively, to the two outgoing edges corresponding to
the alteration. The smaller probability 0.25 represents the irregular
case of 'm,m' without 'b'.

Figure 3 A pattern HMM M0 with transition probabilities

We use this pattern automaton to construct an initial HMM M0
(Figure 3) with transition probabilities by counting the proportion
in the seed instances.

4.5 Generation of initial HMM
We will use Baum-Welch algorithm[1] to adjust the HMM for

each new instance, and use Viterbi algorithm[8] to assign types to
unknown entities. Baum-Welch algorithm is a well-known
expectation maximization algorithm finding a maximum likelihood
estimate of the parameters of a Hidden Markov Model given a set
of observed sequences. It makes use of the forward-backward
algorithm[1]. Viterbi algorithm finds most-likely sequences of
hidden states by dynamic programming.

The initialization step needs to determine the transition and
emission probabilities and the number of states. Although random
transition and emission probabilities could work, a more-likely
model can speed up the convergence. So we construct the following
initial HMM M0 as the input:

1) A HMM M0 with state space S = {x1,…,xk}, the initial
probabilities πi of being start at state i and transitional probabilities
(i, j) of transitioning from state i to state j.

The initial HMM is constructed from the seed instances and
description patterns. The initial probabilities πi can be extracted
from the seed instances as follows: If the seed instances always
start from the root “Company”, then πi = 1 for “Company” and πj =
0 for (j <> i). If there are multiple initial possible types, their
relative frequencies shall be reflected on to their probabilities.
Transitional probabilities are also from the seed instances through
checking how many times each edge appear in the seed instances.

2) A set of enumerative descriptions {y1, …,yT}. In our model, it
corresponds to a set of product descriptions including seed
instances and target (unknown) instances, like "Apple iPhone
3/3s/4/4s, iPad 2/mini". A subset of tokens are assigned types by
the seed instances, and the reminders are delimiters and entities of
unknown types.

3) Emission probabilities Pr(yt|k). The emission probability
Pr(yt|k) is the probability of token yt being observed in state k. We
can calculate Pr(yt|k) from the opposite direction Pr(k| yt), namely,
the possibility of in state k when yt is observed. We apply Bayes'
rule: Pr(yt |k) = Pr(k| yt)Pr(yt)/Pr(k).

Tokens included in the initial RDF graph (seed instances) should
be given probability Pr(type|value) = 1. For example, since "Apple"
is in the seed instance, we know that "Apple" type is "Company".
This implies that Pr(Company|Apple) = 1.

We are approximating the distribution of the target instances by
the distribution of the seed instances, since we do not know the
exact distribution of the target. Pr(Apple) is calculated from in
what ratio Apple occupies in the target instances. Likewise,
Pr(Company) is calculated from in what ratio Company occurs in
the seed instances. Then we can obtain the emission probability of
Pr(Apple|Company).

There are tokens of unknown types in the target instances. We
need to estimate emission probabilities of unassigned types. We
also approximate the distribution of the target by the distribution of
the seed instances. We assume that the state probabilities Pr(k) are
identical between the target instances and the seed instances.

For example, in Figure 4, the description “HTC sensation, XE,
XL, One X S V” has eight tokens. Each of the token probability

1288

Pr(yt) is calculated as 1/8 based on the target instance. We may
merge target and seed instances to create a larger frequency
distribution. Suppose that in the seed instances, c(Company),
b(Brand) and m(Model) occur by the ratio: (0.2, 0,3, 0.5). We
employ the ratio as the state probabilities Pr(k) for the target
instances. Now we compute the emission probabilities Pr(yt |k) by
Bayes' rule. Here, there are two situations need to be considered. If
we have no knowledge about the descriptions, Pr(k| yt) = Pr(k) and
Pr(yt |k) = Pr(yt). Such as Pr(One|Company)=PR(One)= 1/8. But if
we have partial knowledge, such as "HTC" is a company, then we
can construct a better belief on Pr(k| yt). We know that Pr(c|HTC)
= 1, Pr(c) = 0.2 and Pr(HTC) = 1/8, then we can calculate that
Pr(HTC|c) = 0.625. Furthermore, we can infer that
Pr(b|HTC)=Pr(m|HTC)=0 and Pr(HTC|b)= Pr(HTC|m)=0.

