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ABSTRACT
In this paper, we propose a new active learning algorithm
in which the learner chooses the samples to be queried from
the unlabeled data points whose attributes are only par-
tially observed. In addition, we propose a cost-driven de-
cision framework where the learner chooses to query either
the labels or the missing attributes. This problem state-
ment addresses a common constraint when building large
datasets and applying active learning techniques on them,
where some of the attributes (including the labels) are sig-
nificantly harder or more costly to acquire per data point.
We take a novel approach to this problem, first by building
an imputation model that maps from the partially featured
data to the fully featured dimension, and then performing
active learning on the projected input space combined with
the estimated confidence of inference. We discuss that our
approach is flexible and can work with graph mining tasks
as well as conventional semi-supervised learning problems.
The results suggest that the proposed algorithm facilitates
more cost-efficient annotation than the baselines.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—concept learning,
knowledge acquisition; H.2.8 [Database Management]:
Database applications—data mining

General Terms
Algorithms, Experimentation

Keywords
Active learning, cost optimization, graph categorization, par-
tially featured data

1. INTRODUCTION
The challenge in many of the machine learning tasks is

that while unlabeled data is abundant, acquiring class labels

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2580062.

is costly because it often involves human annotators, lab
experiments, etc. The active learning paradigm addresses
the challenge of insufficient labels by optimizing the selection
of queries. Several studies show that active learning greatly
reduces the labeling efforts in various domains, including
graph classification [11], network analysis [4], text mining
[17], and many other machine learning or data mining tasks.

The underlying assumption of active learning scenarios
is that all features of unlabeled data are free or inexpen-
sive to acquire. As such, active learning techniques seek to
find the unlabeled samples that would best improve the sys-
tem performance once they are labeled. A number of query
strategy frameworks have been developed by researchers,
one of which is uncertainty-sampling [12, 13]. For multi-
classification tasks (which we mainly focus on in this paper),
the uncertainty-sampling method queries the instance that
is the least confident:

x∗LC = argmax
x

1− Pθ(ŷ|x),

where x∗LC is the sample to be queried for labels, and ŷ =
argmax y Pθ(y|x), or the label that has the highest posterior
probability under the model θ. One popular improvement on
this base sampling strategy is to consider the density around
the sample ([19], [16]), penalizing outlier samples that are
not representative. Note that these sampling strategies as-
sume that the learner has access to the fully featured unla-
beled dataset from which it can make a query.

However, an interesting problem arises when acquiring
some of the features becomes costly. For example, consider
that we would like to build a large dataset from scratch to
classify wines. While some of the primitive attributes such
as their weights, colors, etc. are easier to acquire, other
physicochemical attributes such as chemical reaction time
can only be obtained via actual experiments, which is more
costly [5].

Another example is a graph categorization problem on
big graph data. Among various ways to acquire features
for graph categorization such as graph kernel methods [8,
1], a new method to transform graphs into feature vectors
by their topological and label attributes has been proposed
[14]. However, computing some of the topological attributes
for the entire graph has high computational overhead, which
makes it difficult to obtain a fully featured dataset for an ex-
tremely large graph, given the limited computing resources.
In addition, for a graph categorization task on biological
networks, features of a given network are often not com-
putable without further experiments. Thus, given the bud-
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get constraint, only a small subset of the dataset can be
fully featured, whereas the majority of the data points are
only partially featured with free attributes. If we were to
use the traditional active learning techniques, the learner is
forced to choose the samples from a pool that is only par-
tially observed, which may not be rich enough to learn a
true classifier in the output space.

Some of the works on active feature-value acquisition ([18],
[15]) also address the costly attributes problem, but most of
the works focus on querying for the most informative at-
tributes rather than the labels. In other words, the purpose
of active feature-value acquisition is to tune the current sys-
tem model by optimally choosing the instances to recover
the missing features. In this approach, the expected utility
is typically obtained by comparing the model’s prediction
with the true labels that are assumed to be given.

In this paper, however, we present a new approach to learn
from the partially observed dataset by first building an im-
putation model for missing features, and then by performing
active learning in the projected input space. We also pro-
pose a novel confidence metric for the inference step which
is incorporated into the utility function for active selection.
We build the imputation model by using the subset of sam-
ples that are fully featured. Therefore, our method can be
applied even when there are initially no labels available, be-
cause the inference model is built within the input space
only. We also present a cost-driven decision framework to
selectively query for missing attributes or labels when there
is a separate cost for them, depending on their maximum
utility.

