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ABSTRACT 
Community detection is a common problem in various types of 
big graphs.  It is meaningful to understand the functions and 
dynamics of networks. The challenges of detecting community 
for big graphs include high computational cost, no prior 
information, etc..  In this work, we analyze the process of random 
walking in graphs, and find out that the weight of an edge gotten 
by processing the vertices visited by the walker could be an 
indicator to measure the closeness of vertex connection.  Based 
on this idea, we propose a community detection algorithm for 
undirected big graphs which consists of three steps, including 
random walking using a single walker, weight calculating for 
edges and community detecting.  Our algorithm is running in 
O(n2) without prior information. Experimental results show that 
our algorithm is capable of detecting the community structure and 
the overlapping parts of graphs in real-world effectively, and 

handling the challenges of community detection in big graph era. 

Categories and Subject Descriptors 
G.2.2 [Mathematics of Computing]: Graph Theory - Network 
problems; G.3 [Mathematics of Computing]: Probability and 
Statistics - Markov processes;  

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Community detection; big graphs; random walking; overlapping 
parts. 

1. INTRODUCTION 
The theory of complex networks is employed for exploring the 
structure and function of social networks, the Internet and other 
complex systems in recent years.  It is found that some common 
topological features occur widely in various types of complex 
networks, such as scale-free network, small world, and 
community structure, etc. [1].  Among these topological features, 
a community refers to the groups whose vertices are densely 
connected [2].  It reveals the internal organization of the vertices 
in networks [3].  Based on community detection results, 
recommendation systems [4], information diffusion models [5] 

and other researches on social networks can be further improved.  
However, it is challengeable to detect community structure for 
such a big graph effectively constrained by an acceptable time 
consumption and other demands. The main challenges include the 
high computational cost, no prior information of community 
number, etc..  

Many outstanding works have been done in this field [1] but with 
some limitations in big graphs.  In order to attain the best 
community detection results in quality, most of the existing 
algorithms need to measure modularity Q [6] in the process of 
each clustering or partitioning, which exacerbates the poor 
performance in computational cost.  Even a few ones need prior 
information, such as the number of communities, etc., which is 
difficult to be obtained in graphs of real-world.  To the best of our 
knowledge, the lowest time computational complexity of existing 
community detection algorithms [6, 8, 13] with good performance 
in quality and no need of prior information is larger than O(n2), 
where n is the number of vertices in networks. 

To address these challenges, we propose an efficient community 
detection algorithm for undirected graphs based on random walks 
[7], with lower computational cost and no need of prior 
information.  By analyzing the process of random walking in 
networks, we find that the weight of an edge obtained by 
processing the walks could detect the closeness of vertices.  
According to this feature, we use a random walker for gaining the 
information of the graph structure.  The information can be 
helpful to compute the weight of each edge in networks in order 
to obtain the importance and closeness of the two vertices.  Then 
we can merge the vertices connected by the higher weight edges 
into one community, and get the communities and analysis of the 
overlapping parts.  During the community detecting, our 
algorithm does not need to measure the modularity Q any more.  
The computational complexity of the whole algorithm is reduce 
to O(n2) in worst case.  Our algorithm surpasses previously 
proposed ones in running time and stands among the best ones 
concerning the quality of the community results, which are shown 
in comparison experiments. 

The contributions of our work are listed below. 

 We propose a novel algorithm which can discover the 
communities and overlapping parts based on a new measure 
which indicates the closeness of vertices in the framework 
of Markov chain. 

 We reduce the computational complexity to O(n2) in worst 
case which is lower than the previously proposed ones [6, 8, 
13].  Our algorithm can deal with the big graphs. 

 We propose a new method to analyze the overlapping parts 
quantitatively and give the probability that which 
community the vertices belong to. 
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The rest of this paper is organized as follows.  Section 2 gives 
some preliminaries and mathematical analyses of our idea.  
Section 3 presents the community detection algorithm based on 
random walks.  Section 4 shows the experimental results.  Section 
5 summarizes some related work.  Section 6 is about the 
conclusions and future work. Section 7 shows the 
acknowledgments 

2. PRELIMINARIES AND NOTATIONS 
Due to the heterogeneous structural feature and scale-free degree 
property [9] of complex networks, some vertices have large 
degree and other ones have relatively small degree.  Based on 
preferential attachment [10], those vertices with large degree are 
connected closely.  Thus, the structures of communities tend to be 
that some closely connected vertices with large degree are 
connected by the common vertices with small degree.  For 
illustrating this, an example with three communities is given in 
Figure 1. 

closely connected 
vertex  with large 
degree

common vertex  

Figure 1. An example for community structure. 

