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ABSTRACT 
Entity type matching has many real world applications, especially 
in entity clustering, de-duplication and efficient query processing. 
Current methods to extract entities from text usually disregard 
regularities in the order of entities appearing in the text. In this 
paper, we focus on enumerative descriptions which enlist entity 
names in a certain hidden order, often occurring in web documents 
as listings and tables.  We propose an algorithm to discover entity 
types from enumerative descriptions, where a type hierarchy is 
known but enumerating orders are hidden and heterogeneous, and 
partial entity-type mappings are given as seed instances.  Our 
algorithm is iterative: We extract skeletons from syntactic patterns, 
then train a hidden Markov model to find an optimum enumerating 
order from seed instances and skeletons, to find a best-fit entity-
type assignment.  

Categories and Subject Descriptors 
H.8 [Database Management]: Data mining 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 

RDF graph; Information Extraction; Hidden Markov Model 

1. INTRODUCTION 
We define enumerative descriptions as structured 

descriptions which contain listings of entities, where the order of 
listings follows a certain unknown order in the class hierarchy, 
characterized by a regular expression. There are many forms of 
web resources that contain such enumerative descriptions, such as 
product descriptions in e-commerce, Infoboxes of Wikipedia, 
tables coded by Media Wiki, and listings in web pages which start 
with entity names. Infoboxes, tables and listings contain parent 
types in areas like section titles and adjoining table cells.   
Recognizing entities from web resources and assigning their correct 
types are crucial for various applications, such as search result 
categorization and disambiguation. As an example of enumerative 

descriptions, real product descriptions in e-commerce sites are 
shown in Table 1. In the first line, Lumsing Battery is compatible 
with a list of smart devices of different classes.  In the product title 
of ID 1 in Table 1, we notice that the substring starting from 
“Apple:iPad Mini, iPad 4, 3, 2, Android …” is listing entities, such 
as “Apple”, “iPad mini”, “iPad 3” in a certain order. Using external 
knowledge such that “Apple” is an entity of type “Company” and 
“iPad 3” is a list of entities “Brand” and “Model”, we can surmise 
the types of the rest of entities.  We call such texts enlisting entities, 
where these entities belong to a certain type hierarchy, as 
enumerative descriptions. If a list of enumerated entities are a mix 
of known and unknown entities, the type of the latter can be 
inferred from that of the former, by capturing the enumerating 
orders.   As the example of Table 1 indicates, we can find ordering 
patterns from syntactic features such as punctuations and 
delimiters.  We call a regular expression on types and delimiters a 
description pattern.   In Table 1, we notice that enumerative 
descriptions are not unique, but a mixture of heterogeneous 
description patterns.    However, we can employ an assumption that 
these enumerative descriptions arise from a single entity hierarchy, 
and thus we can deduce discovered facts across heterogeneous 
patterns.  In summary, our problem on type inference over 
enumerative descriptions is unique and new in the sense that (1) 
finding both parent and child entities simultaneously from 
enumerative descriptions that obey certain hidden entity 
enumeration orders, and (2) finding an entity-type mapping from a 
mixture of heterogeneous patterns.  Our application scenario is to 
find typing information from partially typed, structured information 
from web resources, such as e-commerce sites and Wikipedia. 

RDF (Resource Description Framework) is a general standard 
for describing structured descriptions on Web resources and 
capturing their relationships. In RDF, entities are represented as 
sets of <subject, predicate, object> or <subject, property, object> 
triples.  We assume that a type hierarchy represented as an RDF 
schema, is given for type inference.  Figure 2 shows the RDF 
schema describing our running example.  

