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ABSTRACT 
Projects such as Libra and Cimple have built systems to capture 
knowledge in a research community and to respond to semantic 
queries. However, they lack the support for a knowledge base that 
can evolve over time while responding to queries requiring 
reasoning. We consider a semantic web that covers linked data 
about science research that are being harvested from the Web and 
are supplemented and edited by community members. We use 
ontologies to incorporate semantics to detect conflicts and resolve 
inconsistencies, and to infer new relations or proof statements 
with a reasoning engine. We consider a semantic web subject to 
changes in the knowledge base, the underlying ontology or the 
rule set that governs the reasoning. In this paper we explore the 
idea of trust where each change to the knowledge base is analyzed 
as to what subset of the knowledge base can still be trusted. We 
present algorithms that adapt the reasoner such that, when proving 
a goal, it does a simple retrieval when it encounters trusted items 
and backward chaining over untrusted items. We provide an 
evaluation of our proposed modifications that show that our 
algorithm is conservative and that it provides significant gains in 
performance for certain queries. 

Categories and Subject Descriptors 
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – 
Answer/reason extraction, Inference engines, Logic 
programming. 

Keywords 
Semantic web, ontology, backward chaining, trust 

1. INTRODUCTION 
Many knowledge bases organize information using ontologies. 
Ontologies can be used together with a reasoning engine to infer 
new relations. Consider a potential Ph.D. student who is trying to 
find out what are the schools and who are the professors doing 
groundbreaking research in his thesis area. Consider a faculty 
member who might ask, “Is my record good enough to be tenured 
at other schools?” The system implied by these queries is an 

example of a semantic web where the underlying knowledge base 
covers linked data about science research. This data would be 
continually harvested from the Web and supplemented and edited 
by community members.  

The query examples given above also imply that the system not 
only supports querying of facts but also rules and reasoning as a 
mechanism for answering queries. Furthermore, many of the rules 
underlying such reasoning would be particular to an individual or 
small group making the query. A relationship such as 
“doesGroundbreakingResearchIn(person,field)” is necessarily an 
expression of a subjective and individual perspective. We 
envision, therefore, a system in which groups may add, employ, 
and sometimes share custom rules that describe properties of 
interest when posting new queries. 

We consider a semantic web subject to frequent changes in the 
underlying knowledge base (for instance, the addition of new 
researchers and or new papers). We also consider less frequent 
changes in the underlying ontology (for instance, addition of a 
new data type ‘ResearchLab’) or in the rule set that governs the 
reasoning (for instance, some members of the community want a 
relation for researchers such as ‘TopResearcher’ in a field).  

Queries may be composed of mixtures of clauses answerable 
directly by access to the knowledge base or indirectly via 
reasoning applied to that base. Backward chaining reasoners work 
well with changes to the knowledge base but do not scale well 
beyond in-memory systems although the size of problems that can 
be handled can be improved via optimization techniques [15-17].  

In this paper we explore the idea of ‘trust’ where each change to 
the knowledge base is analyzed as to what subset of the 
knowledge base can still be trusted, assuming that it was fully 
materialized before the change. We present algorithms that adapt 
a reasoner so that, when proving a goal, it does a simple retrieval 
when it encounters trusted items and backward chaining over 
untrusted items. 

2. BACKGROUND AND RELATED WORK 
A number of projects (e.g., Libra [1] and Cimple [2]) have built 
systems to capture limited aspects of community knowledge and 
to respond to semantic queries. However, they lack the level of 
community collaboration support that is required to build a 
knowledge base system that can evolve over time, both in terms 
of the knowledge it represents as well as the semantics involved 
in responding to qualitative questions involving reasoning.  
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Many knowledge bases [3-4] organize information using 
ontologies. An ontology represents knowledge as a set of 
concepts within a domain and by relationships between pairs of 
concepts. The ontology is used to model a domain, to instantiate 
entities, and to support reasoning about entities. Common 
methods for implementing rule based reasoning over ontologies 
are forward chaining and backward chaining [5].  