Random walks is a widely used method in sampling and 
estimating networks [7].  In this paper, it is also employed to 
gather the structure information of social networks.  Based on 
random walks, we propose a solution for discovering community 
by detecting closely connected vertices with large degree in 
communities, and figuring out the connection relationships 
between them and other vertices.  The preliminaries and 
mathematical analyses of our idea are introduced below. 

A network is donated by an undirected and unweighted graph G = 
(V, E), where V = {v1,v2, … , vn} is the vertex set and E = {eij, …, 
elf} is the set of edges.  eij and eji present the same edge, i.e. eij = eji 

= (vi, vj) = (vj, vi).  Let n = |V| and m=|E|.  The degree of the vertex 
vi is denoted by d(i), where1 i n  . 

The adjacency matrix of graph G is denoted by a n×n matrix A.  
Namely, if vi and vj are connected, Aij = Aji = 1, and Aij = Aji = 0 
otherwise.  

If the walker chooses a vertex vi among the neighbors of the 
current vertex vj randomly and uniformly, the process of random 
walks on graph G is a Markov process [11], and the state space is 
the vertex set of graph G.  The transition matrix is defined as P, so  

1P D A    (1) 

where D is the diagonal matrix of the vertex degrees and 

( ),

0,ij

d i i j
D

i j


  

                                       (2) 

At each step, the transition probability from vi to vj is  

         
( )
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P
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The transition probability from vi to vj through walking t steps 

randomly is denoted by (t)
ijP .  When the number of steps t tends 

towards infinity, the probability is [8] 
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The transition probability is independent with the start vertex vi, 
and just depends on the degree of end vertex vj. 

The sequence of vertices visited by the walker is a Markov 
chain [11], and the stationary probability distributions of Markov 
chain follows 

…… P      (5) 

where 1 2{ , , , }n      is the stationary probability 

distribution.  For the connected undirected graph G with finite 
vertices, the stationary probability distribution [11] of vj follows 

(t)limj ij
t

P


    (6) 

When the probability reaches the stationary distribution, from (4), 
(5) and (6), the probability of traversing any edge e = (vi, vj) of G 
is 

1 1 2
( )

( ) ( ) ( )j i

f

p e
d j d i d f

   


                (7) 
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Figure 2. Two subgraphs are constructed for analysis, and the 
vertices in complete subgraph G1 are more closely connected 

than the vertices in cycle subgraph G2. 

Suppose that G1 and G2 in Figure 2 are two subgraphs of graph G.  
In order to visit each vertex at least once, the number of the steps is 
large enough to make random walks reach stationary distribution.  
When the random walks reach the stationary distribution, from (7), 
it is shown that any edge is traversed in equal probability, so the 
number of times of each edge traversed by the walker in G1 and G2 
would be nearly the same.  Thus, the numbers of times of the 
edges traversed by the walker are not capable of indicating the 
closeness of vertex connection. 

Faced with the problems above, we analyze the process of random 
walking and propose a new measure to indicate the closeness 
between vertices below. 

After random walks reaching stationary distribution, the 
probability that a path consisting of s edges is traversed by a 
walker is (p(e))s, known from (7).  In a specific situation in G1 and 
G2, the paths consisting of three edges and four different vertices 
are considered.  There are 24 different such special paths in G1, but 
8 different ones in G2.  By making use of the different numbers of 
paths in subgraphs, we propose a new measure to indicate the 
closeness of vertices. 

1152



The main idea is that both the edges traversed by the walker and 
other edges existing between each two vertices of the path are 
computed.  E.g. a path is {v1, v2, v3, v4} in G1, and then not only 
the edges e12, e23, e34 traversed by the walker but also the other 
edges e14, e13, e24 which exist between each two vertices of the 
path are computed.  In this case, if one of such special paths is 
traversed by the walker, all of the edges in subgroups are 
computed.  In another word, the probability of computing an edge 
is linear with the number of such special paths in the subgraphs. 

