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ABSTRACT
Today the web has become the largest available source of infor-
mation. The automatic extraction of structured data from web is
a challenging problem that has been widely investigated. How-
ever, after the extraction process, the problem of identifying dupli-
cates among the extracted web records must be solved in order to
present clean data to the final user. This problem, also known as
record linkage or record matching, has been of central interest for
the database community; however, only few works have addressed
this problem in the web context. In this paper we present web ob-
ject matching, the problem of identifying duplicates among records
extracted from the web.

We will show that in the web scenario we need to face all the
problems of a classic record linkage setting plus the uncertainty
introduced by the web. Indeed the records are the output of an ex-
traction system that, rather than conventional databases or APIs,
introduces semantic errors that are not due to a problem in the
source. Most of the previous approaches rely on the fact that the
records to match contain the correct information and we can use
such information to identify duplicates. In this work we overview
an approach that performs a validation step before the actual iden-
tification of duplicates, in order to check whether the information
of the record can be trusted or not. We present an approach that
works without any human supervision or training data and that
deals with the problem not only in a record-by-record fashion (as
other approaches), but also in a source-by-source fashion which al-
lows detecting and possibly correcting systematic errors for an en-
tire source. The only human effort required is the creation of a little
knowledge about the domain of interest through a set of ontology
constraints and an entity extraction system.
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Figure 1: Two house offers from two different websites
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1. INTRODUCTION
Today the web has become the largest database ever built in hu-

man history. Web users search more often for specific objects of
interests such as people (e.g., Facebook), real estate (e.g., Rigth-
move), or products (e.g., Amazon) rather than simple keywords to
be found in web pages. Unfortunately, current search engines of-
ten fail to provide structured and precise information about specific
web objects because they do not attempt to understand data as be-
longing to individual objects, due to the vast scale of the web. Re-
cently search engines are trying to fill this gap (e.g., Google Knowl-
edge Graph), however the results are still insufficient for the final
user. Infact if we query Google with ‘‘house 4 bedroom 2 bath-
room London city centre” the result is a list of websites that needs
to be inspected by the user to find the desired result. The prob-
lem of automatically extracting complex objects from web is a big
challenge and much work has tried to target this problem [8, 12, 7].
Such systems, given a set of websites as input, try to automatically
create the programs that are able to extract the objects of interest
from the input websites. The generated programs are often defined
as wrappers. The creation of wrappers that correctly extract all
the interesting data from the target websites is a very challenging
problem and even if we are able to create such wrappers, after the
extraction process new problems arise. Indeed same objects might
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Price Location Postcode Type Status #Bedroom #Bathroom Street City Town Description
Weybridge
- Guide
Price
£4,000,000

Weybridge
- Guide
Price
£4,000,000

NULL NULL NULL 11 5 NULL NULL NULL Weybridge

Table 1: Real estate record extracted from www.curchods.com

reside at different sources (each website is a source of information)
and after the extraction process the output may contain several du-
plicates, that is several records that refer to the same real-world en-
tity. Web object matching is the problem of identifying duplicates
among a set of records (objects) extracted from web pages.

