
A Demonstration of Query-Oriented Distribution and
Replication Techniques for Dynamic Graph Data⇤

Alan G. Labouseur, Paul W. Olsen Jr., Kyuseo Park, and Jeong-Hyon Hwang
University at Albany – State University of New York

Albany, New York 12222 USA
{alan, polsen, kpark, jhh}@cs.albany.edu

ABSTRACT
Evolving networks can be modeled as series of graphs that
represent those networks at di↵erent points in time. Our G*
system enables e�cient storage and querying of these graph
snapshots by taking advantage of their commonalities. In ex-
tending G* for scalable and robust operation, we found the
classic challenges of data distribution and replication to be
imbued with renewed significance. If multiple graph snap-
shots are commonly queried together, traditional techniques
that distribute data over all servers or create identical data
replicas result in ine�cient query execution.

We propose to verify, using live demonstrations, the bene-
fits of our graph snapshot distribution and replication tech-
niques. Our distribution technique adjusts the set of servers
storing each graph snapshot in a manner optimized for pop-
ular queries. Our replication technique maintains each snap-
shot replica on a di↵erent number of servers, making avail-
able the most e�cient replica configurations for di↵erent
types of queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Parallel
Databases; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed Databases

Keywords
load balancing; replication; graph partitioning; parallel pro-
cessing; high availability

1. INTRODUCTION
We are surrounded by constantly evolving networks, includ-
ing social networks, citation networks, transportation net-
works, and the Web [1]. We can take periodic snapshots
of these networks and model them as graphs where vertices

⇤This work is supported by NSF CAREER Award
IIS-1149372.

Copyright is held by the International World Wide Web Conference Com-

mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the

author’s site if the Material is used in electronic media.

WWW’14 Companion, April 7–11, 2014, Seoul, Korea.

ACM 978-1-4503-2745-9/14/04.

http://dx.doi.org/10.1145/2567948.2577026.

represent entities and edges represent relationships between
entities. Trends discovered by analyzing the evolution of a
network via these graph snapshots play a crucial role in many
areas, such as sociopolitical science, viral marketing, and na-
tional security. G* is our distributed system for managing
series of large graph snapshots representing an evolving net-
work at di↵erent points in time [5, 7, 11]. It e�ciently stores
and queries graph snapshots on multiple servers by taking
advantage of commonalities among them.

Accelerating computation by distributing data over mul-
tiple servers has been a popular approach in parallel
databases [4] and distributed systems [3]. Techniques for
partitioning individual graphs to facilitate parallel compu-
tation have also been developed [6, 8, 9, 10]. However,
distributing a series of large graph snapshots over multi-
ple servers raises new challenges. In particular, it is not
desirable to use traditional graph partitioning techniques
which consider only one graph at a time and incur high
overhead given a large number of vertices and edges. Fur-
thermore, simply distributing each snapshot on all servers
may not be an appropriate approach. If multiple snapshots
are commonly queried together, it is more advantageous to
store each snapshot on fewer servers as long as the over-
all queried data are balanced over all servers. In this way,
the system can reduce network overhead (i.e., improve query
speed) while benefiting from high degrees of parallelism. We
require solutions that (re)distribute with low overhead graph
snapshots that are continuously generated and take advan-
tage of the property that query execution time depends on
both the number of snapshots queried and the distribution
of those snapshots. To the best of our knowledge, G* is the
first system to address these concerns.

We propose to demonstrate our technique that tackles the
above challenges by splitting graphs into similarly sized seg-
ments and then swapping segments between pairs of servers
such that the overall expected query time is reduced [7].
To calculate the expected query time, our technique catego-
rizes previously submitted queries while keeping track of the
CPU and network overhead as well as the frequency of each
query category. We also propose to present our technique
that tolerates up to r � 1 simultaneous server failures by
constructing r replicas for each graph snapshot. To improve
query performance, this technique classifies queries into r

categories and optimizes the distribution of each replica for
one of the query categories.

Our demonstration will use both real-world and synthetic
data sets to allow attendees to experience for themselves the
following aspects:

127



(1, 2, {G1, G2, G3}), (1, 1, {G1, G2, G3}), (2, 0, {G1}), (3, 1, {G2} (4, 2, {G3})

(1, 1, {G1,G2,G3})

(a, 2, {G1,G2,G3}) (b, 1, {G1,G2,G3})

(a, ..., {G1,G2,G3}) (b, ..., {G1,G2,G3})

(1, 2, {G1,G2,G3}) (2, 0, {G1}), (3, 1, {G2}), (4, 2, {G3}))

vertex

degree

count, sum

average

union

degree

count_sum

avg

union

degree

count_sum

degree

count_sum

{G1,G2,G3} {G1,G2,G3} {G1} {G3}{G2,G3}{G1,G2}

a c

b
b d

c e

d f
c

d

α γβ

(c, 0, {G1}), (d, 0, {G1, G2}), (c, 1, {G2, G3}), ...