The analysis shows that, in such special paths described above, the 
probability of computing an edge in G1 is 24(p(e))3, but that in G2 
is 8(p(e))3.  The probability of computing an edge obtained in G1 is 
larger than that in G2, because there exist more different such 
special paths in G1 whose vertices are more closely connected. 

Generally, the number of such special paths in subgraphs is 
computed, i.e. the paths consists of n0-1 edges and all the n0 
different vertices in subgraphs.  This computation is given in two 
cases.  The number of such special paths in complete subgraphs 
(W1) whose vertices are most closely connected, and cycle 
subgraphs (W2) whose vertices are connected nearly most sparsely 
are given.  The examples of these two types of subgraphs are 
shown in Figure 2.  Here 1 0 !W n  and 2 02W n . 

 1 2 0 1 ! 2W W n      (8) 

From (8), it is shown that the number of such paths in the 
subgraphs with closely connected vertices is much larger than that 
of the subgraphs with loosely connected vertices.  After random 
walks reaching stationary distribution, the probability that an edge 
in complete subgraphs is computed is W1(p(e))n0-1 and that in cycle 
subgraphs is W2(p(e))n0-1.  When the number of steps t is large 
enough, the number of times of each edge traversed by the walker 
is about tW1(p(e))n0-1 in complete subgraphs, and it is about 
tW2(p(e))n0-1  in cycle subgraphs.  Known from (8), the huge gap of 
the times of the edges computed between closely connected 
subgraphs and loosely connected subgraphs are able to distinguish 
the closeness of vertex connection in graph G. 

Thus, the times of the edge computed could be a new measure to 
indicate the closeness of vertex connection.  We transform the 
graph into weighted graph based on the times of the edge 
computed.  According to the nature of community, the weights of 
edges connecting the vertices from a same community should be 
larger than edges connecting vertices belonging to different 
communities.  Therefore, through sorting the edges by their 
weights in descending order, the vertices connected by the edges in 
the front part of the sorted list are more likely to be within a 
community.  Based on the sorted edges, the vertices are assinged 
to commnuties. 

3. THE ALGORITHM 
The framework of our algorithm is shown in Figure 3.  In the 
algorithm, with the input of the graph data, random walks with a 
single walker is employed firstly, and a sequence of vertices 
visited by the walker is obtained.  Then we calculate the weights 
for edges with k-vertices splitting strategy and sort them in 
descending order.  It is the key point to detect the closely 
connected vertices with large degree in communities, and figure 
out the connection relationships between them and other common 
vertices.  The vertex merging algorithm and overlapping 
analyzing algorithm are applied to the sorted weighted edges, and 
the detecting results of communities and overlapping parts are 
output respectively. 

Graph data

Random Walking

Walking by a single 
random walker Sequence of the walk

Weight Calculating

Weighting edges and 
sorting them The k-vertices splitting

Community Detecting

Merging vertices Analyzing overlapping 

Communities and overlapping parts
 

Figure 3. The framework of our community detection 
algorithm. 

3.1 Random Walks with a Single Random 
Walker 
Random walks employed in this paper begins with a single 
walker.  The walker starts from an initial vertex v0 selected 
randomly and uniformly from vertex set V.  At each step, the 
probability of selecting any neighbor of the current vertex vc as 
the destination vertex is 1/d(vc), as shown in (3).  The walker 
stops when the number of steps reaches the budget.  Since the 
budget can be taken as n2 according to empirical study, the time 
complexity of this part of the algorithm is O(n2). 

3.2 Weight Calculation for Edges 
The sequence of vertices visited by the walker is devoted by VS, 
and  

{ , , , | }a b q a b qVS v v v v V v V v V        . 

The length of sequence VS is n2.  To get the subgraphs of graph 
G, VS is processed by k-vertices splitting strategy as the example 
in Table 1, and a new sequence which is denoted by VSS is gotten 

{{ ,..., },...,{ ,... }}a f c qVSS v v v v  

and { ,..., } ,...,{ ,..., }a f c qv v VS v v VS  . 

