
Processing Scientific Mesh Queries in Graph Databases

Alireza Rezaei Mahdiraji
Jacobs-University
Bremen, Germany

a.rezaeim@jacobs-university.de

Peter Baumann
Jacobs-University
Bremen, Germany

pbaumann@jacobs-university.de

ABSTRACT

In this work-in-progress paper, we model scientific meshes
as a multi-graph in Neo4j graph database using the graph
property model. We conduct experiments to measure the
performance of the graph database solution in processing
mesh queries and compare it with GrAL mesh library and
PostgreSQL database on synthetic and real mesh datasets.
The experiments show that the databases outperform the
mesh library. However, each of the databases perform bet-
ter on specific query type, i.e, the graph database shows the
best performance on global path-intensive queries and the
relational database on local and field queries. Based on the
experiments, we propose a mediator architecture for pro-
cessing mesh queries by using the three database systems.

Categories and Subject Descriptors

H.2 [Database Management]; H.2.1 [Logical Design]:
Data models; H.2.4 [Systems]: Query processing

Keywords

CW-Complex; Data Model; Geometry; Graph Database;
Mediator; Query Processing; Scientific Mesh; Topology

1. INTRODUCTION
Scientific meshes (a.k.a unstructured meshes or just meshes)

subdivide a domain into simpler geometric elements called
cells which are glued together by incidence relationships.
Such subdivisions allow more accurate computations of com-
plex physical domains by providing approximate physical
object representations. Finite element analysis, medicine,
seismology, solid modeling, oceanography, climate model-
ing, and GIS are some of the domains which use meshes.
Meshes in these domains have millions of cells with large
scale numeric datasets which associate data values to each
cell.
Currently, no database vendor offers build-in mesh func-

tionalities and the main mesh manipulation tools are mesh

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2580061.

libraries. Mesh libraries need deep procedural programming
knowledge, do not scale with dataset size, and applications
based on them are costly to maintain.

In our previous work, we proposed Incidence multi-Graph
Complex (ImG-Complex) model which represents mesh topol-
ogy as a multi-graph [10] [11]. In this paper, we show how
the ImG model can be implemented in graph databases
such as Neo4j. Then, we describe how some of the com-
mon mesh queries can be expressed as graph queries. Then,
we compare the performance of graph-based solution for
meshes with GrAL mesh library and PostgreSQL relational
database. We report query response time, memory usage,
and disk usage of each solution by executing the sample
mesh queries on synthetic and real mesh datasets. The re-
sults show that graph databases are good for special types
of mesh queries called path-intensives, i.e., the use of global
mesh information, but they perform poorly on local mesh
queries. Finally, we propose a mediator system architecture
for mesh queries which combines the strengths of the three
systems.

This paper is organized as follows: Section 2 introduces
mathematical concepts, and Section 3 discusses related work.
In Section 4 we show how to model ImG model in Neo4j
graph database. Section 5 presents experimental results
comparing GrAL, Neo4j, and PostgreSQL performance on
mesh queries and constraints. Section 6 concludes the paper.

2. MATHEMATICAL CONCEPTS
The mathematical root of meshes is the concept of CW -

complexes from algebraic topology. Informally, CW -complexes
describe how a set of cells are topologically connected to-
gether. In the sequel, we informally and briefly introduce
some of basic related concepts. We refer the interested
reader to topology references [5].

A mesh of dimension d is the union of k-cells (0 ≤ k ≤ d)
which are glued together by the side-of relationship. 0-cells,
1-cells, 2-cells, and 3-cells are known as vertices, edges, faces,
and bodies. Triangles (2-cells), tetrahedrons (3-cells), and
other polyhedrons are typical examples of cells which are
used in practice. The set of cells of a mesh must satisfy
certain conditions e.g., the intersection of two cells is either
empty or another cell of the mesh (of lower dimension). The
boundary of each cell is formed of cells of lower dimension.