(c, ..., {G1}), (d, ..., {G1, G2}), (c, ...,{G2, G3}), ...
vertex vertexvertex

(3/4, {G1}), (4/5, {G2}), (5/6, {G3})

G1 c

d

a

b

eG2 c

d

a

b f

eG3 c

d

a

b

Figure 1: Deduplicated Storage and Querying of
Graph Snapshots (Average Degree per Snapshot)

• the impact of graph snapshot distribution
• the benefits of segment swapping
• the e↵ectiveness of query categorization
• the advantages of graph snapshot replication

The remainder of this demonstration proposal presents
our new graph snapshot distribution and replication tech-
niques (Section 2) as well as specific demonstration scenarios
emphasizing the impact and e↵ectiveness of these techniques
(Section 3).

2. G* BACKGROUND
This section describes the architecture of the G* system
(Section 2.1) and our techniques for distributing graph snap-
shots (Sections 2.2, 2.3, and 2.4) as well as replicating them
(Sections 2.5 and 2.6).

2.1 Architecture
G* consists of a master and multiple workers. As Fig-
ure 1 shows, graph snapshots (e.g., G1, G2, and G3) are
distributed over workers (e.g., ↵, �, and �). In response
to each submitted query, the master (not shown in Fig-
ure 1) constructs a network of operators that process data
on workers in parallel. G* supports deduplicated storage
and querying of graph snapshots. For example, in Figure 1,
vertex a and its edges remain the same in graph snapshots
G1, G2, and G3. Therefore, they are stored only once on
a worker. Given a query for finding the average degree on
each of G1, G2, and G3, the degree of a is also computed
only once. Further details of our storage and query tech-
niques can be found in our previous publications [5, 11]. G*
is currently implemented in approximately 30,000 lines of
Java code (http://www.cs.albany.edu/~gstar/).

2.2 Segment Swapping
When a series of graph snapshots is distributed over multiple
workers, both the number of snapshots queried and the dis-
tribution of the graph snapshots a↵ect query execution time.
For example, if most queries access a single graph snapshot,
it is advantageous to evenly distribute each snapshot on all
workers (i.e., maximize the degree of parallelism). On the

! "

G1,1

G2,1

G2,2

G1,2

G3,1

G3,2

(a) Before Exchange

! "

G3,1

G2,1

G2,2

G3,2

G1,1

G1,2

(b) After Exchange

Figure 2: Exchanging Segments. If snapshots G1 and
G2 are queried together frequently, workers ↵ and � in Fig-
ure 2(a) can better balance the workload and reduce the
network overhead by swapping G1,1 and G3,1.

other hand, if most queries access all graph snapshots, it is
preferable to distribute each snapshot on fewer workers as
long as the overall graph data are balanced over all workers.
In this way, the system can reduce network overhead while
benefiting from high degrees of parallelism.

We developed a technique that distributes each graph
snapshot on an appropriate number of workers. In this
technique, each worker periodically exchanges graph data
with another (randomly chosen) worker in a manner that
minimizes the overall expected query execution time. Con-
sider Figure 2(a) where three snapshots (G1, G2, and G3)
have been partitioned into six similarly-sized segments. In
this example, workers ↵ and � are assigned a segment from
snapshot G1, ↵ is assigned both segments from G2, and �

is assigned both segments from G3. If snapshots G1 and
G2 are frequently queried together (see those shaded in Fig-
ure 2(a)), this snapshot distribution leads to ine�cient query
execution due to imbalanced workload between the workers
and network communications for the edges between G1,1 and
G1,2. Exchanging G1,1 and G3,1 between the workers solves
this problem1. In this case, the frequently queried data (i.e.,
G1 and G2) are balanced over the workers. Each of G1 and
G2 can also be processed only on workers � and ↵, respec-
tively, without incurring high network overhead.

Given a pair of workers, our technique estimates, for each
segment, the benefit of migrating that segment to the other
worker, and then performs the most beneficial migration.
The benefit of migrating a segment is calculated in terms
of the expected reduction in query time (i.e., the di↵erence
between expected query times before and after migration).
Given a set S

i

of segments on worker i and another set S

j

of segments on worker j, the expected query time is defined
as

P
q2Q

k

Pr(q) · time(q, S
i

, S

j

) where Q
k

is a collection
of k popular query patterns, Pr(q) is the probability that
query pattern q is executed, and time(q, S

i

, S

j

) denotes the
estimated duration (based on configurable weights for CPU
and network overhead observed in our G* system) of q given
segment placements S

i

and S

j

. The segment swapping pro-
cess is repeated a maximum number of times or until the
migration benefit falls below a predefined threshold.