The rest of the paper is organized as follows: Section 2
describes in detail the proposed active learning framework.
We discuss the implications of this research in graph mining
tasks in Section 3, and we report and analyze the empirical
results in Section 4. We give our concluding remarks and
proposed future work in Section 5.

2. METHOD

2.1 Maximum Expected Utility
There are two aspects of optimization in this problem

(Figure 1). First, we need to acquire labels that will best
improve our current system model (classifier). This is sim-
ilar to the traditional active learning scenario, except that
some of the data points are only partially featured. Sec-
ond, we may also query for the missing attributes so that
we can improve our inference that can map partially fea-
tured samples to the fully featured space. In this paper, we
assume that there is a separate cost incurred for acquiring
labels and for acquiring missing attributes. As such, the
ultimate optimization requires an agenda that chooses an
instance that would either best improve the system perfor-
mance or the imputation model at each iteration given the
limited budget. In the following subsections, we discuss the
two different query types that we can ask to our annotators
under the proposed framework.

2.1.1 Acquiring Labels
Let us consider N data points {x1, · · · , xN} in the input

space X, where the corresponding true labels are {y1, · · · , yN}.
The traditional active learning problem can be expressed as
finding a solution to the following equation:

Label 1

Label 2

Partially Featured 
(Unlabeled)

Projection  
(via Inference)

Current 
Decision Boundary

1. Query Labels 2. Query Missing Attributes

Figure 1: Illustration of the proposed algorithm. Given
the available labeled data and the current system’s decision
boundary, the learner may choose between the two different
query actions depending on which action has a higher value:
(1) it may choose to ask for labels (e.g. of the samples that
are near the current decision boundary), or (2) it may ask
for filling in the missing attributes (e.g. of the points with
low inference confidence).

x∗ = argmax
x∈X

V (x),

where x∗ is the sample to be queried for labels, and V (x) is
the value of information of the sampled data to the learning
algorithm. V (x) can be replaced with any active selection
criterion discussed above, e.g. the density weighted uncer-
tainty score proposed in [16].

Now, let us assume that some of the attributes are costly
to acquire, and thus some of the data points are only par-
tially featured. Let us denote the fully featured subset of X
as Xf , and the partially featured subset of X as Xp, where
X = Xf ∪ Xp. We further assume that each xf ∈ Xf is

a vector of m attributes, denoted {x(1)f , · · · , x(m)
f }. Simi-

larly, each xp ∈ Xp is a vector of l attributes for l < m,

denoted {x(1)p , · · · , x(l)p }. Note that every attribute in xp is
also included in xf for l < m.

Then, we train an imputation model T : Xp → Xf such
that it transforms the data from the partially featured subset
Xp to the fully featured Xf . For example, for some tasks, T
can be a multivariate regression model that fits xp to xf , or
a variant of EM inference algorithm that predicts xf from
xp. We present the EM inference model that we used in our
paper in Section 2.2. Thus, we can reformulate our task as:

x∗ = argmax
x∈{Xf∪Xp}

V (T (x)),

where T (x) is a projection of x ∈ Xp into the fully featured
space, and x = T (x) for x ∈ Xf . Note that this may not
return an ideal solution if T is not accurate. In order to
account for the confidence level of the imputation model T
on a given data point, we denote α(xp) as the confidence
level of T inferring x′f = T (xp), where 0 ≤ α(x) ≤ 1 for
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x ∈ X. Finally, we can write the maximum expected utility
U(x) as:

x∗ = argmax
x∈{Xf∪Xp}

λ · Vnorm(T (x)) + (1− λ) · α(x), (1)

where 0 ≤ λ ≤ 1 is a weight factor, and Vnorm(·) is a normal-
ized value of samples. Note that α(xf ) = 1 for xf ∈ Xf . As
such, the optimization problem can be seen as a competence
between the projected value of an unlabeled data point and
the confidence of inference by the model.