The side-of relationship determines the topological struc-
ture of a mesh. It defines a partial order on the mesh, which
in well-behaved meshes is graded, i.e., the boundary of a k-
cell is made of (k − 1)-cells. In that case it can be depicted
by a Hasse diagram (a.k.a incidence graph).

1163



X Y

Z

W

a

bc

d e

f

f1

f2f3

BackFace : f4

b

b

b

b

π

4 2 3 1

a b c d e f

X Y Z W

Figure 1: A tetrahedron and its corresponding incidence
graph.

Table 1: Examples of side-of relationships of tetrahedron in
Figure 1.

0− cell ≺ 1− cell 1− cell ≺ 2− cell 2− cell ≺ 3− cell
X ≺ a a ≺ f1 f1 ≺ π

X ≺ d a ≺ f4 f2 ≺ π

X ≺ c b ≺ f2 f3 ≺ π

Y ≺ a b ≺ f4 f4 ≺ π

Y ≺ b c ≺ f3
... ...

In Figure 1 (left), the mesh consists of a single tetrahedron
π, four faces fi, six edges (i,.e., a, b, . . . , f), and four vertices
X,Y, Z,W . The intersection of f3 and f2 is the edge f and
the vertices Z and W , and the boundary of f3 is formed by
the edges f, d, e and the vertices X,Z,W , or, equivalently,
we say that f, d, e and X,Z,W are the sides of f3, in a short
notation expressed as e ≺ f3 (read “e is a side of f3”). We
also say that f3 and its sides are incident, and we call f3 and
f2 adjacent because they share a common edge. In Figure 1
(right), the cells are ordered into layers of equal dimension
and the side-of relationship is shown only between cells of
dimensions differing by 1.
In contrast to structured meshes (represented as arrays),

unstructured meshes need to explicitly store topology be-
cause cells can have a different number of neighboring cells.
Unstructured meshes have three main components, namely,
topology or combinatoric structure (which is determined by
side-of relationship), geometry (which describes geometric
embeddings of cells and the mesh), and data values or fields
(which assign data values for all or some of cells). Many
meshes have simple linear geometry which can be specified
by listing coordinates of vertices. Table 1 and Table 2 rep-
resent part of topology of tetrahedron as side-of expressions
and an example field of Figure 1, respectively.

3. RELATED WORK
Mesh libraries such as CGAL [1] and GrAL [7] are dedi-

cated libraries which include mesh algorithms and can be run
on mesh representations. The libraries are written in C++
and often use low-level file-based I/O APIs. In comparison
to CGAL, GrAL has the more generic approach to meshes
and it can express virtually any combinatoric query using
domain specific language of iterators [6][1]. GrAL provides
many mesh primitives to reduce amount of programming in
C++. Processing mesh queries based on the libraries re-
quires deep C++ programming knowledge. Such query im-

Table 2: Example pressure field for faces of tetrahedron in
Figure 1.

Face Pressure (kPa)
f1 0.26
f2 0.36
f3 0.29
f4 0.31

plementations rely highly on input file structure and inter-
nal mesh representation, i.e., any changes in the structure
require changes in the implementation. Thus, the imple-
mentations are less reusable and costly to maintain. Fur-
thermore, mesh libraries do not have high-level query lan-
guage and do not scale with dataset size (i.e., are bounded
to memory size).

Although the relational model does not have sufficient ab-
straction form meshes, it can represent mesh domains. In
[9], the authors show how to implement a new efficient index-
ing technique for tetrahedral meshes called Directed Local
Search (DLS) in Microsoft SQL Server 2005 using C# within
a relational mesh schema specific for tetrahedral meshes [8].
It is worth mentioning that there is no official support in
SQL Server for meshes.

Incidence multi-Graph Complex (ImG-Complex) extends
the incidence graph model by supporting multi-incidence re-
lationships. Incidence Graph (IG) is a directed graph in
which each node is a cell and each edge shows a side-of
relationship. Multi-incidence relationships cannot be rep-
resented by simple incidence graph . ImG-Complex is a
multi-graph data model, i.e., allows multiple links in the in-
cidence graph. It can represent a wide range of real mesh
domains. The ImG-Complex model has sets of constraints
to limit the model to smaller object classes or geometric
representations based on the properties of the object classes
such as manifold and pseudo-manifold [11].