Thus, every adjacent k vertices in sequence VS are gathered into a 
sequence, and the vertices and the edges between the vertices  
form a subgraph of graph G.  The edges between each pair of the 
k vertices are recorded and the number of records of the edge is 
denoted by Ne.  An example of the process of edge recording is 
shown in Figure 4.  From the analyses mentioned in section 2, it 
is concluded that the edges between closely connected vertices 
would be recorded much more times than those between loosely 
connected vertices.  Finally, the edges are weighted by the 
number of times of being recorded, and then sorted by the 
weights.  The sequence of the sorted edges are defined as 

{ ,..., | ,..., }df sh df dfSE e e e E e E      
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Table 1. Examples for k-vertices splitting strategy 

Sequence Examples 

VS {1,2,4,3,2,1,4,5,6,7,5,6} 

VSS with 3-vertices 
splitting strategy 

{{1,2,4},{3,2,1},{4,5,6},{7,5,6}} 

 

3

2

1 4 5

7

6 {1,2,4}∈VSS
∵A12=1, A14=1   A24=1
∴Ne(1,2)=Ne(1,2)+1
   Ne(1,4)=Ne(1,4)+1
   Ne(2,4)=Ne(2,4)+1

 

Figure 4. An example of edge recording. 

The complexity of weight calculation for edges is O(kn2 + 
mlogm).  Since the graphs of social networks are sparse graph [1], 
m and n are in the same order of magnitude.  k is very small 
compared to n.  So the time complexity is similar to O(n2). 

3.3 Community Detection and Overlapping 
Analysis 
Since the connections in communities are dense but between them 
are sparse, the edges in community would get larger weights.  
Thus, the pair of vertices of the edge with larger weight are more 
likely to belong to the same community.  Especially, in the sorted 
edge sequence SE, the high-ranking edges and the related vertices 
compose the subgraphs with closely connected vertices in 
communities.  Besides, the different communities should be 
connected by the low-ranking edges. 

Based on the analysis above, we propose a community detection 
algorithm, in which the vertices are assigned into communities 
according to the sorted edge sequence SE.  During the algorithm, 
the two vertices of the edge with the largest weight are taken as 
vertices of the initial community C0.  For the next edge in the 
sequence, if one of the two vertices is in C0, another vertex would 
be assigned into C0; if any one of the two vertices is not in C0, 
both of them are assigned to a new community C1.  In accordance 
with the rules described above, the edges in SE would be 
processed one by one.  Particularly, if the two vertices of an edge 
have been assigned to different communities, e.g. egh=(vg, vh), vg

∈ Ci and vh∈ Cj , the edge and the two vertices are taken as the 

overlapping parts of the two communities. 

In social networks, overlapping phenomenon exists among most 
communities, for the reason that people usually plays different 
roles, or has different hobbies etc..  Therefore, it is important to 
detect and analyze the overlapping parts.  In this work, the 
probability that the vertex of overlapping parts belongs to certain 
community is given below. 

The number of neighbors of vertex v in community C is donated 
by ( , )Nb v C  . If dv  belongs to the overlapping part of Cr and Cu, 

the probability that vd belongs to Cr is defined as 

( , )
( )

( , ) ( , )
d r

d
d r d u

Nb v C
p v Cr

Nb v C Nb v C
 


   (9) 

The time complexity of this part is 2( 2)O mn n  in the worst 

situation. 

In this section, we present our algorithm whose time complexity 
is nearly O(n2) in details.  Our results do not depend on 
maximizing Q but the nature of community, which is benefit for 
reducing the time complexity. 

4. EXPERIMENTAL RESULTS 
For evaluating the performance of our algorithm, the experiments 
are based on the data of five real social networks, including 
Zachary’s karate club network, the bottlenose dolphins of 
Doubtful Sound network, the college football match network, the 
collaboration network of scientists, and friend relationship of 
members in Facebook.  The algorithms compared with our 
algorithm are two classical algorithms, including Spectral 
bisection [12], Girvan Newman [13], and another algorithm using 
random walks with different idea, i.e. Walktrap [8].  Our 
experiments are implemented on a PC with Intel i7-3370 CPU 
and 16G DDR3 memory.  