Figure 4 A HMM M0 with emission probabilities

The target instances follow the hierarchical syntactic structure
represented by the skeletons. But delimiters can be used in different
levels among different seed instances, because descriptions may
use different notations, depending on their origins. For example,
only in the title of ID 1 in Table 1, colon “:” is used. We use
skeletons to absorb such different usage of delimiters, because
sometimes a placeholder in a different description is coupled with a
different delimiter level. As shown in Figure 4, we first search a
matching skeleton to find that the delimiter “/” is in level 1 and
delimiter “,” is in level 2. Then we assign the delimiter emission
probabilities as Pr(“/”|delimiter level 1)=1 and Pr(“,”|delimiter
level 2)=1

After calculating all target token emission probabilities on one
state, we normalize them and use this initial HMM in the
initialization step of Baum-Welch algorithm.

In the expectation step, we need to compute the expected number
of occurrences of each state transition and the expected number of
occurrences of each symbol emission. Then we adjust the
parameters to maximize the likelihood of these expected values.

We apply the forward and backward algorithms to compute
Pr(q,i | S). Here, S is the token sequence in the product descriptions
and q is a state in M0. Pr(q,i | S) is the probability such that at i-th
token si in S, the type of si is q. In the algorithm, we define:

Pr(q, i | s) = Pr(q, i, S) / Pr(S)

Pr(q, i, S) = Pr(s1 …. si , state = q) Pr(si +1… sn | state = q)

For each type q and each token si , we compute Pr(s1 …. si , state
= q) by the forward algorithm and we apply the backward
algorithm to compute Pr(si +1… sn | state = q).

In our problem, the seed instances give constraints such that
particular tokens are always assigned the types specified by the
seed instances. Thus in the backward and forward algorithms, we
apply Pr(q, i, S) = 1, if an seed instance gives that the correct type

of si is q. The output of Baum-Welch algorithm is a converged
HMM Mc.

4.6 Assigning types to unknown tokens
Now we discuss assigning types to unknown tokens. Let us

consider the example: “Samsung:c Galaxy:b 3:x,4:x”. Here,
'Samsung:c' means that the type of 'Samsung' is 'c' and the symbol
'x' means an unknown type. We need to find a type for each
occurrence of 'x'.

In the final step of type assignment, we apply Viterbi algorithm
to the converged HMM Mc to compute a type assignment on the
target instances. Viterbi algorithm[8] solves the problem of finding
an optimal state sequence (in our case, type assignment) for a given
sequence (in our case, description) by dynamic programming.

Figure 5 The whole process of inferring entity types

Figure 5 shows the picture of the whole process. We construct a
basic HMM M0 from a set of seed instances and apply Baum-
Welch algorithm to update the parameters of the HMM. Then we
apply Viterbi algorithm to infer entity types. After each iteration,
we add the new type assignments with confidence score to the seed
instances. We execute this process at each arrival of new target
instances.

5. EXPERIMENTS

5.1 Benchmark data set
We collect smart device and accessory descriptions from various

e-commerce websites randomly, and extract product titles from
these web pages to construct a test data set of product descriptions.
We collected 2892 product descriptions and the number of
descriptions at each website is shown in Table 2.

Table 3 shows the distribution of production descriptions in
different product categories. We collect 2636 product descriptions
of popular phones and tablets appearing in the default sort order in
e-commerce websites. We use these phone and tablet product
descriptions to extract phone and tablet entities as the ground truth,
to be used to verify inferred types. Besides, we construct phone and
tablet type hierarchies from the entity listing orders in these
descriptions. On the other hand, we use the other 256 smart device

1289

accessories, which are randomly collected from the e-commerce
websites, as the target instances. Each accessory description
contains an enumerative description consisting of compatible
phone entities.

We identified 68 distinct entities from 256 accessory
descriptions. On the contrary, we identified 47 distinct entities from
2623 phone and tablet descriptions. Since phone and tablet
descriptions in the e-commerce sites are dealing with popular and
best-selling models, the entities found in these descriptions are
heavily duplicated. Also, these descriptions contain one
phone/table entity and not enumerative. We manually assign
(entity, type) pairs extracted from the phone and tablet descriptions
and use them as ground truth. Although there are two entities in
the phone descriptions that are missing from the accessory
descriptions, popular and general models have been found in the
accessory descriptions.