4. MODELING MESHES IN NEO4J GRAPH

DATABASE
A natural abstraction for the ImG-complex model is the

property graph data model used by graph databases. Graph
databases are NoSQL databases that use graph structures
to represent objects and the relationships between objects.
They represent data by nodes, links, and properties. Nodes
represent objects and links show the relationship between
nodes. A typical graph data model contains two main com-
ponents: 1) nodes with properties, and 2) named relation-
ships with properties. Some graph models also contain hy-
pergraphs [4].

In comparison to relational databases, data definition and
manipulation in graph databases can be done either using
declarative graph query languages or APIs. The latter has
unlimited expressive power for querying but has a lower level
of abstraction for users [3].

A popular open source graph database is Neo4j. It is un-
der AGPLv3 license and has been operational since 2003.
Neo4j is schema-less, i.e., it allows modeling of complex and
dense graph domains. It supports ACID properties, and
can do high performance graph operations [2]. Neo4j’s data
model is property multigraph, i.e., data is stored in nodes
and relationships of a multi-graph with pairs of key-value
properties. Neo4j’s query language is called Cypher. In
Cypher, the user specifies the starting point and the desired
outcome using graph pattern matching. Graph traversal is
done using patterns. A pattern has a starting point(s), one
or more paths; a path being a sequence of nodes and rela-
tionships that always start and end in nodes. For instance,
path (a)–>(b) is a path starting from node ”a”, with an out-
going link from it to node ”b”. We refer the reader to Neo4j
documentation for further details on Neo4j and Cypher [2].

1164



A 3D linear mesh domain can be modeled using prop-
erty multi-graph. There are four types of nodes (i.e., ver-
tex, edge, face, and body) and one type of relationship (i.e.,
side-of) which connects these nodes. Each node has its own
properties and can have n field values. Geometry is mod-
eled as simple data values, i.e., coordinates as properties of
nodes. Figure 2 shows a property graph model for 3D linear
mesh domain.

Figure 2: Property graph data model for 3D linear meshes.

In the sequel, we show how to formulate two recurrent
mesh queries in Cypher query language.
Q1. Get list of cells which a particular cell is side-

of. This query has several variations. One variation is to
retrieve the list of cells which a given vertex ”v” is side-of.
The following Cypher statements express the query:

STARTSTARTSTART r=node(0), v=node (12)
MATCHMATCHMATCH r--f--e--v
RETURNRETURNRETURN r,f,e

The query matches the pattern r–f–e–v for interval (v,r] (r is
the root). This pattern specifies all higher dimensional cells
for which vertex ”v” is side-of. The result set is all interme-
diate edges, faces, and 3-cells which ”v” is side-of. Symbol ”-
-” shows the unidirectional relationship and node(0) refers
to root of the graph.
Q2. Iterating over neighbors (adjacent) of a cell.

This query also has several variations. The following Cypher
statements extracts adjacent edges to edge ”a” which share
a common vertex:

STARTSTARTSTART a = node (20)
MATCHMATCHMATCH a-[:side -of]->v<-[:side -of]-e
RETURNRETURNRETURN e;

”side-of” is the type of relationship between nodes of the
graph. The pattern has two parts. The part a-[:side-of]->v
extracts all the vertices of edge ”a”. The parts v<-[:side-of]-e
finds all the edges which the vertices are side-of. The set ”e”
does not contain edge ”e”. Note that here we used directed
relationships, because the direction matters.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
Experimental Design. We are interested in evaluat-

ing the performance of three systems, namely, GrAL, Post-
greSQL, and Neo4j graph database on querying meshes.
The goal is to evaluate performance of mesh libraries, graph

Table 3: Number of cells and side-of relationships in each
synthetic and real dataset.