Our algorithm can be implemented as automatically expanding 
RDF graphs by augmenting them with discovered entities and their 
types. Firstly, since not all type names are captured in the initial 
given graph, so the method should capture existing types and 
identify new types (classes). Secondly, since not all type names are 
listed in the product descriptions, the syntactic structure of the 
description patterns should be captured as skeletons. We employ a 
conventional assumption that an enumeration of types is according 
to a regular order, such as a navigation path in a RDF schema 
graph. But we need to reconstruct the most plausible navigation 
path from the enumerative description. At last, we need to improve 
the accuracy and efficiency of inferring such types on entities. 
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Table 1 Product descriptions

ID Website Title 

1 Amazon 

Lumsing 11000mAh 5 x USB External Battery Pack Charger Power Bank For Apple:iPad Mini, iPad 4 3 2, Android 
Tablets:Samsung Galaxy Tab 2, Note 10.1; Google Nexus 7,10; Acer B1; iPhone 5 4S 4 3GS, iPod; Android 
Smartphone: Samsung Galaxy S4, S3, S2, Ace,Note 2; HTC One, One X, Desire X; LG Optimus 4X HD, I7, I9;Nokia 
Lumia 920, Google Nexus 4, Blackberry Z10, Sony Xperia Z; MP3, MP4, GPS, Camera, Game Player  

2 Amazon 
Anker® Astro3E 10000mAh High Capacity Power Bank Pack Portable External Battery Charger for iPhone 5, 4S, 4, 

iPad 4, 3, 2, Mini, iPods; Samsung Galaxy S4, S3, S2, Note 2; HTC One, EVO, Thunderbolt, Incredible, Droid DNA; 
Motorola ATRIX, Droid; Google Nexus 4, Nexus 7, Nexus 10; LG Optimus; PS Vita, GoPro 

3 Amazon GTMax Black Touch Screen Styli Stylus For Samsung, Blackberry, HTC, LG, Pantech, Huawei, iPhone, Motorola, 
Nokia, Smartphone, iPad, Asus, Acer, Toshiba, Archos Tablet 

4 Amazon DandyCase White/Grey Waterproof Case for Apple iPhone 4, 4S, iPod Touch 3, 4, iPhone 3G, 3GS, & Other 
Smartphones 

Exacting hierarchical and diverse entities along with implied 
relationships between them with high accuracy is the main goal of 
this work. With regards to this, we present an iterative pattern-
based algorithm called HoverTyp (Horizontal-Vertical Type 
Extractor). The central paradigm used by HoverTyp is an iterative 
framework of starting with an initial labeled RDF graph and given 
RDF schema which is used to construct an initial Hidden Markov 
Model. They are in turn used to classify more instances from the 
dataset and then update the initial Hidden Markov Model until 
convergence. At every stage, captured entity types and candidate 
HMM are scored, reflecting their degree of likelihoods.  

The rest of the paper is organized as follows: Section 2 discusses 
related work. Section 3 describes our data representation 
framework. Section 4 presents each of the proposed techniques in 
detail. Experimental evaluations are presented in Sections 5. 
Section 6 concludes the paper with future work. 

2. RELATED WORKS 
RDF is a W3C standard to represent metadata, which has several 

equivalent formats, for example, triple store, column store, 
property tables, or graphs. In existing graph database researches, 
Zhao and Han [10] designed a neighborhood signature to directly 
store labels within k hops from each vertex. In contrast, our work 
involves uncertain candidate labels. Several previous works in the 
semantic web area considered uncertainty in the RDF data. 
Furthermore, during data integration [2], the integrated RDF data 
from different sources may often contain conflicting or duplicate 
information. Therefore, a new probabilistic RDF data graph model 
has been proposed. Huang and Liu [3] modeled uncertain RDF data 
by a probabilistic database. However, this model assumes that 
RDF triples have independent existence probabilities to appear in 
reality.  

Lian and Chen [4] propose a different format of probabilistic 
RDF graphs. The node labels are not deterministic (multiple labels 
with probabilities). Probabilistic RDF graphs are related to our 
research, because RDF graphs extracted from product descriptions 
are not deterministic, in the sense that there can be different 
possible labels to tokens. However, our problem involves a 
different model of probabilistic RDF graphs which have uncertain 
vertex labels (but certain edge labels). We need to assign possible 
labels to tokens and calculate likelihoods by simultaneously 
aligning with given type hierarchies.   

TYPifier [6] is a method proposed to infer the type semantics of 
structured data and build type hierarchy trees. They use complex 

pseudo-schema features to indicate missing type information and 
learn type hierarchies by proposed systems. RDF schema features 
are also used in our approach with different intention. Moreover, 
type hierarchies in our RDF graph are more complex and detailed. 