Forward chaining (materialization) is a form of data-driven 
reasoning, which starts with the known data in the knowledge 
base and applies modus ponens in the forward direction, deriving 
and adding new consequences until no more inferences can be 
made. Forward-chaining can answer queries efficiently by 
looking up result set directly without any additional reasoning, 
but at the cost of an expensive pre-computation.  

Backward chaining is a form of goal-driven reasoning, which 
starts with goals from the consequents, matching the goals to the 
antecedents to find data satisfying the consequents. Backward-
chaining does not require expensive pre-computation, but 
increases the cost of reasoning when answering each query.  

As a general rule, forward chaining is a good method for a static 
knowledge base and backward chaining is good for the more 
dynamic cases. 

Owlim [6] and Oracle 11g [7] inferred facts using forward-
chaining technique. 4store [8] applied the RDFS rules using 
backward-chaining. Virtuoso [9] implemented a mixture of 
forward-chaining and backward-chaining. Jena [10] supported 
three ways of inferencing: forward-chaining, limited backward-
chaining and a hybrid of these two methods. 

Hybrid reasoning [10-12], combining forward-chaining and 
backward-chaining, has been adopted to find a tradeoff between 
pre-computation before querying and reasoning when answering 
each query, in different ways. Urbani et al. [11] performed partial 
materialization of a fixed set of selected queries before running 
their backward-chaining algorithm. Jena [10] also implemented a 
hybrid rule reasoner. Song [12] assembled two kinds of reasoning 
technology: tableau and resolution together to improve reasoning 
performance. 

To our best knowledge, our research is the first that analyzes what 
part of derived facts can still be directly retrieved (trusted) after 
changes have been made to a knowledge base. By retaining the 
unaffected facts obtained from materialization and using 
backward chaining for facts affected by the change we obtain a 
hybrid reasoning engine that can cope with change in a 
knowledge base. 

3. A HYBRID REASONING ALGORITHM 
Let us assume that the knowledge base contains all known and 
derived facts such that any query can be directly answered by 
retrieving the corresponding truths. In such an environment we 
now introduce a change and analyze the impact of that change.  

We consider three categories of changes: changes to the ontology, 
changes to custom rules and changes to instances. 

 Changes to the ontology may entail adding, removing or 
modifying concepts or properties in the ontology. Such 
changes would likely be rare in a mature knowledge base. 

 Changes to custom rules, such as the afore-mentioned rule to 
define “groundbreaking researcher,” are likely to be more 
common, as groups posing queries might iteratively tweak 

and debug their formulations to produce more satisfactory 
results.  

 Changes to instances include adding, removing or modifying 
instances (facts) in the storage, such as updating a 
publication list of a professor. Such changes are likely to be 
very common if the knowledge base is populated by actively 
harvesting information from the web. 

In a knowledge base that relies on materialization via forward-
chaining, all derivable conclusions from known facts and rules are 
assumed to have been written into the knowledge base. This leads 
to fast responses to queries because all queries can be answered 
by direct search and retrieval. No reasoning is required at the time 
of the query. 

The same queries could presumably be answered in a non-
materialized knowledge base containing only harvested facts and 
rules via backward chaining from the properties mentioned in the 
query. This would typically be considerably slower than a direct 
lookup in a materialized knowledge base. 

The drawback to relying on materialization is a loss of agility in 
responding to changes. Materialization of a large knowledge base 
is potentially time-consuming. It may require deferring queries for 
many hours or, alternatively, issuing results that are incomplete or 
incorrect.  

