

Trust and Hybrid Reasoning for Ontological Knowledge
Bases

Hui Shi
Department of Computer Science

Old Dominion University
Norfolk, VA. 23529

001-(757) 683-6001
hshi@cs.odu.edu

Kurt Maly
Department of Computer Science

Old Dominion University
Norfolk, VA. 23529
001-(757) 683-6001

maly@cs.odu.edu

Steven Zeil
Department of Computer Science

Old Dominion University
Norfolk, VA. 23529
001-(757) 683-6001
zeil@cs.odu.edu

ABSTRACT
Projects such as Libra and Cimple have built systems to capture
knowledge in a research community and to respond to semantic
queries. However, they lack the support for a knowledge base that
can evolve over time while responding to queries requiring
reasoning. We consider a semantic web that covers linked data
about science research that are being harvested from the Web and
are supplemented and edited by community members. We use
ontologies to incorporate semantics to detect conflicts and resolve
inconsistencies, and to infer new relations or proof statements
with a reasoning engine. We consider a semantic web subject to
changes in the knowledge base, the underlying ontology or the
rule set that governs the reasoning. In this paper we explore the
idea of trust where each change to the knowledge base is analyzed
as to what subset of the knowledge base can still be trusted. We
present algorithms that adapt the reasoner such that, when proving
a goal, it does a simple retrieval when it encounters trusted items
and backward chaining over untrusted items. We provide an
evaluation of our proposed modifications that show that our
algorithm is conservative and that it provides significant gains in
performance for certain queries.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving –
Answer/reason extraction, Inference engines, Logic
programming.

Keywords
Semantic web, ontology, backward chaining, trust

1. INTRODUCTION
Many knowledge bases organize information using ontologies.
Ontologies can be used together with a reasoning engine to infer
new relations. Consider a potential Ph.D. student who is trying to
find out what are the schools and who are the professors doing
groundbreaking research in his thesis area. Consider a faculty
member who might ask, “Is my record good enough to be tenured
at other schools?” The system implied by these queries is an

example of a semantic web where the underlying knowledge base
covers linked data about science research. This data would be
continually harvested from the Web and supplemented and edited
by community members.

The query examples given above also imply that the system not
only supports querying of facts but also rules and reasoning as a
mechanism for answering queries. Furthermore, many of the rules
underlying such reasoning would be particular to an individual or
small group making the query. A relationship such as
“doesGroundbreakingResearchIn(person,field)” is necessarily an
expression of a subjective and individual perspective. We
envision, therefore, a system in which groups may add, employ,
and sometimes share custom rules that describe properties of
interest when posting new queries.

We consider a semantic web subject to frequent changes in the
underlying knowledge base (for instance, the addition of new
researchers and or new papers). We also consider less frequent
changes in the underlying ontology (for instance, addition of a
new data type ‘ResearchLab’) or in the rule set that governs the
reasoning (for instance, some members of the community want a
relation for researchers such as ‘TopResearcher’ in a field).

Queries may be composed of mixtures of clauses answerable
directly by access to the knowledge base or indirectly via
reasoning applied to that base. Backward chaining reasoners work
well with changes to the knowledge base but do not scale well
beyond in-memory systems although the size of problems that can
be handled can be improved via optimization techniques [15-17].

In this paper we explore the idea of ‘trust’ where each change to
the knowledge base is analyzed as to what subset of the
knowledge base can still be trusted, assuming that it was fully
materialized before the change. We present algorithms that adapt
a reasoner so that, when proving a goal, it does a simple retrieval
when it encounters trusted items and backward chaining over
untrusted items.

2. BACKGROUND AND RELATED WORK
A number of projects (e.g., Libra [1] and Cimple [2]) have built
systems to capture limited aspects of community knowledge and
to respond to semantic queries. However, they lack the level of
community collaboration support that is required to build a
knowledge base system that can evolve over time, both in terms
of the knowledge it represents as well as the semantics involved
in responding to qualitative questions involving reasoning.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579033

1189

Many knowledge bases [3-4] organize information using
ontologies. An ontology represents knowledge as a set of
concepts within a domain and by relationships between pairs of
concepts. The ontology is used to model a domain, to instantiate
entities, and to support reasoning about entities. Common
methods for implementing rule based reasoning over ontologies
are forward chaining and backward chaining [5].