The problem of identifying duplicates among records coming
from different databases is known as record linkage, record match-
ing or de-duplication and it is one of the steps of the more general
problem of data integration [22]. Web object matching adapts the
setting of a classic record linkage problem to the web scenario,
where the records come from web pages rather than databases. Ob-
jects that refer to the same real entity reside at different sources,
where each source is a website that publishes the data according to
its own schema. Such schemas are unknown to the user and also
there is no guarantee that all the objects within the same website are
published according to the same schema. Therefore same attributes
may have different names in different sources, some attributes may
be omitted in some sources because considered irrelevant and val-
ues for the same attributes coming from different sources may be in
conflict with each other. These are the classic problems of a record
linkage system and we can define them as record-level errors, due
to the quality of the source irregularity. Note that such errors would
occur even when the wrappers are manually created, as the source
lacks the information or the wrapper generated does not work on all
the pages of the website for a template change. However, when we
deal with web databases, even greater challenges are encountered.
First of all a website is not a normal database and is not forced to
follow the same constraints. We might have the exact same record
repeated twice in the same website or some attribute values may
not follow the attribute type. Such problems can be easily avoided
when dealing with normal databases. Most importantly, we need to
keep in mind that the records to match are the result of an extrac-
tion process, and this process is not likely to be perfect. Therefore
the records to match may contain erroneous or partially true values,
that means we cannot fully trust the values of the attribute for the
matching process. Most of the previous approaches for web object
matching do not take into consideration this aspect (e.g., [27, 1,
21, 15, 18]), they rely on the fact that the wrappers are perfect and
all the values (when available) can be considered as true values.
We can define such errors as wrapper-level errors, where situations
such as attribute misalignment, record misalignment and even tem-
plate misalignment (where multiple record types are mixed because
the wrapper does not understand they belong to different templates)
are all due to the automatic generation of the wrappers that causes
the wrappers to behave as not expected. In this paper, other than
classic record-level errors, we want to consider the wrapper-level
errors as well. Figure 1 shows two different offers from two dif-
ferent websites that refer to the same house. The website Zoopla is
an aggregator, a website that collects offers from several real estate
agencies and publish them on its website, while Bairstow Eves is
a real estate agency. The two offers look similar, however we can
notice that the two images are slightly different and the post-code
is fully specified for (a), while (b) publishes only the first three
digits of the post-code. This is a typical example of what we can
expect when comparing records coming from different websites.

Moreover, web object matching has a practical application that ev-
ery e-commerce aggregator needs to solve: product matching. In
product matching the records to match are product offers and the
sources of information are the e-commerce websites where the of-
fers come from. Indeed when we query the Bing shop catalogue
for a camera [18], we would like to have each result representing a
different product rather than having seven different descriptions of
the same camera.

In this paper we present an extensive overview of challenges of
identifying duplicates among records extracted from web (section
2) and we give a preliminary approach on how to deal with such
problems. The work in this paper is currently in use for identifying
duplicates in DIADEM [12], a completely automatic web data ex-
traction system. Our approach relies on little knowledge of the do-
main of interest represented through a set of ontological constraints
and on an entity extraction system, the annotator. We divide the
identification of duplicates into three major steps: (i) validation,
where the annotator is used to check whether the attribute values
are correct and if they can be trusted during the following phases;
(ii) blocking, where all the pair of records that violate one or more
ontological constraints are put in different clusters; (iii) scoring,
where we compute a score for all the pair of records that are in
the same cluster (the score is calculated as the weighted average
of similarity functions computed on all the attribute values) and
we output as duplicates all those pairs of records that have a score
above a threshold. All the steps are explained in details in section 3.
Our approach wants to target primarily those errors caused by the
wrappers (wrapper-level errors) and allows us to deal with the un-
certainty introduced by the extraction process. Unlike most of the
previous works, we present an approach that does not require any
human supervision or training data. The only human effort needed
is building the ontological constraints, our little knowledge about
the domain.

The benefits of such system are: (1) we can avoid duplicates
when showing the results of the extraction to the final user; (2) we
can enrich the information about a single object by combining data
residing at different sources, increasing the quality of the data;
(3) we can give a unified representation of the object (global view)
that can be easily queried by the final user; (4) we can use the
matched objects (and the merged data from different objects) to
understand whether there was some kind of errors during the ex-
traction process; these errors can be used by the extraction process
as feedback to improve the extraction strategy itself, to create a loop
where the extraction and the matching step both help each other.

2. WEB OBJECT MATCHING

DEFINITION 1. Let D be a set of target websites and let W
be a set of wrappers, where ∀di ∈ D we have one (and only one)
wi ∈W . For each website di we have one wrapper wi to extract
records from the website. We define S as our global schema and
R as the set of records extracted from all the websites in D using
the wrappers in W . All the records in R follow the schema S. The
goal of web object matching is to identify pairs of records in R that
refer to the same real-world entity, that means ∀ri,r j|ri ∈R,r j ∈R
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web object matching outputs true if the pair ri,r j refer to the same
real-world entity and outputs false otherwise.