Dataset Number of Cells Number of Side-Of
D1 39602 88605
D2 159202 357205
D3 358802 805805
D4 638402 1434405
D5 998002 2243005
D6 1744506 3231605
Cow 278594 650048
Horse 290895 678748

Stanford Bunny 432143 1008322

databases, and relational databases for processing mesh queries.
We also report peak memory usage and disk usage of the sys-
tems for each dataset and compare simplicity of query for-
mulation. We selected five queries used frequently in mesh
domains (we saw two of them in Section 5) querying dif-
ferent components of meshes, i.e., topology, geometry, and
fields.

Implementation Details. We run the experiments on
a system with four cores (3.2 GHz processor) with 4GB of
RAM and XUbuntu 12.10 operating system. We use GrAL
as of 1.10.2013, Neo4j 2.0.0, and PostgreSQL 9.1. GrAL is
compiled using gcc 4.6.3 with setting -ftemplate-depth-200
which controls depth of template instantiation. We run each
query ten times, each time under cold systems condition, i.e.,
we empty all the system caches and stop all system daemons
processes. Finally, we restart the database servers before
each query execution. The response time and memory usage
are averaged over ten trials for each pair of (query,dataset).

The Neo4j database uses the property graph in Figure 2 up
to dimension 2 (i.e., faces) to model the 2D synthetic mesh
datasets. We create a least upper bound (LUB) m object
such that all faces are side-of of m. If considered as the
whole mesh object it can make graph pattern formulation
easier. Indexes on all properties are built. The relational
schema in PostgreSQL contains two tables as follows:

cell(id,name,dimension)
incidence(from,to)
coordinates(vid,x,y)
vfield(vid,pressure)

The incidence table contains vertex-to-edge, edge-to-face,
and face-to-body relationships. PostgreSQL uses B-tree in-
dexes on all the columns.

We used Cypher (for Neo4j queries), C++ language (for
GrAL queries), and SQL (for PostgreSQL queries) for im-
plementing the queries.

Datasets. We used both synthetic and real datasets, i.e.,
six synthetic datasets and three real datasets. The synthetic
datasets are generated using a synthetic generator for Carte-
sian meshes. It defines a vertex and a 2-cells ((i, j), (i+1, j),
(i+1, j+1), (i, j+1)) for each (i, j). A simple field function
is defined for each vertex: fv(vx, vy) = vx+ vy, i.e., the field
of a vertex is the sum of its x and y coordinates.

The real datasets are Stanford Bunny (courtesy of Stan-
ford University), Cow, and Horse are in tri file format.

Table 3 shows the number of cells and side-of relation-
ships in each real and synthetic dataset. The datasets are
converted to appropriate formats to be imported to GrAL,
Neo4j, and PostgreSQL. The bulk load of PostgreSQL works
much faster than import mechanism of Neo4j.

5.2 Query Evaluation
In this section, we show how five mesh queries can be im-

plemented in GrAL, Neo4j, and PostgreSQL and we report

1165



the performance of each system, readability of the query,
disk usage, and peak memory usage per query.
Q1. In Section 5, we saw this query in Cypher language.

The following listing shows the equivalent SQL query. The
SQL query joins three instances of incidence relation to
build the path between vertices to the root mesh element.
It has another join to cell to specify ”v” as the vertex.

SELECTSELECTSELECT i2.from , i3.from , i3.to
FROMFROMFROM cell c JOINJOINJOIN incidence i1

ONONON c.id = i1.from
JOINJOINJOIN incidence i2 ONONON i1.to = i2.from
JOINJOINJOIN incidence i3 ONONON i2.to = i3.from

WHEREWHEREWHERE c.name=’v0’

It can be seen that the graph query is shorter and more
intuitive than the SQL query and GrAL C++ API.
Figure 3 presents response time of query Q1 on the three

systems. The x-axis shows the list of datasets: first the
six synthetic datasets (ordered based on their sizes) and the
three real datasets (also ordered by their size). We observe
that response time of PostgreSQL is faster than GrAL and
Neo4j. The GrAL performs well on small datasets but its
response time linearly increases with dataset size and on
bigger datasets it is the slowest system in comparison to
the databases. Furthermore, response time of the databases
systems is almost constant over the dataset size. The per-
formance of PostgreSQL does not decrease on joining bigger
tables. The reason is that our current datasets are not big
enough datasets to emphasize this point. The same trend
can be observed on both synthetic and real datasets.