Forward chaining (materialization) is a form of data-driven
reasoning, which starts with the known data in the knowledge
base and applies modus ponens in the forward direction, deriving
and adding new consequences until no more inferences can be
made. Forward-chaining can answer queries efficiently by
looking up result set directly without any additional reasoning,
but at the cost of an expensive pre-computation.

Backward chaining is a form of goal-driven reasoning, which
starts with goals from the consequents, matching the goals to the
antecedents to find data satisfying the consequents. Backward-
chaining does not require expensive pre-computation, but
increases the cost of reasoning when answering each query.

As a general rule, forward chaining is a good method for a static
knowledge base and backward chaining is good for the more
dynamic cases.

Owlim [6] and Oracle 11g [7] inferred facts using forward-
chaining technique. 4store [8] applied the RDFS rules using
backward-chaining. Virtuoso [9] implemented a mixture of
forward-chaining and backward-chaining. Jena [10] supported
three ways of inferencing: forward-chaining, limited backward-
chaining and a hybrid of these two methods.

Hybrid reasoning [10-12], combining forward-chaining and
backward-chaining, has been adopted to find a tradeoff between
pre-computation before querying and reasoning when answering
each query, in different ways. Urbani et al. [11] performed partial
materialization of a fixed set of selected queries before running
their backward-chaining algorithm. Jena [10] also implemented a
hybrid rule reasoner. Song [12] assembled two kinds of reasoning
technology: tableau and resolution together to improve reasoning
performance.

To our best knowledge, our research is the first that analyzes what
part of derived facts can still be directly retrieved (trusted) after
changes have been made to a knowledge base. By retaining the
unaffected facts obtained from materialization and using
backward chaining for facts affected by the change we obtain a
hybrid reasoning engine that can cope with change in a
knowledge base.

3. A HYBRID REASONING ALGORITHM
Let us assume that the knowledge base contains all known and
derived facts such that any query can be directly answered by
retrieving the corresponding truths. In such an environment we
now introduce a change and analyze the impact of that change.

We consider three categories of changes: changes to the ontology,
changes to custom rules and changes to instances.

 Changes to the ontology may entail adding, removing or
modifying concepts or properties in the ontology. Such
changes would likely be rare in a mature knowledge base.

 Changes to custom rules, such as the afore-mentioned rule to
define “groundbreaking researcher,” are likely to be more
common, as groups posing queries might iteratively tweak

and debug their formulations to produce more satisfactory
results.

 Changes to instances include adding, removing or modifying
instances (facts) in the storage, such as updating a
publication list of a professor. Such changes are likely to be
very common if the knowledge base is populated by actively
harvesting information from the web.

In a knowledge base that relies on materialization via forward-
chaining, all derivable conclusions from known facts and rules are
assumed to have been written into the knowledge base. This leads
to fast responses to queries because all queries can be answered
by direct search and retrieval. No reasoning is required at the time
of the query.

The same queries could presumably be answered in a non-
materialized knowledge base containing only harvested facts and
rules via backward chaining from the properties mentioned in the
query. This would typically be considerably slower than a direct
lookup in a materialized knowledge base.

The drawback to relying on materialization is a loss of agility in
responding to changes. Materialization of a large knowledge base
is potentially time-consuming. It may require deferring queries for
many hours or, alternatively, issuing results that are incomplete or
incorrect.

Consider the following example. A student, student0 has enrolled
in a course, Course0. This piece of information has been
discovered by a harvester and added to the knowledge base. Now
if someone were to pose a query “Who is enrolled in Course0?”,
this query could be answered immediately by direct lookup in the
knowledge base. No reasoning would be required. However let us
also posit that the knowledge base already contains the fact that
Prof0 teaches Course0. If a query were immediately posed “Who
is being taught by Prof0?”, such a query could not be answered
without reasoning about the implications of a rule

enrolledIn(?Student,?Course?), teaches(?Faculty,?Course)
 :- isTaughtBy(?Student,?faculty)
But a search for materialized isTaughtBy instances in the
knowledge base will fail to turn up the relationship between
Professor0 and the newly enrolled Student0, until the knowledge
base is re-materialized to incorporate this and all other recent
changes.

