
Enhancing Media Enrichment by Semantic Extraction
Michael Krug

Department of Computer Science
Technische Universität Chemnitz

Chemnitz, Germany
michael.krug@informatik

.tu-chemnitz.de

Fabian Wiedemann
Department of Computer Science
Technische Universität Chemnitz

Chemnitz, Germany
fabian.wiedemann@informatik

.tu-chemnitz.de

Martin Gaedke
Department of Computer Science
Technische Universität Chemnitz

Chemnitz, Germany
martin.gaedke@informatik

.tu-chemnitz.de

ABSTRACT
The opportunities of the Internet combined with new devices and
technologies change the end users’ habits in media consumption.
While end users often search for related information to the
currently watched TV show by themselves, we propose to
improve this user experience by automatically enriching media
using semantic extraction. In our recent work we focused on how
to apply media enrichment to distributed screens. Based on the
findings we made from our recent prototype we identify several
problems and describe how we deal with them. We illustrate a
way to achieve cross-platform real-time synchronization using
several transport protocols. We propose the usage of sessions to
handle multi-user, multi-screen scenarios and introduce
techniques for new interaction and customization patterns. We
extend our recent approach with the extraction of keywords from
given subtitles by utilizing statistical algorithms and natural
language processing technologies, which are then used to discover
and display related content from the Web. The prototype
presented in this paper reflects the improvements of our work. We
discuss next research steps and define challenges for further
research.

Categories and Subject Descriptors
C.0 [General]: System architectures; C.2.4 [Computer-
Communication Networks]: Distributed Systems - Client/server,
distributed applications; H.3.4 [Information Storage and
Retrieval]: Systems and Software - Distributed systems

Keywords
Media enrichment, distributed display environment, mashups,
semantic extraction, HTML5

1. INTRODUCTION
The advancement of the Internet combined with new devices and
technologies change the end users’ habits in media consumption.
Nowadays end users often search for related information on their
mobile devices using the Internet while watching a television
show [9]. This additional information about the currently watched
program can be, i.e. a list of actors, statistics related to a
sportscast or social comments. Providing the users directly with
related information instead of having them search for it on their
phone or tablet is called media enrichment [6].

One way to discover related information is to use annotations.
These annotations can be subtitles as well as metadata. Currently
most annotation has to be done manually by a human. With the
improvement of natural language processing tools the extraction
of semantic keywords from given subtitles facilitates an automatic
annotation process of videos with metadata. Furthermore, the
automatic subtitling based on speech recognition done by video
platforms, such as YouTube, enables the media enrichment of a
wide range of videos. These two opportunities can be used to
improve the process and quality of media enrichment.

The purpose of this paper is to demonstrate how media can be
enriched with additional related content automatically. We base
this demonstration on our previous work - a component-based
framework for media enrichment [6]. This framework already
utilizes the second screen approach to present information on
multiple screens, such as TVs, smartphones, tablets or desktop
PCs. Thus, we support scenarios like: users interacting with
additional information on their tablet, while watching a video on a
large screen like a TV. This paper presents the extension of our
approach by semantic extraction and automatic captioning, as
well as enhancements we achieved in interaction and
customization to improve the user experience.

The rest of this paper is structured as follows: We discuss our
previous work about media enrichment in Section 2. Our latest
enhancements are presented in Section 3. In Section 4 we describe
our planned demonstration. We discuss related work in Section 5.
Finally we conclude the paper and provide an outlook to further
developments.

2. SMARTCOMPOSITION APPROACH
In our previous work we created a prototype that demonstrates
our approach for media enrichment by synchronizing a video with
additional related content from the Web. This component-based
prototype uses standard Web technologies and runs as a Web
application in the browser. As described in our recent publications
[6, 7] we use annotated video files to dynamically retrieve and
display different kinds of information from various Web sources,
i.e. maps, images, tweets or articles as well as Web services like
translation or geocoding. Our approach consists of three
components implemented as JavaScript classes: SmartScreen,
MessageCenter and SmartTile. A SmartScreen is an abstract
representation of a browser window. It is the host for multiple
SmartTiles and contains a MessageCenter for communication
purposes. The SmartScreen provides a mashup environment for
SmartTiles, which are widgets that can process and display a
certain kind of information. To distribute the events across our
components we are using a modified publish/subscribe
mechanism. We extended this prototype to support multiple
screens by introducing a multi-device synchronization mechanism

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577025

111

that utilizes WebSockets, which is presented in [6]. During some
testing we faced several problems like the lack of support of new
HTML5 features, such as the TextTrack- [5] or WebSockets-API
[11], in some browsers. Furthermore, the process of manually
annotating videos requires a lot of effort and should be eased in
some way.

In the following chapter we show how we solved these problems
and describe new extensions and enhancements of our media
enrichment prototype.

3. NEW CHALLENGES SOLVED
Based on our recent prototype we now present several
enhancements that, on the one hand, will achieve cross-platform
support for real-time synchronization using several transport
protocols, on the other hand, will provide the users with an
automatic enrichment process and new features for interaction and
customization for a better user experience.

Unfortunately not all recent browsers support the TextTrack-API
of the HTML5 video element; this includes i.e. Firefox and
SmartTV browsers. Thus, our prototype was limited to a smaller
number of browsers. Therefore, we now use our own parser
written in JavaScript as a fallback solution for browsers without
TextTrack-API support. This parser processes the WebVTT [12]
files, which are used by the HTML5 video element for time-based
information, like subtitles or metadata, and provides the same
behaviour as the API. Using this fallback mechanism a larger
number of browsers can be used for our approach.