Web object matching takes as input a set of records R and iden-
tifies the pair ri,r j ∈R that refers to the same real-world entity, a
problem also known as record linkage. The records in R are ex-
tracted from web pages via a website’s wrapper. The focus here is
not on how these records are extracted from web pages, we suppose
to have a set of wrappers (one for each website of interest) that pro-
duce as output a set of records according to a pre-defined schema.
Many previous approaches target the problem of record linkage for
multiple databases, that is a classic record linkage problem, in this
work we focus on the web scenario where each website is a poten-
tial database. In such settings we face all the problems of a classic
record linkage plus all the new challenges due to the web databases.
Below we give an overview of what the overall scenario looks like.

Global and Local Schema. The records in R follow all the
same schema S. S is manually defined along with the wrappers and
aims to represent all the relevant aspects of the domain of interest.
In DIADEM, where the main domain of interest is real estate offers, S
contains attributes such as Price, Location, Number_of_bedroom, Num-
ber_of_bathroom. The websites, instead, follow their own schema,
the local schema, because each of them provide data according to
its own publishing model. Even though the global schema tries to
generalize each single local schema into a more abstract one, there
is no guarantee to have a direct correlation between the local and
the global schema. Therefore some attributes may be omitted for
some local schema because considered irrelevant (not all the real
estate websites provide the number of bathrooms), and this means
having many null values for the records that are extracted from
those websites. In addition to this, since the wrapper is not perfect,
a null value may be caused for an error of the wrapper which is not
able to locate and extract the attribute. Table 1 shows an example
of a real estate records extracted with DIADEM. As we can see half
of the attributes have a null values. Many previous approaches do
not consider the possibility of having null values (e.g. [27]), how-
ever this aspect is important when dealing with web records and it
is clear that a null value does not help the duplicates identification.

Erroneous and Partial Attribute Values. The records in R are
the output of several wrappers. Building a system which is able
to create a wrapper for any website of interest is a very hard prob-
lem, therefore we need to allow the wrapper to make mistakes. The
wrapper, other than missing some values to extract from the page,
may also extract erroneous values for the attributes. Consider again
the record extracted in table 1. In this example it is clear that the
value for the attributes Price and Location are partially correct (the
values contain the correct information as well as some noise) while
the value for the attribute description is totally wrong (this value
instead corresponds to the attribute Town). We call these errors the
uncertainty of the data extracted by the wrapper. Note that also
manually created wrappers can make mistakes, due to a problem
in the source or an unpredictable behavior of the website, but in
our situation the errors introduced by the wrapper increase (signif-
icantly) the uncertainty of the data. All the approaches that try to
eliminate duplicates for web records rely on the fact that the wrap-
pers are perfect, that means the extracted records contain correct
values of the attributes. Some of them allow the presence of null
values or errors due to the source of information, but none of them
consider the errors that might be introduced during the extraction
step. Unfortunatelly a wrapper is likely to be perfect only when
it is manually created, when we want to deal with wrappers that
are automatically generated (like in DIADEM) we must allow a cer-
tain degree of errors. The linkage strategy needs to validate the
attribute values (in order to understand whether a price is a real

price), it needs to parse the attribute values (to prune out the noise
of the value and keep only the relevant information), it needs to un-
derstand whether a value must be assigned to a different attribute
(like the value of the attribute Description in table 1). All these val-
idation steps must be done before the actual de-duplication phase
and even after this pre-process we still need to allow some form of
uncertainty (since we cannot be sure that the validation steps work
perfectly). One may argue that these wrapper-level errors could
be addressed also during the extraction process itself, however by
adressing them in a post-process stage we can take advantage of
having data (and redundancy) from different websites and there-
fore more knowledge.