A hybrid reasoning algorithm can use backward chaining over
“untrusted” portions of a knowledge base while using direct
lookup to recover previously materialized conclusions from the
“trusted” portion. Such an algorithm is shown here:

substitutions prove (Goal g)
{
 if (g is trusted)
 retrieve substitutions M from knowledge base by
 direct lookup of g;
 return M;
 else {
 substitutions M = empty;
 for each rule R and substitution σ1 such that
 the head of R σ1 matches g {
 M1 = proveTheRuleBody (R.body, σ1);
 if (M1 is not empty) // proof of rule succeeded
 {
 substitutions M2 = all substitutions in M1
 for variables in the head of R;

1190

 M += M2;
 }
 }

 }
 return M;
}

In the above algorithm, R denotes a rule, consisting of a rule body
(premises) and a rule head (conclusion), the rule head is true only
when the rule body is true.

Our prove function returns all substitutions for the variables in the
goal for which that goal is provable. It does this by consulting
each rule matching the goal and attempting to find substitutions
satisfying the body of that rule. A key step is the test to see if the
proof goal is “trusted.” The results of this test determine whether
we simply look up previously materialized instances or engage in
a backward-chaining proof.

bool, substitutions proveTheRuleBody (body, substitution)
{

 substitutions M = empty;
 for each goal g in body from substitution {
 M1 = prove(g);
 if (M is empty)
 return false,empty;
 M = joinSubstitutions(M,M1);
 }
 return true, M;
}

When we need to prove a clause in the rule body, we attempt to
prove each goal in the rule body one by one, which is a recursive
process. In our actual implementation [17], we employed OLDT
[14] and memorization to avoid deep recursion. The bindings
from earlier goals would be substituted into the current goal for
subsequent proof. After we prove the current goal, we join the
new substitutions from that proof with the prior substitutions. In
joinSubstitutions, we iterate over two sets of substitutions and
compose every pair of substitutions in the cross product with
common values.

The advantage of such a hybrid algorithm is that it allows the
knowledge base maintainers to defer expensive re-
materializations for long periods of time (long, at least, compared
to the frequency of changes) while still permitting accurate and
timely responses to incoming queries.

4. CONSERVATIVE TRUST ASSESSMENT
The preceding hybrid algorithm depends upon the idea of
knowing when the currently materialized instances corresponding
to a proof goal can be trusted to be correct and complete.

We will say that a proof goal p(?X,?Y) is trustworthy if all
instances of that goal derivable from facts and rules in the
knowledge base are present in that knowledge base as instances.

In practice, we are unlikely to be able to identify precisely all
goals that are trustworthy except by materializing the knowledge
base, which, by definition, forces all goals to be trustworthy. We
therefore seek less expensive options to approximate the set of
trustworthy goals, a less expensive option for dividing the set of
possible proof goals into trusted and untrusted sets.

A partition into trusted and untrusted sets is called conservative if
no untrustworthy goals are trusted. If we are conservative in such

an approximation to the collection of trustworthy goals, then our
hybrid reasoner can be relied upon to give accurate responses.

An apparently plausible approach to a conservative trust rule
would be property-based trust: assume that any property P that
was involved in a change (e.g., if a new instance P(x0,y0) was
added to the knowledge base) is itself untrusted and then to take
the closure of the “is used as a premise of” relation, that is, if an
untrusted property Q occurs in the body of a rule used to prove R

 …, Q(x,y), … :- R(w,z)
then R is also untrusted.

For example, suppose that a student, student0 has enrolled in a
course, Course0, taught by Prof0. The addition of a new fact
enrolledIn(Student0,Course0) to the knowledge base would cause
the property enrolledIn to be untrusted. In addition, given the rule
presented earlier deriving isTaughtBy(?Student,?Faculty) from (in
part) enrolledIn instances, the property isTaughtBy would also
untrusted.

The attraction of this definition of “untrusted” is that it requires
analysis of only the rules in the knowledge base without
consulting with the far more numerous instances. A knowledge
base of many millions of triples might be expressed in terms of a
few hundreds of properties and a comparable number of rules,
making this definition of trust far easier to compute than the true
trustworthy set.

Unfortunately, this simple procedure breaks down in the face of
“meta-rules” in the knowledge base, rules that permit reasoning
about properties themselves. For example, suppose that student,
Student0, just got his degree from University0. The instance
“degreeFrom(student0, University0)” is added to the knowledge
base. We will posit that there are rules such that the property
degreeFrom is an inverse property of hasAlumnus. The inverse
rule implies that

?P(?X, ?Y), inverse(?P,?Q) :- ?Q(?Y,?X)
Immediately after adding the new fact to the knowledge base,
queries such as “what alumni/alumnae does university0 have?”
would not respond with Student0. The hasAlumnus property is not
trustworthy, but it would actually be left as trusted by our initial
trust approximation. A more sophisticated definition of trust is
required.