Consider the following example. A student, student0 has enrolled 
in a course, Course0. This piece of information has been 
discovered by a harvester and added to the knowledge base. Now 
if someone were to pose a query “Who is enrolled in Course0?”, 
this query could be answered immediately by direct lookup in the 
knowledge base. No reasoning would be required. However let us 
also posit that the knowledge base already contains the fact that 
Prof0 teaches Course0. If a query were immediately posed “Who 
is being taught by Prof0?”, such a query could not be answered 
without reasoning about the implications of a rule 

enrolledIn(?Student,?Course?), teaches(?Faculty,?Course) 
         :- isTaughtBy(?Student,?faculty) 
But a search for materialized isTaughtBy instances in the 
knowledge base will fail to turn up the relationship between 
Professor0 and the newly enrolled Student0, until the knowledge 
base is re-materialized to incorporate this and all other recent 
changes. 

A hybrid reasoning algorithm can use backward chaining over 
“untrusted” portions of a knowledge base while using direct 
lookup to recover previously materialized conclusions from the 
“trusted” portion. Such an algorithm is shown here:  

substitutions prove (Goal g) 
{ 
   if (g is trusted) 
       retrieve substitutions M from knowledge base by 
          direct lookup of g; 
       return M; 
   else { 
         substitutions M = empty; 
         for each rule R and substitution σ1  such that 
            the head of R σ1 matches g { 
               M1  = proveTheRuleBody (R.body, σ1); 
               if (M1 is not empty) // proof of rule succeeded 
                   { 
                     substitutions M2 = all substitutions in M1 
                         for variables in the head of R; 
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                     M += M2; 
               } 
           } 

       } 
    return M; 
} 
 
In the above algorithm, R denotes a rule, consisting of a rule body 
(premises) and a rule head (conclusion), the rule head is true only 
when the rule body is true. 

Our prove function returns all substitutions for the variables in the 
goal for which that goal is provable. It does this by consulting 
each rule matching the goal and attempting to find substitutions 
satisfying the body of that rule. A key step is the test to see if the 
proof goal is “trusted.” The results of this test determine whether 
we simply look up previously materialized instances or engage in 
a backward-chaining proof. 

bool, substitutions proveTheRuleBody (body, substitution) 
{ 
    
  substitutions M  = empty; 
   for each goal g in body from substitution { 
       M1 = prove(g); 
       if (M is empty) 
          return false,empty; 
       M = joinSubstitutions(M,M1); 
   } 
   return true, M; 
} 

 

When we need to prove a clause in the rule body, we attempt to 
prove each goal in the rule body one by one, which is a recursive 
process. In our actual implementation [17], we employed OLDT 
[14] and memorization to avoid deep recursion. The bindings 
from earlier goals would be substituted into the current goal for 
subsequent proof. After we prove the current goal, we join the 
new substitutions from that proof with the prior substitutions. In 
joinSubstitutions, we iterate over two sets of substitutions and 
compose every pair of substitutions in the cross product with 
common values. 

The advantage of such a hybrid algorithm is that it allows the 
knowledge base maintainers to defer expensive re-
materializations for long periods of time (long, at least, compared 
to the frequency of changes) while still permitting accurate and 
timely responses to incoming queries. 

4. CONSERVATIVE TRUST ASSESSMENT 
The preceding hybrid algorithm depends upon the idea of 
knowing when the currently materialized instances corresponding 
to a proof goal can be trusted to be correct and complete.  

We will say that a proof goal p(?X,?Y) is trustworthy if all 
instances of that goal derivable from facts and rules in the 
knowledge base are present in that knowledge base as instances.  

In practice, we are unlikely to be able to identify precisely all 
goals that are trustworthy except by materializing the knowledge 
base, which, by definition, forces all goals to be trustworthy. We 
therefore seek less expensive options to approximate the set of 
trustworthy goals, a less expensive option for dividing the set of 
possible proof goals into trusted and untrusted sets.  

A partition into trusted and untrusted sets is called conservative if 
no untrustworthy goals are trusted. If we are conservative in such 

an approximation to the collection of trustworthy goals, then our 
hybrid reasoner can be relied upon to give accurate responses.  