Source of Duplication. In the classic record linkage problem
we have two (or more) databases and these databases might contain
duplicates. A pair of duplicates consists of two records that belong
to two different databases and refer to the same real-world entity.
When we consider records extracted from web pages the situation
is more complicated and we have multiple reasons of duplication.
The majority of the duplicates is due to the same reason of classic
linkage setting: we have two or more websites that publish the same
record (according to their own publishing model that is unknown to
the user) and when we extract records from both websites we find
the duplicates (see figure 1). However we have other factors that
cause duplication. First of all the websites are not forced to respect
any kind of constraints, and it might happen the same website pub-
lishes the same record several times. We have seen cases where
the same record has been published on the same website with ex-
actly the same attributes and values (this could be easily avoided
in a traditional database using uniquess constraints) and even cases
where two records refer to the same entity but their representations
were different (on the same website). The first two records in table
2 represent two offers from www.kempandkemp.co.uk that refer to
the same house. At first sight the offers may look identical, but
with a deeper look we can notice that the attributes Location and
Type are slightly different and Number_of_bedroom is null for one of
the offers. Eventually, again the wrapper may introduce more er-
rors, by adding more duplicates. In fact to visit an entire website
and extract all the records from the website is very challenging (the
wrapper needs to simulate the human behavior to navigate through
the website pages) and it is likely that the wrapper makes some
mistakes, like visiting the same page twice. Therefore the wrap-
per itself might introduce more duplicates by extracting the same
record different times. One may argue that in this case the extracted
records are exactly the same (and therefore easy to de-duplicate),
however since the behavior of the wrapper (and of the website) is
unpredictable the same record might be extracted with different val-
ues in two different times. To complicate even more the scenario,
websites may change as they are being visited, and this could add
more errors (as the wrappers are unable to understand the change
of the content).

We have seen that web object matching needs to face all the prob-
lems of a classic record linkage setting and also new challenges due
to the web uncertainty. Table 2 shows an example of real estate of-
fers extracted with DIADEM that refer to the same house. The first
two records come from the same website (Kemp and Kemp) while
the last record has been extracted from Zoopla. As we can see we
have null values, erroneous values, duplication intra website e inter
website.

3. APPROACH
In this paper we present a dependency driven data cleaning sys-

tem based on little knowledge on the domain of interest. Our frame-
work takes as input some domain-specific knowledge and it uses
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Price Location Postcode Type Status #Bedroom #Bathroom Street City Town Description
£1,350,000 41 Bland-

ford Ave
NULL 41 Bland-

ford Ave
Under
Offer

5 3 NULL NULL NULL 5 bedrooms
3 bath-
rooms 3
reception
rooms

£1,350,000 41a Bland-
ford Ave

NULL 41a Bland-
ford Ave

Under
Offer

NULL 3 NULL NULL NULL 5 bedrooms
3 bath-
rooms 3
reception
rooms

£1,350,000 Blandford
Avenue,
Oxford
OX2

Blandford
Avenue,
Oxford
OX2

5 bedroom
detached
new house
for sale

for
sale

NULL NULL Blandford
Avenue,
Oxford
OX2

Blandford
Avenue,
Oxford
OX2

NULL Added on
20th Aug
2013

Table 2: Real estate records extracted from www.kempandkemp.co.uk and www.zoopla.co.uk that refer to the same real-world house

that knowledge to identify record duplicates. The main idea is that
if we focus on just one domain, we can observe some repeating
patterns that are domain-specific. By exploiting those patterns we
are able to (i) parse and clean the erroneous and partially true at-
tributes; (ii) identifying duplicates even when the information avail-
able is not complete. Our knowledge of the domain is made of an
entity extraction system, the Annotator, and the Ontology, that con-
tains repeated patterns that we can observe for each website of our
domain of interest. In this paper our case study is the domain of
real estate, where the records are real estate offers (both selling and
renting offers) that are extracted from real estate websites.

The Annotator. The annotator is an entity extraction system that
takes as input a free text and identifies the entities of interest. In
the real estate domain such entities are, among the others, Location,
Price, Number_of_bedroom. Our annotator is a combination between
ROSeAnn [3], a domain independent entity extraction system, and
a manually-created annotator (with Gate [10]). ROSeAnn is respon-
sible of identifying those general entities such as Location, City, Per-
son, it is not domain dependent and it can be used for any domain
of interest; the domain-specific annotator identifies those entities
that are domain-specific, in our case entities such as Price, Num-
ber_of_bathroom, Type_of_house. Note that the only domain-specific
part for the annotator is the one created through Gate. This is es-
sential to understand those specific concepts that can be found only
in one domain, since all of the available entity extraction systems
are able to identify only general concepts (see [3] for a general
overview of entity extraction systems).