(a) (b)
Figure 3: a) Performance of Q1 on GrAL, Neo4j, and Post-
greSQL on synthetic datasets and on b) real datasets.

Q2. In Section 5, we saw this query in Cypher language.
The SQL query for Q2 is as follows:

SELECTSELECTSELECT c.name
FROMFROMFROM cell c
WHEREWHEREWHERE id in (

SELECTSELECTSELECT i2.to
FROMFROMFROM incidence i2, incidence i1, cell c1
WHEREWHEREWHERE i2.from = i1.from

and c1.name=’e10 ’ and c1.id=i1.to)

The query contains a sub-query which joins two instances
of incidence with cell to find all edges which share one vertex
with edge ”a”. Then, the outer query retrieves the names
of those edges from the cell. Also in this case, the graph
query is simpler and easier to understand. Figure 4 depicts
response time of Q2. PostgreSQL is the fastest system and
GrAL is the slowest.

Q3. The query is known as graded constraint which veri-
fies if every maximal chain in the mesh graph has the same
length [11]. Because the GrAL data structure is graded by

(a) (b)
Figure 4: Performance of Q2 on GrAL, Neo4j, and Post-
greSQL on synthetic datasets and on b) real datasets.

construction, we only compare Neo4j and PostgreSQL for
the Q3. The SQL query for the constraint is as follows:

SELECTSELECTSELECT count (*)
FROMFROMFROM incidence i3

LEFT JOINJOINJOIN incidence i2 ONONON i3.from=i2.to
LEFT JOINJOINJOIN incidence i1 ONONON i2.from=i1.to

WHEREWHEREWHERE i3.to = 0
ANDANDAND (i3.to ISISIS NULLNULLNULL OROROR i3.from ISISIS NULLNULLNULL
OROROR i2.from ISISIS NULLNULLNULL OROROR i1.from ISISIS NULLNULLNULL)

Three instances of incidence are left joined to capture all
paths from the root to vertices. Left join allows the capture
of paths with length less than three, e.g., an isolated edge
which is not connected to any faces and is directly linked to
the root. The WHERE clause counts all rows which contains
at least one NULL value, i.e., a path with length less than
three. The Neo4J query is:

STARTSTARTSTART b = node (0)
MATCHMATCHMATCH p = b-[:side -of*1..2]->v
WHEREWHEREWHERE v.dimension = 0
RETURNRETURNRETURN count(p);

The graph query is much simpler than the SQL one: pat-
tern [:side-of*1..2]->v captures all paths of length one or two
between root cell and cell ”v” where ”v” is conditioned to be
a vertex. If such path exists it means that the graph is not
graded.

Figure 5 illustrates response time of Q3. Neo4j outper-
forms PostgreSQL in checking graded constraint. The per-
formance of PostgreSQL decreases rapidly with database
size. This query needs to check the length of all the paths
from the root element (the mesh itself) to all vertices and
make sure they are all of the same length. This is where the
true power of a graph database such as Neo4j resides, i.e.,
path-intensive queries. It must be noted that both systems
have low variance for response time over the trials which
suggests the experiments’ environment is stable. Overall,
PostgreSQL has lower variance in comparison to Neo4j.

Q4. Given a face f , it retrieves coordinates of all its
vertices. The Neo4j query for is listed below:

STARTSTARTSTART f=node (53)
MATCHMATCHMATCH f--e--v
RETURNRETURNRETURN collect(distinct v.x),

collect(distinct v.y);

The equivalent SQL query is as follows:

SELECTSELECTSELECT DISTINCT vertex_id ,x,y
FROMFROMFROM coordinates AS co, cell AS c,

incidence AS i1, incidence AS i2
WHEREWHEREWHERE i1.to = i2.from ANDANDAND i2.to=c.id

ANDANDAND c.id=1
ANDANDAND co.vertex_id = i1.from

1166



(a) (b)
Figure 5: Performance of Q3 on GrAL, Neo4j, and Post-
greSQL on synthetic datasets and on b) real datasets.