One possibility would be to expand the set of untrusted properties
via special handling of the meta-rules common to RDF and OWL.
As we will show, however, in our experimental results below,
prototypes of such an expanded definition of property-based trust
demonstrated that many simple changes to a knowledge base
could then result in significant fractions of the knowledge base
being marked as untrusted. We concluded that properties do not
offer a detailed enough discrimination to serve as a practical basis
for trust.

We propose instead a concept of pattern-based trust: a pattern
P(X,Y) (where X and Y could be ground instances or free
variables) is untrusted if it matches a change to the knowledge
base or if it can be derived from a rule with an untrusted pattern
as a premise.

For example, suppose again that a student, student0 has enrolled
in a course, Course0, taught by Prof0. The addition of a new fact
enrolledIn(Student0,Course0) to the knowledge base would cause
the pattern enrolledIn(Student0,Course0) to be untrusted. In
addition, given the rule presented earlier deriving

1191

isTaughtBy(?Student,?Faculty), the pattern
isTaughtBy(Student0,Prof0) would also be untrusted.

In our hybrid prove algorithm, presented in the prior section, the
test to see if a goal g is trusted is now interpreted as “if g cannot
be unified with any untrusted pattern”. Hence queries and proof
goals involving patterns such as isTaughtBy(?S,Prof0) and
isTaughtBy(?S,?P) would also be treated as untrusted.

Of importance is the fact that patterns (and therefore potential
queries and proofs) involving other students and other faculty
(e.g., “who is taught by Prof1?”) remain trusted and so could be
answered by direct lookup with no reasoning.

The pattern-based trust marking algorithm below will work with
these meta-rules as well as customized rules. We accumulate a set
of already untrusted patterns by running the
collectUntrustedDueTo algorithm iteratively on each new change.

setOfPatterns collectUntrustedDueTo
 (oneChange, existingUntrustedSet)
{
 untrustedSet = {oneChange};
 for each rule R (p1^p2...^pi...^pn => q) and
 each pi matching oneChange
 {
 retrieve substitutions M from knowledge base by
 direct lookup of pi;
 untrustSet+= propagateUntrustForward
 ([p0..pi-1,pi+1...pn],q, M}, existingUntrustedSet)
 }
 existingUntrustedSet += untrustSet;
 discard from existingUntrustedSet any patterns
 that are specializations of other elements.
 return existingUntrustedSet;
}

The collectUntrustedDueTo function collects untrusted patterns for
one single change to the knowledge base, assuming we have
already had an existing untrusted pattern set. The first time this
algorithm runs after materialization that set will be empty. The
one single change would be added to the untrusted set first. Then
we check each rule in the rule set to see if we can propagate the
“untrust” forward by a limited, specialized analogue of forward
chaining. At last, we add our untrusted set produced from the
above one change to the existing untrusted set, discarding any
patterns that are specializations of other elements.

setOfPatterns propagateUntrustForward (premises, conclusion,
substitutionSet, existingUntrustedSet)
{
 untrustedSet = {};
 for each premise p in premises
 {
 patternSet = {};
 goalList = get unified goals by replacing variables
 in p from substitutionSet;
 for each goal g in goalList
 {
 retrieve instances r from knowledge base
 by direct lookup of g;
 retrieve results r1 from realized patterns in
 existingUntrustedSet by direct lookup of g;
 r += r1;
 if (r is empty)
 return empty;
 if (the size of r <threshold)
 untrustedpatternSet + = r;
 else if (the size of r >=threshold)
 untrustedpatternSet + = g;

 }
 substitutions M = unify p with untrustedpatternSet;
 substitutionSet =
 joinSubstitutions(substitutionSet,M);
 }
 untrustedSet = substitute variables in conclusion
 with substitutionSet;
 return untrustedSet;

}

The propagateUntrustForward function goes through each premise
of the rule to compose and propagate the untrusted substitutions.
The untrusted substitutions from the earlier solutions are
substituted into the upcoming premise to yield multiple instances
of that clause as goals for subsequent proof. When we prove a
premise, we need to prove each unified goal produced from
untrusted substitutions by replacing variables in the premise.
Upon proving a unified goal, we retrieve matched instances from
the knowledge base and existingUntrustedSet by a direct lookup of
the unified goal.