An apparently plausible approach to a conservative trust rule 
would be property-based trust: assume that any property P that 
was involved in a change (e.g., if a new instance P(x0,y0) was 
added to the knowledge base) is itself untrusted and then to take 
the closure of the “is used as a premise of” relation, that is, if an 
untrusted property Q occurs in the body of a rule used to prove R 

    …, Q(x,y), … :- R(w,z)  
then R is also untrusted. 

For example, suppose that a student, student0 has enrolled in a 
course, Course0, taught by Prof0. The addition of a new fact 
enrolledIn(Student0,Course0) to the knowledge base would cause 
the property enrolledIn to be untrusted. In addition, given the rule 
presented earlier deriving isTaughtBy(?Student,?Faculty) from (in 
part) enrolledIn instances, the property isTaughtBy would also 
untrusted. 

The attraction of this definition of “untrusted” is that it requires 
analysis of only the rules in the knowledge base without 
consulting with the far more numerous instances. A knowledge 
base of many millions of triples might be expressed in terms of a 
few hundreds of properties and a comparable number of rules, 
making this definition of trust far easier to compute than the true 
trustworthy set. 

Unfortunately, this simple procedure breaks down in the face of 
“meta-rules” in the knowledge base, rules that permit reasoning 
about properties themselves. For example, suppose that student, 
Student0, just got his degree from University0. The instance 
“degreeFrom(student0,  University0)” is added to the knowledge 
base. We will posit that there are rules such that the property 
degreeFrom is an inverse property of hasAlumnus. The inverse 
rule implies that 

?P(?X, ?Y), inverse(?P,?Q) :- ?Q(?Y,?X) 
Immediately after adding the new fact to the knowledge base, 
queries such as “what alumni/alumnae does university0 have?” 
would not respond with Student0. The hasAlumnus property is not 
trustworthy, but it would actually be left as trusted by our initial 
trust approximation. A more sophisticated definition of trust is 
required. 

One possibility would be to expand the set of untrusted properties 
via special handling of the meta-rules common to RDF and OWL. 
As we will show, however, in our experimental results below, 
prototypes of such an expanded definition of property-based trust 
demonstrated that many simple changes to a knowledge base 
could then result in significant fractions of the knowledge base 
being marked as untrusted. We concluded that properties do not 
offer a detailed enough discrimination to serve as a practical basis 
for trust. 

We propose instead a concept of pattern-based trust: a pattern 
P(X,Y) (where X and Y could be ground instances or free 
variables) is untrusted if it matches a change to the knowledge 
base or if it can be derived from a rule with an untrusted pattern 
as a premise. 

For example, suppose again that a student, student0 has enrolled 
in a course, Course0, taught by Prof0. The addition of a new fact 
enrolledIn(Student0,Course0) to the knowledge base would cause 
the pattern enrolledIn(Student0,Course0) to be untrusted. In 
addition, given the rule presented earlier deriving 
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isTaughtBy(?Student,?Faculty), the pattern 
isTaughtBy(Student0,Prof0) would also be untrusted. 

In our hybrid prove algorithm, presented in the prior section, the 
test to see if a goal g is trusted is now interpreted as “if g cannot 
be unified with any untrusted pattern”.  Hence queries and proof 
goals involving patterns such as isTaughtBy(?S,Prof0) and 
isTaughtBy(?S,?P) would also be treated as untrusted. 

Of importance is the fact that patterns (and therefore potential 
queries and proofs) involving other students and other faculty 
(e.g., “who is taught by Prof1?”) remain trusted and so could be 
answered by direct lookup with no reasoning. 