The Ontology. The Ontology contains those constraints that are
domain-specific and that can be used to prune out some duplicate
candidates. An example of constraint in the real estate domain is
the type of contract agreed between the agency and the owner of
the house. The contract can be exclusive (the selling/renting of the
house is committed to one and only one agency) or it can be mul-
tilateral (several agencies try to sell/rent the house). Obviously we
do not expect to find web-offers of the same house in more than one
agency website if the contract of that house is exclusive, while we
might find several offers from several websites of the same house
if the contract is multilateral (note that we still may have duplicates
for houses with exclusive contract because of the aggregator web-
sites). Another example of constraint is that two offers cannot refer
to the same house if one of them is a renting offer and the other one
is a selling offer. Now it should be more clear how the ontology
constraints might be helpful for identifying duplicates, especially
for identifying those that are not duplicates. The Ontology also

specifies those attributes of the records that we define dominant.
A dominant attribute is an attribute that almost uniquely identifies
the record and the use of the dominant attribute is explained below.
In real estate Location is a dominant attribute while Type_of_house is
not. Other than dominant or not, the ontology also specifies if an
attribute is atomic or compound. An atomic attribute is an attribute
that is not made of other attributes, like City or Number_of_bedroom.
In real estate Location is an example of compound attribute, since it
is made of several atomic attributes like Street_ address, Post-code,
City etc.

The creation of the annotator and of the ontology are the only
parts that requires human effort, however they need to be done just
once for each domain of interest and once they are ready, they can
be used for all the websites of the input domain (for DIADEM the
creation of the annotator and the ontology required one week of
one-person work). The main idea is that with an initial little effort
we can automatize the process for all the websites of the whole
domain.

A three-step algorithm. Our algorithm divides the duplicate
detection phase in three major steps: Validation, Blocking and Scor-
ing.

(1) In the validation step the goal is to analyze each attribute of
the records in order to discover erroneous values, partially complete
values or misplaced values. We run the annotator on each single
attribute and on the concatenation of all the attributes in order to
adjust the following situation: (i) an attribute value is wrong when
we run the annotator on the value and the annotator does not return
the type of the attribute at all; (ii) an attribute value is partially cor-
rect if we run the annotator on the value and the annotator returns
the type of the attribute only for a substring of the value; (iii) an
attribute value is correct if we run the annotator on the value and
the annotator returns the attribute type for the entire value; (iv) an
attribute value is misplaced when we run the annotator and the an-
notator returns a type that corresponds to another attribute type;
(v) an attribute value is partially misplaced when we run the anno-
tator on the concatenation of all the attribute values and we find out
that the annotator returns an attribute type that is scattered across
different attribute values. By using the annotator we are able to
correct and check the attribute values such that they can be useful
during the following phases. Also, by annotating each compound
attribute, we try to extract the atomic attributes out of it (e.g., we
could extract the attribute Post-code from the attribute Location). The
validation phase has the goal to check the validity of each attribute
but also tries to enrich the attribute values by inspecting each at-
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tribute values. This step wants to reduce the impact of all the errors
that are introduced by the wrappers, as we have seen in section 2.
Moreover, other than a record-by-record comparison where we try
to find the errors for a single record, in this step we also look at the
repeated errors we may find for the same source (those errors that
are exactly the same for many records of the same source). This
may be caused by the source itself or by a repeated error of the
wrapper. If this is the case, we come up with potential fixes that
can be applied to the entire source at once. We need to keep in
mind that even after this step the record’s values may still contain
errors, since the annotator is not able to correct some situations (if
a value is wrong the annotator will not replace it with the correct
value) and since the annotator itself may be wrong (the entity ex-
traction systems are not perfect and may produce noisy annotations
[8]). This is the main reason why we have introduced the domain’s
knowledge and the knowledge is exploited in the following steps to
overcome the remaining errors.