Ontologies have played a central role in the development of 
semantic web. RDF Sentence Graph[9] has been used to 
automatically summarize ontologies which are widely used in 
understanding unstructured documents. An ontology typically 
includes concepts and hierarchical relationships. One of the 
approaches to learning an ontology from unstructured text is using 
lexico-syntactic patterns. LASER[5] is an iterative process starting 
with ISA and HASA seed patterns to effectively discover new 
patterns. However, this method only concentrates on the 
hierarchical relationships and ignores horizontal compatible 
relationships. On the other hand, seed patterns in our method are 
not pre-defined, but partially given in the initial instance graph. 
Our algorithm tries to infer types to unknown entities based on 
discovered patterns in enumerative descriptions. 

In most of real-world extraction applications, a pattern-based 
algorithm is used in an iterative process: Starting with a relatively 
small set of seed tuples, these extractors iteratively learn patterns 
that can be instantiated to identify new tuples. I4E[7] is proposed 
as a graph-based framework that integrates tuples, patterns, and 
various trace information at each iteration. I4E assigns a 
confidence score to each pattern based on individual tuples that 
generate the pattern as well as the collective set of tuples produced 
by the pattern. In our method we also introduce confidence score on 
every iteration to update the patterns and prune candidate type 
labels. However, our problem involves a different model of 
unknown relationships, and enumerative descriptions contain a list 
of entities with heterogeneous entity types.  

3. ASSUMPTION AND ARCHITECTURE  
In this section we show assumptions used in our algorithms and 

outlines the architecture of our system.  

3.1 Assumptions 
We adopt the following assumptions in HoverTyp: 

 An RDF schema for enumerative descriptions is given. 
 Entities belonging to top-level types in the RDF schema, such 

as companies, operating systems, categories, are given in a 
table.  

 Relationships connect two classes, but no schema for 
relationships is given. That is, any two classes can have a 
relationship. 
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 A portion of the RDF instance graph is given as seed instances. 

We try to grow this initial graph. 
 
3.2 System Framework 

Figure 1 shows the system framework of HoverTyp, where the 
circle indicates the main components. HoverTyp takes 
preprocessed descriptions with each word tokenized as input. In 
addition, it receives a given RDF schema and initial RDF instance 
graph. The system output is an RDF instance graph augmented 
with discovered entities and their types. The main part has two 
stages:  

 
Figure 1 System framework of HoverTyp 

 

 
Figure 2 RDF schema of Smartdevices  

Extracting description patterns: Skeletons are extracted by 
analyzing hierarchical relationships indicated by delimiters in the 
descriptions. Here, skeletons do not carry any type information. 
Then description patterns are generated by instantiating skeletons 
with types and delimiters, using the seed instances.   

Assigning candidate labels:  We apply the current set of 
description patterns to each description in the dataset and assign 
candidate labels on each token in the description.  A Hidden 
Markov Model (HMM) is constructed from the seed instances, and 
type assignments are generated by dynamic programming on the 
HMM. The HMM is updated as we process succeeding 
descriptions.  

4. APPROACH AND ALGORITHM 
4.1 Preprocessing on tokens 
 Certain values may have ambiguous meanings. Multiple 

candidate labels need to be assigned. Eg. “White” can be a 
color of phones or cases.  

 There exist tokens not related to the RDF graph (eg. stop 
words, adjectives). We need to preprocess descriptions with 
each word tokenized and decide whether a token is an 
instance value.  

 Tokens like “External Battery Pack” are not used in building 
the instance graph. But these tokens are characterizing the 
product itself. 

4.2 Skeletons 
We introduce skeletons that represent syntactical structures of 

enumerative descriptions of entities. Skeletons simply capture 
hierarchal structures of enumerative descriptions, containing no 
type information. In the next step, we consider mapping between 
skeletons and the RDF graph.  The result is description patterns 
that can explain one enumerating pattern of types.  Remember that 
our target descriptions consist of heterogeneous hidden patterns. 