2.3 Finding Query Patterns
Our segment swapping technique (Section 2.2) requires
knowledge of query patterns. For this reason, we devel-
oped an algorithm that maintains k query patterns given

1While assigning G1 andG2 to di↵erent workers prevents G*
from taking advantage of the commonalities between G1 and
G2, we assume that query execution time is most a↵ected
by network overhead, which has been usually observed in
actual deployments of our G* system.

128



a predefined k. This algorithm represents each query pat-
tern with a collection of graph snapshot identifiers based
on the graph snapshots accessed by the queries constituting
that query pattern. It also maintains the access frequency
of each graph snapshot with small memory overhead using
a count-min sketch [2]. Given a fixed-size integer array and
an arbitrary number of items, a count-min sketch can esti-
mate the count of each item with a provable guarantee on
the estimation error.

Our algorithm for finding query patterns registers a new
query pattern for each distinct query until it obtains k query
patterns. It then selects, for each new query, the best match-
ing query pattern from the set of k query patterns and then
updates the selected pattern using the new query. Let G

x

represents the set of graph snapshots that query x accesses.
Then, the matching score for query x and query pattern q

is defined as
P

g2G

x

Pr
q

(g)

|G
x

| where Pr
q

(g) denotes the prob-
ability that the queries constituting query pattern q access
graph snapshot g.

2.4 Segment Splitting
When a graph segment reaches a predefined maximum size,
the worker responsible for that segment creates a new seg-
ment and moves half of the data there. For this, we use a
traditional graph partitioning method [6] to minimize the
number of edges that cross segment boundaries.

2.5 Graph Snapshot Replication
G* masks up to r � 1 simultaneous worker failures by cre-
ating r replicas of each graph data segment. We developed
a new data replication technique that speeds up queries by
configuring the storage of these replicas to benefit di↵erent
categories of queries. This approach uses our technique men-
tioned in Section 2.3 to classify queries into r categories. It
then assigns the j-th replica of each data segment to a worker
in a manner optimized for the j-th query category. For ex-
ample, assume two query categories which represent queries
on a single graph snapshot (Category I) and queries on all
snapshots (Category II), respectively. Then, each graph
snapshot replica for Category I should be distributed over
all workers to parallelize queries to the maximum extent.
On the other hand, each graph snapshot replica for Cate-
gory II should be distributed over fewer workers to reduce
network overhead (the overall distribution of the graph data
still needs to be balanced to e↵ectively parallelize queries).

2.6 Query-Aware Replica Selection
When a query is submitted to the G* system, the master
determines into which query category, among the r cate-
gories, the submitted query best fits according to the metric
described in Section 2.3. Then it runs the query on the
graph snapshot replicas that are optimized for the chosen
query category. For example, queries on a single graph snap-
shot (Category I) should be executed on the graph snapshot
replica for Category I (i.e., the replica distributed over all
workers).

3. DEMONSTRATION DETAILS
This section describes the demonstration environment (Sec-
tion 3.1), demonstration interface (Section 3.2), and demon-
stration scenarios (Section 3.3).

Figure 3: The G* User Interface

Figure 4: G* System Viewer

3.1 Demonstration Environment
We will prepare a cluster of four Mac Minis, each of which
has a 2.3GHz Quad-Core Intel i7 CPU, 8GB RAM, and a
1TB Serial ATA Drive. To fully utilize this cluster’s 16 CPU
cores, we will run one G* master and 15 worker servers.
Data. We will provide series of graph snapshots that rep-
resent large, evolving networks at di↵erent points in time.
We will construct these graph snapshots using Twitter mes-
sages [13], network tra�c records between Yahoo! servers
and the rest of the world [14], citation and coauthorship
networks [12], and a binary tree generator. We will prepare
multiple distribution/replication configurations for each se-
ries of graph snapshots (Sections 3.3.1 and 3.3.4) and show
their impact on query completion time.
Queries. We will demonstrate the benefits of our tech-
niques mentioned in Section 2 by using queries on a set of
selected graph snapshots. These queries will find, from each
graph snapshot, certain aspects including:

• the average degree
• the clustering coe�cient distribution
• the PageRank distribution
• the centrality of a vertex
• the size of the largest component
• the k vertices with the largest increase in degree.

Further details of these queries are available at:
http://www.cs.albany.edu/~gstar/quick-start-guide.