We use a threshold to determine whether the actual matched
results or the unified goal itself should be added to the untrusted
substitutions. If the number of matched instances is comparatively
large, we use a pattern that can represent the whole set of matched
instances in the untrusted substitutions instead of the large set of
matched instances itself. Including all the untrusted instances in
the untrusted set would make it inefficient when we determine if a
goal is trusted or not in this marking algorithm, Finally, the rule’s
conclusion (head), with appropriate substitution, is added to the
untrusted set.

For example, consider a scenario based on LUBM [13]. A
university, University0 has hired professor, Fullprofessor0. This
piece of information worksFor(Fullprofessor0, University0) has
been discovered by a harvester and added to the knowledge base.
Given the OWL Horst rule set, according to our pattern-based
marking algorithm, the untrusted patterns are:

worksFor (Fullprofessor0, University0)
member (University0, Fullprofessor0)
memberOf (Fullprofessor0, University0)

Now if someone were to pose a query “Who are members of
University0?”, given that pattern memberOf(Fullprofessor0,
University0)” is untrusted, we need to reason using backward
chaining.

On the other hand, if someone were to pose a query “Who are
members of University1”, given that the pattern memberOf(?x,
University1) is trusted, all the members of University1 can still be
retrieved by a direct look up in the knowledge base.

5. EXPERIMENTS
In this Section, we further explore the impact of trust rules on
reasoning by conducting and presenting reports involving two sets
of benchmarking experiments. We also describe preliminary
experiments that explore how the percentage of trusted facts in
the knowledge base affects the performance of the hybrid
algorithm.

First, we compare the number of objects in the knowledge base
marked as untrusted by our property-based algorithm to what
should be really untrusted. This provides an indication of how
many unnecessary reasoning steps the hybrid algorithm would
have to go through.

1192

Table 2. Query response time (ms) after adding student

 Hybrid Backward Forward (load
+query)

LUBM1 93 490 960+3.4

LUBM10 546 1,060 7,800+150

LUBM40 2,548 9,100 350,000+5,100

Table 1. Results for property-based marking algorithm

Changes Actual
new

properties

Actual
new
facts

untrusted
properties

Adding a new
class

2 3 12

Add a subclass
relationship
between two new
classes

2 6 12

Add new Class as
subClass of
existing class

2 5 12

Adding a new
Property

2 2 12

Add a new
Property as
subPropertyOf of
another new
Property

2 4 12

Add new Property
as subPropertyOf
of existing
Property

2 3 12

Add new Class as
domain to a new
Property

3 5 13

Add new Class as
range to a new
Property

3 5 13

Table 3. Query response time (ms) after adding

undergraduate student

 Hybrid Backward
Forward (load

+query)

LUBM1 452 180 960+240

LUBM10 1,575 1,170 7,800+1,200

LUBM40 3,525 43,000 350,000+5,300

Table 1 shows that property-based marking greatly exaggerates
the number of untrusted properties. It compares the number of
properties that should be untrusted after a change vs. the numbers
the property-based algorithm produces. Even in a knowledge base
with many millions of triples, the number of distinct properties is
likely to be counted in the tens to (very) low hundreds, so the
increase shown there in the number of properties marked as
untrusted would likely have a significant effect on query
processing. This is made worse by the fact that the experiments
showed that many properties marked as untrusted were
ontological meta-rules such as all subclass relations. As an
example, under LUBM(1) the properties marked as untrusted
match an average of 97,300 triples out of 149,894, which is about
65% of the knowledge base. These results led us to set aside
property-based trust marking in favor of the finer discrimination
afforded by pattern-based marking.

In contrast the average number of patterns added by the pattern-
based marking algorithm for the same changes as in Table 1
produces the same number of properties as the ‘actual’ columns
show.

The second set of experiments provides a comparison of
performance of our hybrid pattern-based proof algorithm against
our regular, optimized backward chaining algorithm [17] and
against the OWLIM forward chaining algorithm using benchmark
knowledge bases LUBM1, LUBM10, and LUBM40, of size
100,839, 1,272,871, and 5,307,754 objects respectively.

Table 2 shows the comparison of response times for LUBM query
2 [13] for these three algorithms after adding an existing student
as a member of an existing department to the knowledge base.

Table 3 shows the comparison of response times for LUBM query
6 [13] for these three algorithms after adding a new undergraduate
student.