2.1.2 Acquiring Missing Attributes
We optimally acquire missing attributes such that it would

improve the current inference model the most, which would
consequently make the process of acquiring labels discussed
above more precise and efficient. In this paper, we present a
simple metric for determining the value of an instance with
missing features as follows:

x∗p = argmax
xp∈Xp

IV (xp) = argmax
xp∈Xp

ρ(xp) · (1− α(xp))
β , (2)

where IV (xp) is the value of potential error reduction in
inference of xp, ρ(xp) is the density of samples around xp
in the input space, α(xp) is the confidence of inference by
the model, and β is a weight factor determined empirically.
As such, the learner would favor the instances with missing
features of which the inference confidences are low, and the
instances that have many neighbors.

2.1.3 Joint Optimization Selections
At each query iteration, we decide whether to query a

sample for labels or to query a sample for its missing fea-
tures. Acquiring missing features would improve the infer-
ence model, whereas acquiring labels would result in a more
myopic improvement in the system performance. As such,
given the limited budget, the query strategies may depend
on the learner’s agenda and its preference on taking risks
in favor of high return [10]. In this paper, we implement a
greedy cost-optimization strategy where the learner chooses
the best action at each iteration, where the utility for an
action is penalized by its cost [7]. The utility function of an
unlabeled point x can be formulated as:

(x∗, q∗) = argmax
x∈{Xf∪Xp}

max(
V (T (x)

Cl
,
IV (x)

Cm
), (3)

where q∗ is a query action type for the corresponding value
functions, Cl is the cost for querying the labels, and Cm is
the cost for querying the missing attributes. Note that Xp
may include the samples that are labeled already. If the
labeled samples are queried for their missing attributes, it
would adjust the input space and thus refine the current
boundary.

2.2 Imputation Model
An imputation model T can be different depending on

the types of the attributes of the dataset. In this section,
we describe the Expectation Maximization (EM) inference
algorithm for the real-valued attributes used in our exper-
iments. As demonstrated in ([9], [6]), EM training can be
naturally extended to perform inference over missing values.

We chose to use a Gaussian Mixture Model (GMM) to model
the joint density over all features. For objects with missing
features, we then exploit the simple parametric form of the
conditional Gaussian distribution to impute the missing val-
ues.

In our experiments a fixed set of feature(s) is missing
from some of the training data. However, in this section
we present a general framework that can work with var-
ied patterns of missing data. Consider sample xi ∈ Rd,
for i ∈ [1, N ], where N is the number of observations in
the training set. We then partition xi into vectors xio and
xim, corresponding to its observed and missing features. We
describe EM algorithm for a GMM with missing features,
where K is the number of components.

2.2.1 Expectation
For each Gaussian j ∈ [1,K], we find the posterior proba-

bility of xi belonging to j. Let µj the mean of j be split into
µo and µm. Furthermore, we partition Σj into Σoo, Σom,
Σmo = Σ>om, and Σmm. We first calculate the likelihood

qij = N (xio;µo,Σoo)

Then, defining πj to be the prior probability of component
j, we compute

pij =
qijπj∑K
k=1 qikπk

2.2.2 Maximization
We recompute the parameters for separately each Gaus-

sian j. To do this, we first assume that xi comes from Gaus-
sian j and consider xim conditioned on xio, which is also a
Gaussian distribution.

xi,jm |xi,jo = N (µm + ΣmoΣ
−1
oo (xio − µo),Σmm − ΣmoΣ

−1
oo Σom)

(4)

Thus, we impute any missing values xim to the conditional
mean

x̂i,jm = µm + ΣmoΣ
−1
oo (xio − µo) (5)

We therefore get x̂i,j from combining xio and xi,jm . Now we
incorporate the imputed values when updating µj and Σj .

µj =

∑N
i=1 pij x̂

i,j∑N
i=1 pij

Σj =

∑N
i=1 pij(x̂

i,j − µj)(x̂i,j − µj)>∑N
i=1 pij

Finally, we recompute πj by summing the posterior weights.