Figure 6 illustrates response time of Q4. PostgreSQL out-
performs GrAL and Neo4j on this simplest geometric query.
We can see small deviations in the databases performance
when dataset sizes grow. This is due to high variance in
execution time over trials. However, the databases have al-
most constant performance over datasets. We observe that
retrieval of numeric data from the graph database is less ef-
ficient than the relational database.

(a) (b)
Figure 6: Performance of Q4 on GrAL, Neo4j, and Post-
greSQL on synthetic datasets and on b) real datasets.

Q5. It returns the number of vertices in which their field
value is greater than a given threshold t. The Neo4j query
is as follows:

STARTSTARTSTART v=node (*)
WHEREWHEREWHERE v.dim=0 and v.field > t
RETURNRETURNRETURN count(v);

The SQL query is as follows:

SELECTSELECTSELECT count (*)
FROMFROMFROM vfields
WHEREWHEREWHERE field > t

Figure 7 shows response time of Q5. Response time of
Neo4j drastically increases with dataset size and has the
worst performance, GrAL performance as before is linear
w.r.t. dataset size. PostgreSQL shows the best performance
and its time increases only slightly with dataset size. How-
ever, on real dataset the trend is different and the smallest
dataset (i.e., cow) has the biggest time. The reason is that
the result set of other two datasets for Q5 is zero while the
result set of Cow is 3462. This query shows that the graph
database is not efficient in computing field functions.

Disk Usage. Figure 8 illustrates disk size (in megabytes)
of each dataset on the systems. On average Neo4j and Post-
greSQL disk spaces are 38 and 21 times bigger than GrAL.
The disk usage of Neo4j is bigger than other systems, be-
cause graph databases store all the related relationships at

(a) (b)
Figure 7: Performance of Q5 on GrAL, Neo4j, and Post-
greSQL on synthetic datasets and on b) real datasets.

each node while in RDBMS the structure is defined in table
level. GrAL has the smallest sizes because it constructs the
required data structure in memory.

Figure 8: Size of each dataset on GrAL, Neo4j, and PostgreSQL.

Memory Usage. Figure 9 shows maximum resident size
of the three systems in the memory during the execution
of Q2. GrAL uses more memory in comparison to other
systems and the memory usage increases with dataset size.
The reason is that GrAL loads the datasets into memory and
build data structure. The database systems use less mem-
ory and the memory usage does not increase with datasets’
size. The main reason is that databases load indexes into
memory instead of the whole datasets. PostgreSQL has the
smallest memory usage. Similar patterns are observed for
real datasets and other queries.

(a) (b)
Figure 9: Performance of Q5 on GrAL, Neo4j, and Post-
greSQL on synthetic datasets and on b) real datasets.

5.3 Summary and Discussion
Based on the experiments, we conclude that PostgreSQL

performs well on local mesh queries (e.g., Q1 and Q2) and
field queries (e.g., Q5). With the exception of Q3, the Post-

1167



greSQL performance does not deteriorate when join opera-
tions are on the incidence table mainly because the join op-
eration performance of RDBMS depend on the number of
tuples involved in the join which is very small in case of Q1
and Q2.
Neo4j performs better on global path-intensive queries

(e.g., Q3), but it performs very poorly on local queries (e.g.,
Q2 and Q4) and global field queries Q5. Constant perfor-
mance on Q1, Q2, Q3, and Q4 is because graph database
performance depends on degree of each node which is very
small value in the mesh applications. Neo4j uses the most
disk space and its main memory usage is very close to GrAL.
Because of file I/O and in-memory construction, GrAL is

very fast on small dataset and does not scale with the dataset
size. In case of Q5, GrAL outperforms Neo4j. GrAL uses
less disk size but its main memory usage is more than the
databases.
In almost all the experiments, the graph queries are more

concise and readable w.r.t. the semantics of the queries than
the SQL queries. GrAL implementations are the most diffi-
cult ones.