Both tables show that the hybrid algorithm, though slower on a
query-by-query basis than forward chaining, is faster than
backward chaining and at least an order of magnitude faster than
re-materializing the knowledge base (which is the time that would
be required to re-materialize a knowledge base after a change).We
have performed preliminary experiments on determining the
factors that affect the performance of the hybrid algorithm. We
investigated the ratio of trusted to untrusted facts in the
knowledge base after a set of changes and compared the
performance of the three algorithms (backward chaining, forward
chaining, hybrid) for different sizes of the knowledge base and
selected queries. The following sample scenarios illustrate the
results of the preliminary experiments.

 Scenario 1
Changes:
MiddleWork rdf:type rdfs:Class
MiddleWork rdfs:subclassOf Work
Course rdfs:subclassOf MiddleWork
Query: ?x rdf:type Work

Scenario 2
Changes:
SupermemberOf rdf:type rdf:Property
memberOf rdfs:subPropertyOf SupermemberOf
Query: ?x SupermemberOf ?y

Scenario 3
Changes:
MiddledegreeFrom rdf:type rdf:Property
MiddledegreeFrom rdfs: subPropertyOf degreeFrom
undergraduateDegreeFromrdfs: subPropertyOf
MiddledegreeFrom
Query: ?x degreeFrom ?y

The percentage of untrusted facts in the knowledge base after
executing the pattern-based marking algorithm ranges from close
to 0 to a high of 10% in all experiments. The percentage of
untrusted patterns ranges from close to zero to 5%. For scenarios

1193

1 and 2, the hybrid algorithm outperforms the backward chaining
algorithm in terms of query response time significantly. For
LUBM(50), the query response times in scenario 1 are 1,887ms
and 3,229ms respectively. The query response times in scenario 2
are 9,937ms and 11,216ms, respectively. In scenario 3 the
backward chaining algorithm outperforms the hybrid algorithm in
terms of query response time (7,238ms and 5,054ms respectively).
The reason for this is that, in scenario 3, the percentage of
untrusted triples in the whole knowledge base is about 10% and
the queries require resolving patterns mostly located in the
untrusted list. For the queries selected, the hybrid algorithm
outperforms the regular backward chaining algorithm by 30
percent on the average for the selected set of experiments.

The experiments reported here suggest that a hybrid reasoner
based on trust can be effective on some moderately sized
knowledge bases. In considering the likely scalability of this
approach, we may consider scaling to both larger knowledge
bases and to bases subject to more increasingly frequently change.

Because the pattern-based trust markup is similar in structure to
forward chaining, as the size of the knowledge base increases, the
time to assess trust should grow at a rate no higher than, and
possibly lower than, the increase in time to re-instantiate. An
important contributory factor will be the overall degree of inter-
connection within the knowledge base semantics. A loosely
connected network will lead to faster termination of the trust
marking algorithm. The experiments reported here may actually
understate the potential savings, as we expect that LUBM is more
tightly inter-connected than many practical knowledge bases.

6. CONCLUSION
To improve the performance of reasoning over a large knowledge
base that is frequently changed, we have introduced the concept
of trust. After a change has been made to a previously
materialized knowledge base, we mark all patterns in the
knowledge base we believe are related to the change.

We then have modified a backward chaining algorithm to reason
only when it encounters untrusted patterns in proving a goal.
Otherwise the algorithm will simply do a retrieve operation. We
have implemented these modifications and in two sets of
experiments have shown that a pattern-based marking algorithm
errs on the conservative side at an acceptable level and that the
performance comparison to a forward chaining algorithm and a
pure backward chaining algorithm clearly shows that our hybrid
algorithm is better in almost all cases tested. In a benchmark test
[13] with 5 million objects, the running time was reduced by as
much as a factor of 2 when compared to straight backward
chaining and was better than forward chaining when including
materialization time.

We have not yet explored the impact of long sequences of
individual changes on the marking algorithm time nor
subsequently on the hybrid reasoner. The marking algorithm
includes a concept of generalization of related untrusted patterns,
which may prove critical when scaling to more frequent changes.
The degree of inter-connection may prove to be a relevant factor
here as well. In future work, we plan to explore the performance
of the trust marking algorithm and of the hybrid reasoner as a
function of the fraction of the knowledge base that is untrusted, a
measure that would combine both the number of changes and the
extent of their impact throughout the semantic graph.