πj =

∑N
i=1 pij∑K

k=1

∑N
i=1 pik

Upon completion of EM training, we impute the missing
values without assuming that they come from any particu-
lar mixture component. For each xi with missing features,
we draw component j randomly from Multinomial(pi). We
then set x̂im using Equation (5). (Alternatively, we could
randomly draw xim using Equation (4).)
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(a) Vetebral Column (50% missing 3 at-
tributes out of 6).
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(b) Glass (50% missing 3 attributes out
of 8)
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(c) Wine Quality (50% missing 4 at-
tributes out of 11)

Figure 2: Active learning performance on UCI datasets

2.3 Algorithm
In this section, we present the algorithm that implements

our method discussed in Section 2.1 and 2.2. We assume that
the data X is divided into two sets, unlabeled and labeled,
which we denote as XUL, and XL. We denote K as the ora-
cle (annotator), and its answer upon query on xul ∈ XUL as
yK . The objective of this task is S, which is the accuracy of
the trained classifier. Given the formulated expected utility
U (in Equation 1) and the imputation model T , we design
our algorithm as follows.

Algorithm 1 Active learning framework

function Active Learning(X, T , U)
X ′f ← T (Xp) . Apply T on the partailly-featured

data Xp
Xf ← Xf∪ X ′f
while IterationNotOver do

(x∗ul, q
∗)← argmax

x
U(xul) . From Eq. (3)

if q∗ : query labels then
yk ← QUERY (x∗ul,K)
XL ← XL ∪ {x∗ul}
XUL ← XUL − {x∗ul}
Update S with XL

else if q∗ : query missing attributes then
xf ← QUERY (x∗ul,K)
Xf ← Xf ∪ {xf}
Xp ← Xp − {x∗ul}
Update T with Xf

end if
end while

end function

3. IMPLICATIONS IN BIG GRAPH DATA
In the previous section, we described the framework for

our approach which is flexible and can work with any con-
ventional semi-supervised classification task with continu-
ous features. In this section, we present the implications of
the proposed framework in relation to graph mining tasks.
A graph categorization problem, for example, is an impor-
tant and active research topic in graph mining tasks, where
the challenge is to efficiently extract features from a graph.

However, because most of the featurization techniques in-
volve graph enumeration and graph isomorphism testing
which are NP-complete, it is almost impossible to enumer-
ate through the all of the subgraphs and extract features for
active learning, especially for large graph data. In addition,
extracting features and labels from graphs often requires
extensive human efforts, which makes the processing of the
dataset for graph categorization more difficult.

[14], for example, proposes a method to extract twenty
attributes per node based on its topology and labels. While
some of the simple attributes, such as the giant connected
component, are easier to compute (O(n+m) where n and m
denotes the number of nodes and edges, respectively), there
are more complex and informative attributes that require a
high computational overhead (e.g. the spectral attributes
that depend on eigen decomposition, which has the worst
case performance of O(n3)). In addition, features such as
label entropy and neighborhood impurity require labeling
efforts beforehand, which in some cases are not computable
without further annotations or experiments. In contrast,
our imputation step to acquire missing attributes only takes
O(nd2k), where d is the number of attributes, k is the num-
ber of clusters [20].

The proposed framework thus allows for a new way to
tackle the graph mining problem. Using our framework, we
propose to mine the graph on a partially-observed basis,
and use the imputed features in order to rank the selec-
tion queries. This allows us to greatly reduce the efforts in
labeling and transforming the graph into features, and to
avoid enumerating through the entire graph to extract fea-
tures. Note that once the method for transforming graphs
into feature vectors is determined, the rest of the process
can simply follow the algorithm presented in Section 2.

In the following section we present our results on the real
datasets using the algorithm discussed above. We choose
the typical UCI datasets [2] for multi-classification as rep-
resentative examples of semi-supervised learning problems.
We also present a preliminary result on the Yeast protein
interaction network (PIN) dataset.

4. RESULTS AND ANALYSIS

4.1 Baselines
We obtain the baseline performance as follows. We first

build a system classifier using only the available labeled data
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Table 1: Active learning performance on UCI Vetebral Column Dataset with varying percentage of samples missing some of
the attributes (30%, 50%, 70% missing 3 attributes out of 8).

% of Missing Data
Classification Error

Cost = 0.25 Cost = 0.50 Cost = 0.75 Cost = 1.00

0 % (Oracle) 0.271 0.201 0.146 0.130
30 % 0.279 0.195 0.182 0.161
50 % 0.347 0.262 0.181 0.164
70 % 0.398 0.303 0.281 0.209
90 % 0.415 0.421 0.413 0.352

Table 2: Active learning improvement on the Yeast Protein Interaction Networks dataset (50% data missing 3 attributes out
of 8). Initial classification error rate = 0.701, chance performance = 0.80.