(2) The blocking step identifies for each record all the records
that cannot be a duplicate by using the ontology. For each pair of
record ri,r j we check the ontology constraints and if one of them is
violated, the two records are not put in the same cluster. An exam-
ple of violation of constraint is when we have validated a dominant
attribute for two records and the two records have that dominant
attribute different (in real estate if we are sure that two houses have
different location we are also sure that the two houses are not the
same). After the blocking step all the records are divided into clus-
ters such that each record belongs to one and only one cluster and
there are not two records in the same cluster that violate one of the
ontology constraints.

(3) In the last step we analyze all the clusters. For each clus-
ter, we compute a score for each pair of records in the cluster and
we output as duplicates all the records that have a score above a
pre-defined threshold. The ontology, other than constraints, also
defines what kind of similarity-string measure needs to be used for
each attribute value (examples of similarity distance measures are
Cosine similarity, TFIDF similarity, Levenstein similarity; see [6]
for a general overview) along with the weights (the importance) for
each attribute. The score is computed as a simple weighted average
of the string similarity scoring computed for each attribute. Even-
tually all the pairs of records within the same cluster that have a
score above the threshold are duplicates, while all the other pairs of
records are not duplicates.

The ontology and annotator play a crucial role in the overall
matching step but the benefits of using them are enormous. First
of all we can reduce the uncertainty introduced by the extraction
process that cannot be underestimate as pointed out in section 2.
Secondly our approach does not require any kind of supervision or
training data. Most of the record linkage algorithms try to solve
the problem by learning some kind of similarity functions between
records. In our setting the collection of training data is very hard
due to the high variety of the data on the web and also (and most
importantly) because of the unpredictable behavior of the wrap-
pers. In our approach we require little knowledge about the domain
of interest that allows us to face all the problems that are introduced
by web records. One may argue that making a pairwise comparison
among all the records is not feasible, especially during the blocking
step when we need to check the ontology constraints for each pair
of record. We consider this problem as orthogonal and we could
apply any of the blocking techniques that have been proposed in lit-
erature (see [5] for a survey) to achieve scalability. Such blocking
strategies reduce the number of pairwise comparison by grouping
the records in different blocks, according to a pre-defined strategy.

Boost the Extraction. Eventually the information discovered by
the matching step can be used as feedback to improve the overall
extraction system, especially during the validation step. In fact dur-
ing the validation step we may find out that the value extracted for
the attribute post-code is not a real post-code, or the value extracted
for the attribute town is actually a price. All such information can
be used by the extraction process to better locate the value to ex-
tract from the web pages. Also, other than a single record fixes, we
can identify source-level fixing, where we could inform the wrap-
pers to fix an error for the entire source (few record pairs may be
enough to identify systematically errors and to generalise for the
entire source). The extraction and the de-duplication of the data
have been always considered as two separated steps, however mak-
ing the two of them cooperating in a continuos loop could improve
the both of them, similar to what has been done in [2], where the re-
dundat (and overlapping) data across different web sources is used
during the extraction process to improve the quality of the wrap-
pers by chosing those X-Path rules that best locate the redundant
data on the new web pages to analyze.

4. RELATED WORK
Web object matching implies several techniques from data inte-

gration, data cleaning and web data extraction. Below we review
some of the most relevant works.

Record Linkage. Record linkage is a problem that has been
widely studied in the context of data integration [22] (see [20] and
[9] for a survey). It addresses the task to identify records that rep-
resent the same real-world entity, where the records come from
different databases with (possible) different representations (local
views). Most of the techniques adopt a framework that uses three
consecutive steps: (i) blocking, to create a set of small blocks,
where each block contains similar records; (ii) pairwise matching,
to compare all the records within the same block; (iii) clustering,
to group the records that refer to the same entity within the same
block. The typical setting of record linkage problem is to define
a similarity function between records that returns a value of simi-
larity, then use a threshold to understand whether two records refer
to the same entity or not. The similarity function can be manually
defined [17], but it requires domain experts, or it can be learned
via a supervised algorithm [4]. In [29] a supervised approach is
used to learn what is the best similarity function to use given a set
of rules, however the idea relies on the assumption to have all the
records coming from the same database. The problem of automati-
cally generating training data for a binary classifier is addressed in
[27]. The main idea is to create an inital set of positive (negative)
examples by selecting the records having all the attributes identi-
cal (different), and then refine the training set with more examples.
Even though the method does not require any human supervision,
there is no guarantee about the presence of totally identical (differ-
net) records. Some techniques try to avoid the use of supervised
algorithms by leveraging on temporal information [23, 1], using
the crowd instead of human supervision [28] or by exploiting the
relationship between different entity types in order to improve the
linkage among entities with the same type [30]. Eventually [19] is
a deduplication framework built on hadoop that can be easily inte-
grate to have better performance and good scalability.