As an example of skeletons, let us consider the following 
description on an external battery pack with compatible 
information on smart devices: 

PowerGen PGMPP12000 12000mAh External Battery Pack 
High Capacity Power Bank Charger Triple USB 3Amps output 
for Apple iPhone 5 4s 4 3Gs 3G, iPod Touch, iPad 1 2 3 4, The 
New iPad 3/ HTC sensation, XE, XL, One X S V, Thunderbolt, 
Inspire 4G , EVO 3D, EVO 4G, Desire S Z HD / Samsung Galaxy 
S3 S2 S 2 II ACE Mini, S Advance, Galaxy Nexus, Nexus 7, Tab / 
Motorola Atrix 2, Droid 3 X X2 Razr Maxx, Bionic, Triumph 

In this description, the delimiters are “ ” (space), “,” (comma) 
and “/” (slash). We observe that delimiters are hierarchically 
organized in the ascending order of 1: white space, 2: comma, and 
3: slush. From the delimiters, we can construct a tree structure to 
extract a regular expression.  
 We first replace each token with symbol “s”. We record the 

original position of each “s” and the symbol s is not assigned 
any type. We should note that the proceeding part “… output 
for” is not considered. The beginning position of an 
enumerative description can be detected by occurrences of 
known types in the seed instances, such as companies and 
brands. The first part “s s s s s s s, s s, s s s s s, s s s s /” 
corresponds to “Apple iPhone 5 4s 4 3Gs 3G, iPod Touch, 
iPad 1 2 3 4, The New iPad 3/”. 

 We group the lowest level tokens which is separated by 
spaces and assign placeholder “X”. The first part “X, X, X, 
X / X, X, X,” corresponds to “Apple iPhone…XE, XL,”. Here, 
the first “X” corresponds to the first seven tokens “s s s s s s 
s”. 

 Likewise, we group the sequences of X’s, delimited by 
commas, into a placeholder “Y”:Y / Y 

 Finally, we group the sequences of Y’s, delimited by slashes, 
into a placeholder “Z”. 

We obtain the skeleton Z—Y—X—s. The skeleton is not yet 
mapped to any types. 

Description with each 
word tokenized 

Given RDF 
schema 

Seed instances 

(Initial RDF 
instance graph) 

Extracting 
description 

patterns 

Assign 
candidate 

labels to each 
token 

Update score of a 
pattern match 

 

Complete RDF instance graph 
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4.3 Description Patterns 
We introduce description patterns to describe possible 

enumerating orders of types.  

Description pattern: A description pattern is a regular 
expression that accepts possible enumerating orders of types, 
where the orders between types in a hierarchical relationship in the 
given RDF schema must be uniform. 

Given a seed instance in which each token is marked with correct 
types in the RDF graph, we fold repetitions and subexpression to 
obtain a description pattern. 
-The correct types for the tokens are given as assignment of a type 
to each symbol ‘s’. 
 

Skeleton: s s s s s s s, s s, s s s s s, s s s s / s s, s, s, s s s s, 
Pattern:c b m m m m m,b m,b m m m m,# # b m/c b,m,m,b m m m, 

c: Company b: Brand m: Model, #: non-type tokens (“The New”) 
- Fold repetitions: If a pattern contains a list of repeating identical 
types, we fold these repetitions. 

Pattern: c b m+, b m, bm+, b m/c b, m, m, bm+ 

（Note: '+' is one or more repetition. '*' is zero or more.） 

- Further fold common subexpressions 
Pattern: [c[bm*|m+]+]+ 

(Note: '|' is alternation.) 
-We assign types to the skeleton. The skeleton can be translated 
into a regulation expression by the following mapping: 

X  bm*|m+ 
Y  cX+ 
Z  Y+ 

 

4.4 Constructing a HMM from seed instances 
and description patterns 

Here we construct a Hidden Markov Model (HMM) having 
states on types. Each edge in the state machine of the HMM is 
labeled with a transition probability on types. From the seed 
instances, we obtain transition probabilities as follows: We count 
how many times each subexpression matches, and determine the 
probabilities on edges originating from the same vertex. For 
example, regarding the pattern ‘[c[bm*|m+]+]+’, the subexpression 
‘bm*’ appears six times in the seed instance, and m+ appears twice. 
Except the alternation '[bm*|m+]', the state machine has only one 
outgoing edge, so we can assign probability 1 to these edges. But 
for the alternation '[bm*|m+]', the ratio between the first and 
second terms is 3:1. From this ratio we assign probabilities 0.75 
and 0.25, respectively, to the two outgoing edges corresponding to 
the alteration. The smaller probability 0.25 represents the irregular 
case of 'm,m' without 'b'.  