Method
Classification Error

Cost = 0.25 Cost = 0.50 Cost = 0.75 Cost = 1.00

Partial Featured 0.641 0.627 0.578 0.574
Oracle 0.569 0.555 0.521 0.463

EM Inference 0.583 0.573 0.541 0.484

points with the reduced-features. In other words, we remove
the features corresponding to the missing test feature from
the training data. Note that this dataset with missing fea-
tures might not be rich enough to build a good classifier.
We then perform the traditional active learning on this clas-
sifier, using the same selection criteria (e.g. entropy-based
selection for this experiment) as the proposed algorithm for
the value function V (·). We refer this baseline as the par-
tial features method. We also present the result when we
assume that we have a perfect inference of every missing
feature (referred as the oracle baseline). We treat this as
our soft upper bound.

The two algorithms that we propose are referred as (1)
Joint EM Inference and (2) EM Inference. The joint EM
inference method allows the learners to choose between the
two actions illustrated in Figure 1, depending on the relative
values. The EM inference method, on the other hand, per-
forms imputation only at the first iteration using the initially
available fully featured dataset, and performs traditional ac-
tive learning with the entropy-based selection criteria.

4.2 UCI Dataset
We test our algorithm on typical UCI datasets for multi-

classification task (Vertebral Column (3 classes), Glass (7
classes), and Wine Quality (6 classes)). We assume that
some of the features are more expensive to acquire than oth-
ers for a given dataset, and thus we artificially assign some of
the attributes as missing features and hide them from the ex-
periment. For example, the Wine Quality dataset contains
12 physicochemical attributes (e.g. fixed acidity, volatile
acidity, citric acid, etc.) of continuous numbers, where ac-
quiring each attribute incurs a varying cost. For this exper-
iment, we assume that the more informative attributes are
more expensive, and that some portion of the samples are
missing for those attributes. In addition, we assume that
querying the labels incurs cost 3 times higher than querying
the missing attributes. We ran the experiment 5 times each
with a different random allocation of Xf and Xp as well as

a different initial labeled set, and we report the average over
the runs. Figures 2a, 2b, and 2c show the results when 50%
of the data were assumed to be missing from a set number
of attributes. X-axis has been normalized by a fixed budget.

In Figures 2a, 2b, and 2c, it can be seen that the pro-
posed algorithms (EM Inference and Joint EM Inference)
perform better than the baseline (Partial Features), with
p < 0.01 on a paired two-sided t-test. The joint EM infer-
ence method outperforms the EM inference only method,
which indicates that acquiring the missing attributes incurs
a higher information gain even at the cost of acquiring fewer
labels. While the EM inference algorithm converges at a
higher error rate than the oracle method (which assumes a
perfect inference model) due to the errors in inference of Xp,
the joint method converges at a similar error rate with the
oracle method. This indicates that the proposed algorithm
can almost reach the oracle performance at a significantly
lower cost.

Table 1 shows the different performance of the EM infer-
ence algorithm on the Vertebral Column dataset depending
on the initial proportion of the samples that are missing
some of the attributes. If a higher percentage of the sam-
ples is partially featured at the beginning, the system cannot
build a confident inference model due to the small number
of fully featured data points available to train. This is well
represented in Table 1: we observe that with the dataset of
which 30% is partially featured, we can achieve almost the
same performance as the oracle performance. As expected,
the performance degrades as we increase the percentage of
the partially featured samples.

4.3 Protein Interaction Networks
We also present a preliminary result of our method on

graph datasets. The extension to graph mining tasks is
straightforward, because one can cast the graph categoriza-
tion problem as a semi-supervised learning problem with
the numerical features extracted from graphs, as proposed
in literature extensively.

1147



We apply our method on the protein interaction network
(PIN) of Yeast dataset [3], which consists of 2361 nodes and
7182 edges, where each node is encoded as one of the 13 PIN
classes. We use the subset of the dataset with the five most
frequent classes. For our experiment, we implement some of
the topological attributes proposed by [14] (e.g. clustering
coefficient, neighborhood connectivity, eccentricity, average
degree, etc.), and assume that 50% of the data are missing
3 out of 8 attributes.