Web Record Linkage. Recently the focus of record linkage
has moved from the classic database to the web scenario, where
each website becomes a source of information and we want to link
records from different websites. In the web scenario, where the data
to match are often generated on-the-fly, the supervised approaches
become inappropriate. Moreover the records to match are the out-
put of a data extraction system; such systems have a behavior which
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is hard to predict (due to the high variability of the web sources) and
a learned method that uses training data collected today may fail on
the data extracted tomorrow. In [27] the training data is automati-
cally generated by the combination of two different classifiers that
cooperate together, where the first classifier provides the training
examples for the second classifier. The approach does not allow
the records to have null-value attributes, but for data extracted from
the web this aspect must be taken into account since the extraction
system may fail to extract the attributes or the attributes might sim-
ply not be there to be extracted. The most practical use of record
linkage in the web is matching product offers, where the entities are
products and the extracted records are product offers. Both [21] and
[15] try to identify the attributes of the offer that uniquely identify
the product. The former extracts the product code with manually
created rules while the latter enriches the title of the offer with a
search engine in order to identify the keywords in the offer. Kannan
et. al. [18] look at the optimal parsing of the offer w.r.t. a database
of all products in order to find the parsing that maximizes the sim-
ilarity score between duplicate records. The approach requires a
database of all the entities to compare. All these approaches try to
adapt the linkage techniques to the web setting, however none of
them consider the critical aspect of the uncertainty of the data. As
we have seen in section 2 the output of a web data extraction system
is rarely perfect, some attributes are null, some attributes have an
incomplete value, some attributes have a wrong value. A linkage
system that wants to deal with such kind of data cannot avoid this
peculiarity.

Data Cleaning. The goal of a data cleaning system is to make
the database records consistent w.r.t. a set of given constraints [25].
We have seen that the records we want to link are the output of an
extraction system that could introduce some errors in the attribute
values, applying a cleaning strategy to these wrong values may help
the overall linkage system. Fan et. al. [11] inspect the interac-
tion between record linkage and data repair and try to unify these
two steps. [24] suggests a knowledge-based framework for data
cleaning to detect and eliminate duplicates, while [13, 14, 26] are
interactive data cleaning systems that can be tuned directly by the
end user. All these techniques can be used in a pre-process step to
clean the wrong or incomplete values of the record, such that we
can reduce the effect of the uncertainty of the data.

Web Data Extraction. Web object matching tries to identify du-
plicates from a set of web records extracted by a web extraction sys-
tem, such systems are often defined as website wrapper. In the last
few years the problem of web data extraction has become very im-
portant and many approaches have been proposed to solve it. Some
approaches leverage on the redundancy of the data [16] and on the
overlapping of the data [2] among different web sources in order
to generalize a manually created wrapper or to prune away those
wrappers that are not able to extract all the data from the website.
Systems such as [12] or [8] try to understand the structure of the
website in order to automatically extract complex entities and their
properties by leveraging on the repeated structure of the web pages
(within the same website) or by exploiting background knowledge
of a specific domain. Due to the high variety of the web sources, all
these systems are not able to produce perfect wrappers and the ex-
tracted records will always contain erroneous or incomplete values.
The record linkage system must take into account such aspects and
by identifying duplicates among several records we are also able to
correct the wrong values and to enrich the information about a sin-
gle record. Eventually the information about erroneous values can
be given as feedback to the wrapper itself to improve the overall
extraction process.
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