 
Figure 3 A pattern HMM M0 with transition probabilities 

We use this pattern automaton to construct an initial HMM M0 
(Figure 3) with transition probabilities by counting the proportion 
in the seed instances. 

4.5 Generation of initial HMM 
We will use Baum-Welch algorithm[1] to adjust the HMM for 

each new instance, and use Viterbi algorithm[8] to assign types to 
unknown entities. Baum-Welch algorithm is a well-known 
expectation maximization algorithm finding a maximum likelihood 
estimate of the parameters of a Hidden Markov Model given a set 
of observed sequences. It makes use of the forward-backward 
algorithm[1]. Viterbi algorithm finds most-likely sequences of 
hidden states by dynamic programming. 

The initialization step needs to determine the transition and 
emission probabilities and the number of states. Although random 
transition and emission probabilities could work, a more-likely 
model can speed up the convergence. So we construct the following 
initial HMM M0 as the input: 

1) A HMM M0 with state space S = {x1,…,xk}, the initial 
probabilities πi of being start at state i and transitional probabilities 
(i, j) of transitioning from state i to state j. 

The initial HMM is constructed from the seed instances and 
description patterns. The initial probabilities πi can be extracted 
from the seed instances as follows: If the seed instances always 
start from the root “Company”, then πi = 1 for “Company” and πj = 
0 for (j <> i). If there are multiple initial possible types, their 
relative frequencies shall be reflected on to their probabilities. 
Transitional probabilities are also from the seed instances through 
checking how many times each edge appear in the seed instances. 

2) A set of enumerative descriptions {y1, …,yT}. In our model, it 
corresponds to a set of product descriptions including seed 
instances and target (unknown) instances, like "Apple iPhone 
3/3s/4/4s, iPad 2/mini". A subset of tokens are assigned types by 
the seed instances, and the reminders are delimiters and entities of 
unknown types. 

3) Emission probabilities Pr(yt|k). The emission probability 
Pr(yt|k) is the probability of token yt being observed in state k. We 
can calculate Pr(yt|k) from the opposite direction Pr(k| yt ), namely, 
the possibility of in state k when yt  is observed. We apply Bayes' 
rule: Pr(yt |k) = Pr(k| yt )Pr(yt )/Pr(k). 

Tokens included in the initial RDF graph (seed instances) should 
be given probability Pr(type|value) = 1. For example, since "Apple" 
is in the seed instance, we know that "Apple" type is "Company". 
This implies that Pr(Company|Apple) = 1. 

We are approximating the distribution of the target instances by 
the distribution of the seed instances, since we do not know the 
exact distribution of the target. Pr(Apple) is calculated from in 
what ratio Apple occupies in the target instances. Likewise, 
Pr(Company) is calculated from in what ratio Company occurs in 
the seed instances. Then we can obtain the emission probability of 
Pr(Apple|Company). 

There are tokens of unknown types in the target instances. We 
need to estimate emission probabilities of unassigned types. We 
also approximate the distribution of the target by the distribution of 
the seed instances. We assume that the state probabilities Pr(k) are 
identical between the target instances and the seed instances.  