4.1 The Zachary’s karate club network 
The Zachary’s karate club network is a well labeled data and 
widely used in the test of community detection algorithms.  Based 
on the data, our algorithm is compared with the three algorithms 
in time complexity, accuracy (the percent of vertices which are 
classified correctly to the community they belong to in real-
world), and the need of prior information.  The comparison 
results are listed in Table 2. 

Since the initial vertex is selected randomly and uniformly, and 
the process of random walks is stochastic, the experimental 
results of our algorithm may be different even based on the same 
network data.  In this case, the average accuracy of 100 
experimental results is employed to evaluate the performance.  
Known from Table 2, the time complexity of our algorithm is 
lower than those of other algorithms, and even the accuracy is 
improved.  The higher computational cost of other ones makes 
them powerless to be used for large scale networks in real-world, 
which will be shown below.  Besides, the spectral bisection 
algorithm needs the prior information of the number of 
communities in networks.  

Table 2. Algorithm comparison 

Algorithm 
Prior 

information 
Time 

complexity 
Accuracy 

Spectral bisection YES 3( )O n  0.971 

Girvan Newman NO 2( )O m n  0.971 

Walktrap NO 2( )O mn  0.971 

Our algorithm NO 2( )O n  0.974 

In networks, sometimes vertices between communities are 
difficult to be classified into one certain community.  Our 
algorithm also analyzes the overlapping parts, which is an 
advantage compared with the other algorithms.  There are two 
communities in the Zachary’s karate club, as shown in Figure 7.  
The community of the square vertices is denoted by C1, and the 
community of the circular vertices is denoted by C2.  The 
probability that the vertex in overlapping parts belongs to certain 
community is shown in Table 3.  The vertices in the overlapping 
parts have higher probabilities to belong to the communities 
which they belong to in the real-world. 

1154



Table 3. Algorithm comparison 

Edges 
between 

communities 

The left vertex The right vertex 

C1 C2 C1 C2 

(3,33) 0.500 0.500 0.917 0.083 

(20,34) 0.333 0.667 0.882 0.117 

(1,32) 0.125 0.875 0.833 0.167 

(3,9) 0.500 0.500 0.600 0.400 

(14,34) 0.200 0.800 0.882 0.117 

(3,10) 0.500 0.500 0.500 0.500 

(2,31) 0.111 0.889 0.750 0.250 

(1,9) 0.125 0.875 0.600 0.400 

(3,29) 0.500 0.500 0.667 0.333 

(3,28) 0.500 0.500 0.250 0.750 

In order to reach the goal that most of the vertices in the graph are 
visited at least once with low computational cost, we analyze the 
relationships between the number of steps and the coverage rate 
of the vertices in the network.  The distribution of the step 
number for visiting each vertex at least once in the network with 
10000 experiments.  In the process of our experiments, it is found 
the possibility of walker visiting all vertices reaches more than 
98% when the number of steps is taken as 2n , where n is the 
number of vertices of the network. 

 

Figure 5． The accuracy of the results with 100 experiments 

for different value of k of k-vertices splitting strategy. 

For the different value of k, we analyze the accuracy of the results 
with 100 experiments, including the best, worst and average 
cases, as shown in Figure 5.  In order to compare the 
experimental results, we let k=1 represent the community 
detection results without the process of k-vertices splitting 
strategy.  When k>2, the accuracy of results is significantly 
improved and the accuracy of the best results is 1.0, which 
indicates the effectiveness of the k-vertices splitting strategy.  
When k=8, the average accuracy of results is 0.997.  Seen from 
Figure 6, when k  5, the accuracy of results tends to be steady. 
Consider the computational cost, we set k=5 for the Zachary’s 
karate club network. 

 

Figure 6. Weighted edges of the Zachary’s karate club are the 
results of edge recording with 5-vertices splitting strategy.  

Different shapes present different communities gotten by our 
algorithm. 