129



Figure 5: G* Query History Viewer

3.2 Demonstration Interface
Our demonstration will proceed using the graphical user in-
terface shown in Figures 3, 4, and 5.

The Data Explorer (Figure 3) shows all of the prepared
graph snapshots in a hierarchical fashion (a). When a series
of graph snapshots is selected, the details of these snapshots
are displayed in the Graph Properties panel (b).

The Query panel (Figure 3 (c)) allows users to enter
queries and then run them on the series of graph snapshots
chosen in the Data Explorer. The Result panel (d) shows
query results.

The System Viewer (Figure 4) displays the execution of
a query on G* workers. This viewer shows the number of
data objects that each operator has processed as well as the
the resource usage of each G* worker.

The Query History Viewer (Figure 5) keeps track of the
queries that have been executed and allows users to se-
lectively compare the running time of these queries. Our
demonstrations (Section 3.3) will use this viewer to show
the e↵ectiveness of our techniques described in Section 2.

3.3 Demonstration Scenarios
We will provide the following demonstrations:

3.3.1 Impact of Snapshot Distribution

We will prepare each series of graph snapshots in both
shared-nothing (each graph is stored on one distinct worker)
and shared-everything (each graph is evenly distributed over
all workers) configurations. We will then show how the ef-
fects of these configurations on query execution time vary
depending on the type of query being run. In particular, we
will demonstrate that:

• When a single graph snapshot is queried, shared-
everything is more advantageous than shared-nothing
due to the simultaneous use of workers.

• When graph snapshots are similarly sized and all of
them are queried together, shared-nothing is prefer-
able to shared-everything since the former incurs sub-
stantially lower network overhead while both configu-
rations enable parallel query execution on all workers.

3.3.2 Benefits of Segment Swapping

Our segment swapping technique in Section 2.2 gradually
exchanges segments between G* workers to reduce the ex-
pected query time. We will verify the e↵ectiveness of this
technique by preparing an inappropriate distribution config-
uration (e.g., shared-nothing when queries on a single graph

snapshot are popular) and then show how G* workers ex-
change segments to accelerate popular queries.

3.3.3 Effectiveness of Query Pattern Identification

Our query pattern identification technique (Section 2.3)
groups queries into k patterns based on the graph segments
that these queries access. We will show the graph segments
that have been queried during the demonstration session as
well as the k query patterns obtained from our technique.

3.3.4 Advantages of Snapshot Replication

We will demonstrate how G* distributes the replicas of each
graph snapshot over G* workers (Section 2.5). We will also
show that G* can select, for each query, the most advan-
tageous replica configuration (e.g., shared-everything for a
PageRank query on a single graph snapshot and shared-
nothing for a PageRank query on all graph snapshots).

4. REFERENCES
[1] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal.

PageRank on an Evolving Graph. In KDD, pages
24–32, 2012.

[2] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, pages
137–150, 2004.

[4] D. DeWitt, R. Gerber, G. Graefe, M. Heytens,
K. Kumar, and M. Muralikrishna. Gamma - A High
Performance Dataflow Database Machine. In VLDB,
pages 228–237, 1986.

[5] J.-H. Hwang, J. Birnbaum, A. Labouseur, P. W. Olsen
Jr., S. R. Spillane, J. Vijayan, and W.-S. Han. G*: A
System for E�ciently Managing Large Graphs.
Technical Report SUNYA-CS-12-04, CS Department,
University at Albany – SUNY, 2012.

[6] G. Karypis and V. Kumar. Analysis of Multilevel
Graph Partitioning. In SC, page 29, 1995.

[7] A. Labouseur, P. W. Olsen Jr., and J.-H. Hwang.
Scalable and Robust Management of Dynamic Graph
Data. In BD3@VLDB, pages 43–48, 2013.

[8] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM, 2013.

[9] K. Schloegel, G. Karypis, and V. Kumar. Graph
Partitioning for High Performance Scientific
Simulations. Technical Report TR 00-018, Computer
Science and Engineering, U. of Minnesota, 2000.

[10] Z. Shang and J. X. Yu. Catch the Wind: Graph
Workload Balancing on Cloud. In ICDE, pages
553–564, 2013.

[11] S. R. Spillane, J. Birnbaum, D. Bokser, D. Kemp,
A. Labouseur, P. W. Olsen Jr., J. Vijayan, and J.-H.
Hwang. A Demonstration of the G* Graph Database
System. In ICDE, pages 1356–1359, 2013.

[12] Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data/.

[13] Twitter Streaming API. https:
//dev.twitter.com/docs/streaming-api/methods.

[14] Yahoo! Network Flows Data. http://webscope.
sandbox.yahoo.com/catalog.php?datatype=g.

130