For example, in Figure 4, the description “HTC sensation, XE, 
XL, One X S V” has eight tokens. Each of the token probability 
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Pr(yt ) is calculated as 1/8 based on the target instance. We may 
merge target and seed instances to create a larger frequency 
distribution. Suppose that in the seed instances, c(Company), 
b(Brand) and m(Model) occur by the ratio: (0.2, 0,3, 0.5). We 
employ the ratio as the state probabilities Pr(k) for the target 
instances. Now we compute the emission probabilities Pr(yt |k) by 
Bayes' rule. Here, there are two situations need to be considered. If 
we have no knowledge about the descriptions, Pr(k| yt ) = Pr(k) and 
Pr(yt |k) = Pr(yt). Such as Pr(One|Company)=PR(One)= 1/8. But if 
we have partial knowledge, such as "HTC" is a company, then we 
can construct a better belief on Pr(k| yt ). We know that Pr(c|HTC) 
= 1, Pr(c) = 0.2 and Pr(HTC) = 1/8, then we can calculate that 
Pr(HTC|c) = 0.625. Furthermore, we can infer that 
Pr(b|HTC)=Pr(m|HTC)=0 and Pr(HTC|b)= Pr(HTC|m)=0.  

 
Figure 4 A HMM M0 with emission probabilities 

The target instances follow the hierarchical syntactic structure 
represented by the skeletons. But delimiters can be used in different 
levels among different seed instances, because descriptions may 
use different notations, depending on their origins. For example, 
only in the title of ID 1 in Table 1, colon “:” is used. We use 
skeletons to absorb such different usage of delimiters, because 
sometimes a placeholder in a different description is coupled with a 
different delimiter level. As shown in Figure 4, we first search a 
matching skeleton to find that the delimiter “/” is in level 1 and 
delimiter “,” is in level 2. Then we assign the delimiter emission 
probabilities as Pr(“/”|delimiter level 1)=1 and Pr(“,”|delimiter 
level 2)=1 

After calculating all target token emission probabilities on one 
state, we normalize them and use this initial HMM in the 
initialization step of Baum-Welch algorithm. 

In the expectation step, we need to compute the expected number 
of occurrences of each state transition and the expected number of 
occurrences of each symbol emission. Then we adjust the 
parameters to maximize the likelihood of these expected values. 

We apply the forward and backward algorithms to compute 
Pr(q,i | S). Here, S is the token sequence in the product descriptions 
and q is a state in M0. Pr(q,i | S) is the probability such that at i-th 
token si in S, the type of si  is q. In the algorithm, we define: 

Pr(q, i | s ) =  Pr( q, i, S) / Pr(S) 

Pr(q, i, S) = Pr(s1 …. si , state = q) Pr(si +1… sn | state = q) 

For each type q and each token si , we compute Pr(s1 …. si , state 
= q) by the forward algorithm and we apply the backward 
algorithm to compute Pr(si +1… sn | state = q). 

In our problem, the seed instances give constraints such that 
particular tokens are always assigned the types specified by the 
seed instances. Thus in the backward and forward algorithms, we 
apply Pr(q, i, S) = 1, if an seed instance gives that the correct type 

of si  is q. The output of Baum-Welch algorithm is a converged 
HMM Mc. 

4.6 Assigning types to unknown tokens 
Now we discuss assigning types to unknown tokens. Let us 

consider the example: “Samsung:c Galaxy:b 3:x,4:x”. Here, 
'Samsung:c' means that the type of 'Samsung' is 'c' and the symbol 
'x' means an unknown type. We need to find a type for each 
occurrence of 'x'. 

In the final step of type assignment, we apply Viterbi algorithm 
to the converged HMM Mc to compute a type assignment on the 
target instances. Viterbi algorithm[8] solves the problem of finding 
an optimal state sequence (in our case, type assignment) for a given 
sequence (in our case, description) by dynamic programming.  

 
Figure 5 The whole process of inferring entity types 

Figure 5 shows the picture of the whole process. We construct a 
basic HMM M0 from a set of seed instances and apply Baum-
Welch algorithm to update the parameters of the HMM. Then we 
apply Viterbi algorithm to infer entity types. After each iteration, 
we add the new type assignments with confidence score to the seed 
instances. We execute this process at each arrival of new target 
instances. 

5. EXPERIMENTS 

5.1 Benchmark data set 
We collect smart device and accessory descriptions from various 

e-commerce websites randomly, and extract product titles from 
these web pages to construct a test data set of product descriptions. 
We collected 2892 product descriptions and the number of 
descriptions at each website is shown in Table 2. 