7. REFERENCES
[1] Nie, Z., Zhang, Y., Wen, J. and Ma, W. 2005. Object-level ranking:

bringing order to web objects. In Proceedings of the 14th
international World Wide Web conference (Chiba, Japan, May 10-14,
2005). WWW2005. ACM, New York, NY, 567-574. DOI=
http://doi.acm.org/10.1145/1060745.1060828.

[2] Doan, A., et al. 2006. Community information management. IEEE
Data Eng. Bull. 29, 1 (Mar. 2006), 64-72.

[3] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S. and Becker, C. 2009.
DBpedia-A crystallization point for the Web of Data. Web
Semantics: Science, Services and Agents on the World Wide Web. 7,
3 (Sep. 2009), 154-165, DOI=
http://dx.doi.org/10.1016/j.websem.2009.07.002.

[4] Suchanek, F., Kasneci, G. and Weikum, G. 2008. Yago: A large
ontology from wikipedia and wordnet. Web Semantics: Science,
Services and Agents on the World Wide Web. 6, 3 (Sep. 2008), 203-
217, DOI= http://dx.doi.org/10.1016/j.websem.2008.06.001.

[5] Russell, S. J. and Norvig, P. 1995. Artificial intelligence: a modern
approach, 1st ed. Prentice hall, Inc., Upper Saddle River, New
Jersey.

[6] Kiryakov, A., Ognyanov, D. and Manov, D. 2005. OWLIM–a
pragmatic semantic repository for OWL. In Proceedings of the 6th
international conference on Web Information Systems Engineering
(New York, USA, November 20-22, 2005). WISE'05. Springer, New
York, NY, 182-192. DOI= http://dx.doi.org/10.1007/11581116_19.

[7] Oracle Corporation. 2013. Oracle Database 11g R2 [retrieved: Feb.,
2014], Available from:
http://www.oracle.com/technetwork/database/database-
technologies/express-edition/overview/.

[8] Garlik. 2009. Scalable RDF Storage [retrieved: Feb., 2014],
Available from: http://4store.org/.

[9] Erling, O. and Mikhailov, I. 2009. RDF Support in the Virtuoso
DBMS. Networked Knowledge-Networked Media, vol.221.
Springer, New York, NY, 7-24. DOI=

http://dx.doi.org/10.1007/978-3-642-02184-8_2.

[10] The Apache Software Foundation. 2013. Apache Jena [retrieved:
Feb., 2014], Available from: http://jena.apache.org/.

[11] Urbani, J., Prio, R., Harmelen, V. F. and Bal, H. 2013. Hybrid
reasoning on OWL RL. Semantic Web Journal (Sep. 2013).

[12] Song, W., Spencer, B. and Du, W. 2011. Hybrid reasoning for
ontology classification. In Proceedings of 24th Canadian
Conference on Artificial Intelligence (St. John’s, Canada, May 25-
27, 2011). Canadian AI 2011. Springer, New York, NY, 372-376.
DOI= http://dx.doi.org/10.1007/978-3-642-21043-3_44.

[13] Guo, Y., Pan, Z., and Heflin, J. 2005. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web. 3, 2-3 (Oct. 2005), 158-182.
DOI= http://dx.doi.org/10.1016/j.websem.2005.06.005.

[14] Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In
third international conference on logic programming (London,
United Kingdom, July 14-18, 1986). ICLP1986. Springer, New
York, NY, 84-98. DOI= http://dx.doi.org/10.1007/3-540-16492-
8_66.

[15] Shi, H., Maly, K., Zeil, S. and Zubair, M. 2011. Comparison of
Ontology Reasoning Systems Using Custom Rules. In Proceedings
of the International Conference on Web Intelligence, Mining and
Semantics (Sogndal, Norway, May 25-27, 2011). WIMS'11. ACM,
New York, NY. DOI= http://doi.acm.org/10.1145/1988688.1988708.

[16] Shi, H., Maly, K. and Zeil, S. 2013. Query Optimization in
Cooperation with an Ontological Reasoning Service. In the Fifth
International Conferences on Advanced
Service Computing (Valencia, Spain, May 27-June 1, 2013). Services
Computation 2013, IARIA XPS, 26-32.

[17] Shi, H., Maly, K. and Zeil, S. 2014. Optimized Backward Chaining
Reasoning System for a Semantic Web. In the Fourth International
Conference on Web Intelligence, Mining and Semantics
(Thessaloniki, Greece, June 2-4, 2014). WIMS'14. ACM, New York,
NY. (submitted)

1194