The pattern-based trust marking algorithm below will work with 
these meta-rules as well as customized rules. We accumulate a set 
of already untrusted patterns by running the 
collectUntrustedDueTo algorithm iteratively on each new change. 

setOfPatterns collectUntrustedDueTo 
     (oneChange, existingUntrustedSet) 
{ 
   untrustedSet = {oneChange};  
   for each rule R (p1^p2...^pi...^pn => q) and  
      each pi matching oneChange 
     { 
        retrieve substitutions M from knowledge base by 
           direct lookup of pi; 
        untrustSet+= propagateUntrustForward 
           ([p0..pi-1,pi+1...pn],q, M}, existingUntrustedSet) 
     } 
   existingUntrustedSet += untrustSet; 
   discard from existingUntrustedSet  any patterns  
      that are specializations of other elements.    
   return existingUntrustedSet;  
} 
 

The collectUntrustedDueTo function collects untrusted patterns for 
one single change to the knowledge base, assuming we have 
already had an existing untrusted pattern set. The first time this 
algorithm runs after materialization that set will be empty. The 
one single change would be added to the untrusted set first. Then 
we check each rule in the rule set to see if we can propagate the 
“untrust” forward by a limited, specialized analogue of forward 
chaining. At last, we add our untrusted set produced from the 
above one change to the existing untrusted set, discarding any 
patterns that are specializations of other elements. 

setOfPatterns propagateUntrustForward (premises, conclusion, 
substitutionSet, existingUntrustedSet)  
{ 
   untrustedSet = {}; 
   for each premise p  in premises 
      { 
       patternSet = {}; 
       goalList = get unified goals by replacing variables 
          in p from substitutionSet; 
       for each goal g in goalList 
         { 
           retrieve instances r from knowledge base  
              by direct lookup of g; 
           retrieve results r1 from realized patterns in 
               existingUntrustedSet  by direct lookup of g; 
           r += r1; 
           if (r is empty) 
              return empty; 
           if (the size of r <threshold) 
               untrustedpatternSet + = r; 
            else if (the size of  r >=threshold) 
               untrustedpatternSet + = g; 

         } 
        substitutions M = unify p with untrustedpatternSet; 
        substitutionSet =   
            joinSubstitutions(substitutionSet,M);    
      } 
  untrustedSet = substitute variables in conclusion  
     with substitutionSet; 
  return untrustedSet; 

} 
 
The propagateUntrustForward function goes through each premise 
of the rule to compose and propagate the untrusted substitutions. 
The untrusted substitutions from the earlier solutions are 
substituted into the upcoming premise to yield multiple instances 
of that clause as goals for subsequent proof. When we prove a 
premise, we need to prove each unified goal produced from 
untrusted substitutions by replacing variables in the premise. 
Upon proving a unified goal, we retrieve matched instances from 
the knowledge base and existingUntrustedSet by a direct lookup of 
the unified goal. 

We use a threshold to determine whether the actual matched 
results or the unified goal itself should be added to the untrusted 
substitutions. If the number of matched instances is comparatively 
large, we use a pattern that can represent the whole set of matched 
instances in the untrusted substitutions instead of the large set of 
matched instances itself. Including all the untrusted instances in 
the untrusted set would make it inefficient when we determine if a 
goal is trusted or not in this marking algorithm, Finally, the rule’s 
conclusion (head), with appropriate substitution, is added to the 
untrusted set.  

For example, consider a scenario based on LUBM [13]. A 
university, University0 has hired professor, Fullprofessor0. This 
piece of information worksFor(Fullprofessor0, University0) has 
been discovered by a harvester and added to the knowledge base. 
Given the OWL Horst rule set, according to our pattern-based 
marking algorithm, the untrusted patterns are: 

worksFor (Fullprofessor0,  University0) 
member (University0, Fullprofessor0) 
memberOf (Fullprofessor0, University0) 

Now if someone were to pose a query “Who are members of 
University0?”, given that pattern memberOf(Fullprofessor0, 
University0)” is untrusted, we need to reason using backward 
chaining.  

On the other hand, if someone were to pose a query “Who are 
members of University1”, given that the pattern memberOf(?x, 
University1) is trusted, all the members of University1 can still be 
retrieved by a direct look up in the knowledge base. 