Table 3 shows the distribution of production descriptions in 
different product categories. We collect 2636 product descriptions 
of popular phones and tablets appearing in the default sort order in 
e-commerce websites. We use these phone and tablet product 
descriptions to extract phone and tablet entities as the ground truth, 
to be used to verify inferred types. Besides, we construct phone and 
tablet type hierarchies from the entity listing orders in these 
descriptions. On the other hand, we use the other 256 smart device 
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accessories, which are randomly collected from the e-commerce 
websites, as the target instances. Each accessory description 
contains an enumerative description consisting of compatible 
phone entities.  

We identified 68 distinct entities from 256 accessory 
descriptions. On the contrary, we identified 47 distinct entities from 
2623 phone and tablet descriptions. Since phone and tablet 
descriptions in the e-commerce sites are dealing with popular and 
best-selling models, the entities found in these descriptions are 
heavily duplicated. Also, these descriptions contain one 
phone/table entity and not enumerative.  We manually assign 
(entity, type) pairs extracted from the phone and tablet descriptions 
and use them as ground truth.  Although there are two entities in 
the phone descriptions that are missing from the accessory 
descriptions, popular and general models have been found in the 
accessory descriptions.   

Table 2  Website 
distribution of product 
descriptions 

 Table 3  Category 
distribution of product 
descriptions 

Website 
#of 

description
s 

 
Category 

#of 
description

s 
 Amazon 1045  Phone 1415 

Ebay 1428  Tablet 1221 
Rakuten 134  Battery pack 78 
Walmart 23  Case 53 
BestBuy 262  Stylus pen 33 

Total 2892  Headset 61 
   USB cable 31 
   Total 2892 

5.2 Result Analysis 
We compare the results inferred by our method from accessories 

with the ground truth.   Our current implementation for extracting 
skeletons and generating description patterns requires manual 
supervision. In the 256 accessory descriptions, seven skeletons 
matching different description structures are found.  The number of 
entities in one description ranges from 1 to 40, and its average is 
17.  Each skeleton is assigned with one to three description patterns.   

We compared our proposed method with two baseline methods.   
One is such that all delimiters in the enumerative descriptions are 
replaced with white spaces, so no syntactic feature can be utilized. 
The other baseline prohibits update of the HMM in BW algorithm, 
so that common traits across skeletons are not propagated. 

We change the size of the seed instances to evaluate accuracy, 
which is defined as the fraction of correct type assignments over 
the whole type assignments. We executed five times for each size 
and took the average. As the size of seed instances increases, in 
order of 10%, 20%, 30%,... 90%, the accuracy is expected to 
become higher.  On the contrary, the efficiency of discovering new 
entities in terms of the size of the seed instances is expected to 
become lower. We need to find the appropriate proportion of the 
seed instances that realizes a reasonable accuracy. 

Figure 6 shows the accuracy results. All the three methods show 
a rising trend with the increase of the proportion of the seed 
instances. The green curve is the proposed method, showing the 
highest accuracies. The proposed method achieves a significant rise 

from 0 to 0.6, and then the curve becomes almost flat. There is a 
trade-off between accuracy and efficiency. We obtained an 
acceptable result at 0.6 of accuracy around 95%. The baseline 
which ignores the delimiter (skeleton) information is shown as the 
red curve, which is close to linear. The blue curve is the baseline 
with no HMM update in BW algorithm. The accuracies of these 
baselines are much lower than our method, especially when the 
seed instance size is larger than 50%. 

 
Figure 6 Accuracy vs. seed instance size 

6. CONCLUSION 
In this paper, we proposed an iterative process for entity type 

resolution on enumerative descriptions. Regularities of enumerative 
descriptions are captured by skeletons, and description patterns are 
generated to give candidate type assignments. Then a HMM is 
constructed from description patterns and seed instances, to 
generate maximum-likelihood type assignments. As future work, 
we aim to extend performance evaluation of the proposed method 
over different types of enumerative descriptions, such as tables in 
Wikipedia, and study application to various types of partially-typed 
web resources. 
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