Table 2 shows the active learning performance of three dif-
ferent methods (EM Inference, Oracle, Partial Features) at
each interval. It can be seen that the EM Inference method
outperforms the Partial Features baseline at every interval.
Note that the EM Inference method has a similar perfor-
mance as the Oracle method even with the constraint that
the dataset was initially only partially featured. This result
implies that applying our methods to graph categorization
can result in the reduced costs and efforts in transforming
graphs into features, as well as in annotating graphs with
labels. This can be regarded as an additional aspect of op-
timization for building a big graph dataset for mining and
learning.

5. CONCLUSION
The proposed algorithm has been shown effective in the

selected UCI datasets and the Yeast Protein Interaction
Network dataset. Specifically, it was shown that with the
dataset of which 30% is partially featured, we can build a
classification model that is almost as good as the model built
with the fully featured dataset. This implies a practical ben-
efit when building a new dataset: given a limited budget, we
may not need to acquire features for all of the data samples
that we have, but may choose to leave some portion of the
dataset partially featured. As such, the proposed algorithm
can save the time and expenses that would normally take
to build a fully featured dataset, which is a significant im-
provement especially for large unlabeled datasets. In addi-
tion, the proposed framework can be applied in a variety of
tasks, including graph classification, text mining, etc.

There is more work that needs to be done to further de-
velop this research. First of all, we plan on performing more
experiments on various types of graphs, and show the effi-
cacy of our method in saving costs and computational over-
head for extracting features from graphs. Secondly, we can
improve the framework by formulating a long-term agenda
for choosing between the two query types, rather than a
myopic optimization method. The long-term agenda would
outperform the proposed greedy implementation especially
when the total budget is variable. Finally, we can general-
ize the proposed EM algorithm method such that it can be
used for other types of datasets as well, for example where
the missing attributes are binary or categorical.

Acknowledgements
We would like to acknowledge the contributions made by
Professor Seyoung Kim for her valuable and constructive
suggestions.

6. REFERENCES
[1] G. Arthur, O. Bousquet, A. Smola, and B. Scholkopf.

Measuring statistical dependence with hilbert-schmidt

norms. 16th International Conference, ALT, pages
63–77, 2005.

[2] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[3] V. Batagelj and A. Mrvar. Pajek datasets (yeast),
2006.

[4] M. Bilgic, L. Mihalkova, and L. Getoor. Active
learning for networked data. Proceedings of the 27th
International Conference on Machine Learning, 2010.

[5] P. Cortez, J. Teixeira, A. Cerdeira, F. Almeida,
T. Matos, and J. Reis. Using data mining for wine
quality assessment. Discvoery Science, J.G. et al.,
Ed., vol. LNCS 5808., pages 66–79, 2009.

[6] O. Delalleau, A. Courville, and Y. Bengio. Efficient
em training of gaussian mixtures with missing data.
CoRR, 2012.

[7] P. Donmez and J. G. Carbonell. Proactive learning:
Cost-sensitive active learning with multiple imperfect
oracles. Proceedings of the 17th ACM Conference on
Information and Knowledge Management, 2008.

[8] T. Gartner, P. Flach, and S. Wrobel. On graph
kernels: Hardness results and efficient alternatives.
Conference on Learning Theory, 2003.

[9] Z. Ghahramani and M. I. Jordan. Learning from
incomplete data. Technical Report, MIT, 1994.

[10] A. Kapoor and R. Greiner. Budgeted learning of
bounded active classifiers. KDD Workshop on
Utility-Based Data Mining, 2005.

[11] X. Kong, W. Fan, and P. S. Yu. Dual active feature
and sample selection for graph classification. ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2011.

[12] D. Lewis and J. Catlett. Heterogeneous uncertainty
sampling for supervised learning. Proceedings of the
International Conference on Machine Learning
(ICML) ’94, pages 148–156, 1994.

[13] D. Lewis and W. Gale. Training text classifiers by
uncertainty sampling. In Proceedings of ACM-SIGIR
Conference on Information Retrieval, 1994.

[14] G. Li, M. Semerci, B. Yener, and M. Zaki. Graph
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