4.2 The other four networks 
In this section, we briefly compare the performance of our 
algorithm with the mentioned ones above in the quality of results 
(Q) and running time in four further networks, i.e. bottlenose 
dolphins; football matches; collaboration network of scientists 
and the friendship of members in Facebook.  Because of the 
limitations of prior information in the four networks, the spectral 
bisection algorithm cannot be tested.  The results (running time/ 
modularity) can be seen in Table 4, and s denotes seconds.  For 
the four networks, the values of k of k-vertices splitting strategy 
are taken as 5, 5, 10, 20, separately. 

Table 4. Algorithm comparison 

Network 
Dolph

ins 
Football 
matches 

Scientists 
Facebook 

The number of 
vertices/mean 

degree 

(62/5.
12) 

(115/ 

10.66) 

(22016/ 

5.32) 

(100000/ 

25.72) 

Our algorithm 
0.15s/
0.50 

0.55s/0.56 
21028.34s

/0.45 
206851.21

s/0.36 

Walktrap 
0.63s/
0.50 

2.74s/0.60 
755873.87

s/0.41 
>10days 

Girvan Newman 
56.02s
/0.52 

3429.34s/
0.57 

>10days >10days 

The experimental results show that our algorithm decreases the 
modularity slightly but has a huge advantage in running time.  
Even in the large scale network of collaboration of scientists, we 
have a better performance both in running time and quality.  
Particularly, when the number of vertices in networks reaches 
tens of thousands, Girvan Newman algorithm and Walktrap 
algorithm are gradually becoming powerless faced with the big 
graph data. 

5. RELATED WORK 
In recent years, many outstanding community detection 
algorithms have been proposed.  Most of the algorithms [14] are 
graph partitioning or clustering based on distance, which leads to 
high computational cost.  Meanwhile, many algorithms need to 
know the prior information, such as the community number, etc., 
which is difficult to be obtained in real networks. 

1155



Graph partitioning method.  The Spectral bisection algorithm 
[12] is a graph partitioning method with good results and fast 
operating speed in practical applications.  The algorithm runs in 
O(n3).  However, it is required to define the number of the 
subgraphs before the graph partitioning.  Newman and Girvan 
[13] propose an algorithm to get the communities based on edge 
removed.  Its time complexity is O(m2n). 
Hierarchical clustering method.  The similarity of vertices 
determines the relationship between the vertices.  Newman [6] 
proposes a greedy algorithm, which takes the modularity Q as a 
basis for whether to merge the two communities.  The complexity 
of the algorithm is 2( log )O n n .  A multi-level method for graph 
clustering is shown by Satuluri and Parthasarathy using stochastic 
flows [15]. 
Random walks.  Pascal and Matthieu [8] propose a community 
detection algorithm based on random walks called “Walktrap”.  
The algorithm obtains information of various vertices by the 
transition matrix, and defines three distances, and does 
hierarchical clustering by distance. The complexity of the 
algorithm for the worst case is 2( )O mn .  A novel clustering 
method based on random walks for weighted graph is proposed 
by Harel and Koren [16]. 
Although these algorithms have good performance in quality, the 
high computational cost makes them hard to deal with the big 
graph data.  With the development of web 2.0, the number of 
members in online social networks is increasing sharply.  The 
challenges of big graphs are confronting us today.  Faced with the 
challenges, we propose a n efficient algorithm just based on the 
topology of the graph and without prior information. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose an effective algorithm to solve the 
problem of community detection for big graphs and reduce the 
time complexity to O(n2) using random walks.  The key point is 
how to find the closely connected vertices by random walks.  
Some new ideas including k-vertices splitting strategy, edge 
recording method and community detecting strategy are 
proposed.  The experimental results show that our method 
provides good results in various networks.  The comparison with 
other algorithms shows that our method has a clear advantage in 
running time with slightly reducing in quality.  Even in the large 
scale networks, our algorithm also has advantage in quality. 

Certain works are carrying on, such as the algorithm and theory 
based on multi-random walks to support parallel computing, the 
comparison with the latest algorithms, and the bigger graph data, 
the relationship between the value of k and the edge weights, etc..  
The preliminary results show that the running time is reduced 
significantly by parallel computing. 

There are also some problems left to the future work. How many 
steps can the walker visit each vertex of the networks at least 
once?  How to calculate the value of k of the k-splitting strategy 
for different scales of networks?  When the walker reaches 
stationary distribution is also a difficult problem. 
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