5. EXPERIMENTS 
In this Section, we further explore the impact of trust rules on 
reasoning by conducting and presenting reports involving two sets 
of benchmarking  experiments. We also describe preliminary 
experiments that explore how the percentage of trusted facts in 
the knowledge base affects the performance of the hybrid 
algorithm.  

First, we compare the number of objects in the knowledge base 
marked as untrusted by our property-based algorithm to what 
should be really untrusted. This provides an indication of how 
many unnecessary reasoning steps the hybrid algorithm would 
have to go through.  
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Table 2. Query response time (ms) after adding student 

 Hybrid Backward Forward (load 
+query)

LUBM1 93 490 960+3.4 

LUBM10 546 1,060 7,800+150 

LUBM40 2,548 9,100 350,000+5,100

 

Table 1. Results for property-based marking algorithm 

Changes Actual  
# new 

properties 

Actual 
# new 
facts 

# 
untrusted 
properties 

Adding a new 
class 

2 3 12 

Add a subclass 
relationship 
between two new 
classes 

2 6 12 

Add new Class as 
subClass of 
existing class 

2 5 12 

Adding a new 
Property 

2 2 12 

Add a new 
Property as 
subPropertyOf of 
another new 
Property 

2 4 12 

Add new Property 
as subPropertyOf 
of existing 
Property 

2 3 12 

Add new Class as 
domain to a new 
Property 

3 5 13 

Add new Class as 
range to a new 
Property 

3 5 13 

Table 3. Query response time (ms) after adding 

undergraduate student 

 Hybrid Backward 
Forward (load 

+query)

LUBM1 452 180 960+240 

LUBM10 1,575 1,170 7,800+1,200 

LUBM40 3,525 43,000 350,000+5,300 

Table 1 shows that property-based marking greatly exaggerates 
the number of untrusted properties. It compares the number of 
properties that should be untrusted after a change vs. the numbers 
the property-based algorithm produces. Even in a knowledge base 
with many millions of triples, the number of distinct properties is 
likely to be counted in the tens to (very) low hundreds, so the 
increase shown there in the number of properties marked as 
untrusted would likely have a significant effect on query 
processing. This is made worse by the fact that the experiments 
showed that many properties marked as untrusted were 
ontological meta-rules such as all subclass relations. As an 
example, under LUBM(1) the properties marked as untrusted 
match an average of  97,300 triples out of 149,894, which is about 
65% of the knowledge base. These results led us to set aside 
property-based trust marking in favor of the finer discrimination 
afforded by pattern-based marking. 

In contrast the average number of patterns added by the pattern-
based marking algorithm for the same changes as in Table 1 
produces the same number of properties as the ‘actual’ columns 
show. 

The second set of experiments provides a comparison of 
performance of our hybrid pattern-based proof algorithm against 
our regular, optimized backward chaining algorithm [17] and 
against the OWLIM forward chaining algorithm using benchmark 
knowledge bases LUBM1, LUBM10, and LUBM40, of size 
100,839, 1,272,871, and 5,307,754 objects respectively. 

Table 2 shows the comparison of response times for LUBM query 
2 [13] for these three algorithms after adding an existing student 
as a member of an existing department to the knowledge base. 

Table 3 shows the comparison of response times for LUBM query 
6 [13] for these three algorithms after adding a new undergraduate 
student.  

Both tables show that the hybrid algorithm, though slower on a 
query-by-query basis than forward chaining, is faster than 
backward chaining and at least an order of magnitude faster than 
re-materializing the knowledge base (which is the time that would 
be required to re-materialize a knowledge base after a change).We 
have performed preliminary experiments on determining the 
factors that affect the performance of the hybrid algorithm. We 
investigated the ratio of trusted to untrusted facts in the 
knowledge base after a set of changes and compared the 
performance of the three algorithms (backward chaining, forward 
chaining, hybrid) for different sizes of the knowledge base and 
selected queries. The following sample scenarios illustrate the 
results of the preliminary experiments.  