In brief, the experiments suggest that to achieve high per-
formance, global topological mesh queries must be executed
on graph databases and local topological queries and field
queries on relational engines. Since neither graph databases
nor relational databases provides advanced geometric algo-
rithms, we need a mesh library with geometric algorithms.
We believe to efficiently process all types of the mesh

queries we need to combine the strengths of the relational
and graph databases together with a mesh geometric library.
We can integrate the three systems using a mediation soft-
ware. A mediator resides between user query and different
data sources. It receives a user query and finds an efficient
execution plan for it. It translates the query and extracts
the relevant data from each data source. Finally, it merges
the results from sources into a single result set [12].
In the case of a mesh mediator system, the graph database

stores only topological mesh structures and the relational
database stores all three components of a mesh. We envision
the architecture in Figure 10 for a mesh mediator system.

Figure 10: Architecture of a mediator system for processing mesh
queries.

The user submits her/his queries using a high-level declar-
ative mesh language. The query language is designed based
on mesh data models such as ImG-Complex. The media-
tor software analyses the user queries and dispatches them
based on their types to either graph wrapper or relational
wrapper, e.g., Q3 to graph wrapper and Q2 to relational
wrapper. A wrapper translates a query into source specific
queries and converts the data returned by the data sources

into the global data model, i.e., mesh data model. Each data
source has one wrapper. For instance, in the Figure 10, the
graph wrapper translates a user query to a graph query.
The relational wrapper is more complex and uses both the
RDBMS and the mesh library for query translation.

Although such mediator scenario offers better performance
and scalability, it stores topological information redundantly
and may not be suitable for small mesh datasets.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we modeled scientific meshes using property

multigraph model of graph databases. We conducted exper-
iments which show pros and cons of Neo4j, GrAL, and Post-
greSQL in querying meshes. The experiments show Neo4j
graph database is efficient for path-intensive queries, but not
for local, geometric, and field queries .

In future, we want to pursue the idea of the mesh mediator
system. First step to this goal is to design a declarative mesh
query language. We also want to define a mesh benchmark
and experiment with big mesh datasets.

7. ACKNOWLEDGMENTS
This work has been funded by the EU FP7-INFRA project

EarthServer. The authors would like to thank Dr. Guntram
Berti for his help with GrAL library.

8. REFERENCES
[1] Cgal, Computational Geometry Algorithms Library.

Viewed December 2013.

[2] Neo4j - the world’s leading graph database, Viewed
December 2013.

[3] R. Angles. A comparison of current graph database
models. In ICDE Workshops, pages 171–177, 2012.

[4] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1):1:1–1:39, Feb.
2008.

[5] G. Berti. Generic software components for Scientific
Computing. PhD thesis, BTU Cottbus, 2000.

[6] G. Berti. A generic toolbox for the grid craftsman. In
Proceedings of the 17th GAMM-Seminar Leipzig,
pages 1–28. Citeseer, 2001.

[7] G. Berti. Gral - the grid algorithms library. Future
Generation Computer Systems, 22, 2006.

[8] G. Heber and J. Gray. Supporting finite element
analysis with a relational database backend, part i:
There is life beyond files. CoRR, abs/cs/0701159,
2007.

[9] G. Heber and J. Gray. Supporting finite element
analysis with a relational database backend, part ii:
Database design and access. CoRR, abs/cs/0701160,
2007.

[10] A. R. Mahdiraji and P. Baumann. Database support
for unstructured meshes. Proc. VLDB Endow.,
6(12):1404–1409, Aug. 2013.

[11] A. Rezaei Mahdiraji, P. Baumann, and G. Berti.
Img-complex: graph data model for topology of
unstructured meshes. In Proceedings of the 22nd ACM
international conference on CIKM, pages 1619–1624.
ACM, 2013.

[12] G. Wiederhold. Mediators in the architecture of future
information systems. Computer, 25(3):38–49, 1992.

1168