Table 2 Website
distribution of product
descriptions

 Table 3 Category
distribution of product
descriptions

Website
#of

description
s

Category

#of
description

s
 Amazon 1045 Phone 1415

Ebay 1428 Tablet 1221
Rakuten 134 Battery pack 78
Walmart 23 Case 53
BestBuy 262 Stylus pen 33

Total 2892 Headset 61
 USB cable 31
 Total 2892

5.2 Result Analysis
We compare the results inferred by our method from accessories

with the ground truth. Our current implementation for extracting
skeletons and generating description patterns requires manual
supervision. In the 256 accessory descriptions, seven skeletons
matching different description structures are found. The number of
entities in one description ranges from 1 to 40, and its average is
17. Each skeleton is assigned with one to three description patterns.

We compared our proposed method with two baseline methods.
One is such that all delimiters in the enumerative descriptions are
replaced with white spaces, so no syntactic feature can be utilized.
The other baseline prohibits update of the HMM in BW algorithm,
so that common traits across skeletons are not propagated.

We change the size of the seed instances to evaluate accuracy,
which is defined as the fraction of correct type assignments over
the whole type assignments. We executed five times for each size
and took the average. As the size of seed instances increases, in
order of 10%, 20%, 30%,... 90%, the accuracy is expected to
become higher. On the contrary, the efficiency of discovering new
entities in terms of the size of the seed instances is expected to
become lower. We need to find the appropriate proportion of the
seed instances that realizes a reasonable accuracy.

Figure 6 shows the accuracy results. All the three methods show
a rising trend with the increase of the proportion of the seed
instances. The green curve is the proposed method, showing the
highest accuracies. The proposed method achieves a significant rise

from 0 to 0.6, and then the curve becomes almost flat. There is a
trade-off between accuracy and efficiency. We obtained an
acceptable result at 0.6 of accuracy around 95%. The baseline
which ignores the delimiter (skeleton) information is shown as the
red curve, which is close to linear. The blue curve is the baseline
with no HMM update in BW algorithm. The accuracies of these
baselines are much lower than our method, especially when the
seed instance size is larger than 50%.

Figure 6 Accuracy vs. seed instance size

6. CONCLUSION
In this paper, we proposed an iterative process for entity type

resolution on enumerative descriptions. Regularities of enumerative
descriptions are captured by skeletons, and description patterns are
generated to give candidate type assignments. Then a HMM is
constructed from description patterns and seed instances, to
generate maximum-likelihood type assignments. As future work,
we aim to extend performance evaluation of the proposed method
over different types of enumerative descriptions, such as tables in
Wikipedia, and study application to various types of partially-typed
web resources.

7. REFERENCES
[1] L. E. Baum. An inequality and associated maximization

technique in statistical estimation of probabilistic functions of
a Markov process. Inequalities, 3, 1972.

[2] X. L. Dong, A. Halevy, and C. Yu. Data integration with uncertainty.
VLDBJ, 18(2), 2009.

[3] H. Huang, C. Liu. Query evaluation on probabilistic RDF
databases. In WISE, 2009.

[4] X. Lian and L. Chen. Efficient query answering in probabilistic RDF
graphs. SIGMOD’11, 2011.

[5] T. Y. Li, P. Chubak, L.V.S. Lakshmanan. Efficient extraction of
ontologies from domain specific text corpora. CIKM'12, 2012.

[6] Y. Ma, T. Tra, V. Bicer. TYPifier: inferring the type semantics of
structured data. ICDE '13, 2013.

[7] A.D. Sarma, A.Jain, D. Srivastava. I4E: interactive investigation of
iterative information extraction. SIGMOD’10, 2010.

[8] A. Viterbi, "Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm," IEEE Trans. Inform.
Theory,IT-13:260-269, Apr 1967.

[9] X. Zhang, G. Cheng, Y. Z. Qu. Ontology summarization based on
RDF sentence graph. In IW3C2, 2007.

[10] P. Zhao and J. Han. On graph query optimization in large networks.
PVLDB, 3(1), 2010.

Seed instance size

1290