 Scenario 1  
Changes:  
MiddleWork rdf:type rdfs:Class 
MiddleWork rdfs:subclassOf   Work 
Course  rdfs:subclassOf   MiddleWork 
Query: ?x rdf:type Work 
 
Scenario 2 
Changes:  
SupermemberOf rdf:type rdf:Property 
memberOf rdfs:subPropertyOf SupermemberOf 
Query: ?x SupermemberOf ?y 
 
Scenario 3 
Changes: 
MiddledegreeFrom rdf:type rdf:Property 
MiddledegreeFrom rdfs: subPropertyOf  degreeFrom 
undergraduateDegreeFromrdfs: subPropertyOf   
MiddledegreeFrom  
Query: ?x degreeFrom ?y 

The percentage of untrusted facts in the knowledge base after 
executing the pattern-based marking algorithm ranges from close 
to 0 to a high of 10% in all experiments. The percentage of 
untrusted patterns ranges from close to zero to 5%. For scenarios 
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1 and 2, the hybrid algorithm outperforms the backward chaining 
algorithm in terms of query response time significantly. For 
LUBM(50), the query response times in scenario 1 are 1,887ms 
and 3,229ms respectively. The query response times in scenario 2 
are 9,937ms and 11,216ms, respectively. In scenario 3 the 
backward chaining algorithm outperforms the hybrid algorithm in 
terms of query response time (7,238ms and 5,054ms respectively). 
The reason for this is that, in scenario 3, the percentage of 
untrusted triples in the whole knowledge base is about 10% and 
the queries require resolving patterns mostly located in the 
untrusted list. For the queries selected, the hybrid algorithm 
outperforms the regular backward chaining algorithm by 30 
percent on the average for the selected set of experiments. 

The experiments reported here suggest that a hybrid reasoner 
based on trust can be effective on some moderately sized 
knowledge bases. In considering the likely scalability of this 
approach, we may consider scaling to both larger knowledge 
bases and to bases subject to more increasingly frequently change. 

Because the pattern-based trust markup is similar in structure to 
forward chaining, as the size of the knowledge base increases, the 
time to assess trust should grow at a rate no higher than, and 
possibly lower than, the increase in time to re-instantiate.  An 
important contributory factor will be the overall degree of inter-
connection within the knowledge base semantics. A loosely 
connected network will lead to faster termination of the trust 
marking algorithm. The experiments reported here may actually 
understate the potential savings, as we expect that LUBM is more 
tightly inter-connected than many practical knowledge bases.  

6. CONCLUSION 
To improve the performance of reasoning over a large knowledge 
base that is frequently changed, we have introduced the concept 
of trust. After a change has been made to a previously 
materialized knowledge base, we mark all patterns in the 
knowledge base we believe are related to the change.  

We then have modified a backward chaining algorithm to reason 
only when it encounters untrusted patterns in proving a goal. 
Otherwise the algorithm will simply do a retrieve operation. We 
have implemented these modifications and in two sets of 
experiments have shown that a pattern-based marking algorithm 
errs on the conservative side at an acceptable level and that the 
performance comparison to a forward chaining algorithm and a 
pure backward chaining algorithm clearly shows that our hybrid 
algorithm is better in almost all cases tested. In a benchmark test 
[13] with 5 million objects, the running time was reduced by as 
much as a factor of 2 when compared to straight backward 
chaining and was better than forward chaining when including 
materialization time.  

We have not yet explored the impact of long sequences of 
individual changes on the marking algorithm time nor 
subsequently on the hybrid reasoner. The marking algorithm 
includes a concept of generalization of related untrusted patterns, 
which may prove critical when scaling to more frequent changes. 
The degree of inter-connection may prove to be a relevant factor 
here as well. In future work, we plan to explore the performance 
of the trust marking algorithm and of the hybrid reasoner as a 
function of the fraction of the knowledge base that is untrusted, a 
measure that would combine both the number of changes and the 
extent of their impact throughout the semantic graph. 
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