Another problem we targeted was the synchronization
technology. As mentioned before, we used WebSockets as the
only communication protocol. This was another reason that our
prototype was limited to a smaller number of user agents. To
handle this issue we integrate a new synchronization component,
which is written in JavaScript and uses the SockJS library [10].
This library provides a WebSocket-like object that gives us a
coherent, cross-browser JavaScript API, which creates a low
latency, full duplex, cross-domain communication channel
between the browser and the web server. It automatically uses
fallback transports like XHR streaming, XHR polling or iFrames.
Since SockJS offers the same API on client-side as the
WebSockets-API, we did not have to change our client-side code.
Thus, all major browsers, including the ones that do not offer the
WebSockets-API, are capable of synchronizing events.

The most significant enhancement of our approach is the
integration of a SmartTile that extracts keywords from subtitles
using text analysis to automatically enrich videos without manual
annotation. By utilizing the AlchemyAPI, which “provides
advanced cloud-based and on-premise text analysis
infrastructure” [1], we are able to use the transcripts or subtitles of
videos to provide the user with related information from the Web.
In particularly we are using the entity extraction endpoint of the
service, which “[...] is capable of identifying people, companies,
organizations, cities, geographic features, and other typed entities
within your HTML, text, or web-based content” [2]. The
AlchemyAPI uses “[...] sophisticated statistical algorithms and
natural language processing technology to analyze [...]
information, extracting the semantic richness embedded within”
[3]. The code in Listing 1 shows an example query to the Entity
Extraction API and the corresponding result. We are using an
extended form of publish/subscribe, where information gets
published on topics. The semantic extraction SmartTile processes
the results and generates a filtered output in the form of a

publication with the entity as keyword and a matching topic. The
topic is selected by mapping the type property to a predefined list
of topics. Currently we are only using the types and names of the
extracted entities to generate the output. Figure 1 displays a
schematic overview of this process.

Since our framework is already capable of handling single
keywords on different topics, we just map the entities, which are
the result of the text analysis, to these topics. Using this approach,
the existing SmartTiles can use the extracted keywords to present
related information in form of images, maps, articles or tweets.

Query sent to the Entity Extraction API:
Endpoint: http://access.alchemyapi.com/calls/text/
TextGetRankedNamedEntities

Parameter:
text="Portugal now wants to apply for EU financial
aid."

Answer (shortened):
[...]
 "entities": [{
 "type": "Country",
 "relevance": "0.33",
 "count": "1",
 "text": "Portugal",
 "disambiguated": {
 "subType": [
 "Organization",
 "Location",
 "CompanyDivision",
 "GovernmentalJurisdiction",
 "Airline"
],
 "name": "Portugal",
 "geo": "38.7 -9.183333333333334",
 "website":
"http://www.portugal.gov.pt/Portal/EN/",
 "dbpedia":
"http://dbpedia.org/resource/Portugal",
[...]

As we target mostly English content but not all videos have
English subtitles, we offer the option to chain a translation
SmartTile in this operation to translate foreign subtitles to English
ones, which then can be again be processed by the semantic
extraction tile.

Another extension we made is the support for session
management. In our recent prototype we faced the problem that
all connected screens or devices shared the same workspace. This
caused problems while testing as well as on real scenarios.
Especially in multi-user, multi-screen scenarios there is a need for
grouping screens and separating user groups, because users do not
want to have all their devices in one workspace. Furthermore, it
was not possible to enrich multiple videos at the same time
without influencing the other ones. Therefore, we introduced a
mechanism to divide groups of participants into sessions
(distributed workspaces). A freely chosen string identifies a
session. This session identifier can be changed by the user at any
time and is represented in the URL of the application as the
fragment identifier. This enables the users to easily change their
session or join another one by changing the fragment identifier.
For a comfortable way of adding smartphones and tablets to a
session we provide a QR code that leads directly to the
corresponding URL.

Listing 1. Example query and result of the AlchemyAPI entity
extraction API

112

Each participant is presented a list of screens that are active in the
current session. This list is also used for the next enhancement we
made: the exchange of SmartTiles between screens. Users are able
to move SmartTiles from one screen to another by dragging and
dropping a SmartTile on the name of the screen they want the tile
to appear on. This operation removes the tile from the current
screen and tries to add it on the target screen. If the target screen
provides enough free space, the SmartTile will be added and the
content and functionality of it will be restored. To give an
example: a user has added a video and a map SmartTile on her
large desktop PC screen and wants to interact with the map on her
mobile device while watching the video on the large monitor. She
can move the map tile to the connected smartphone by dropping it
on the corresponding device name and the currently shown map
will be available on the smartphone. Furthermore, the tile will
receive following events from the video and will show new
related information. The exchange is done using a special
protocol message that is sent from one screen to the other and
contains all necessary data – such as the type and information to
display.

Using the new HTML5 Fullscreen API [4] we offer the users to
maximize SmartTiles. This is particularly useful, i.e. if one screen
is only showing a video or a small device, like a smartphone, is
showing information like a map. The content of the SmartTile
gets expanded to the whole screen, while hiding all window
frames and controls.

To provide the users with more flexibility while creating their
workspace, we made it possible to resize SmartTiles. With respect
to a grid, the users cannot only move tiles to their desired

location; they can also change the size of them by direct
interaction. We support interaction with mouse as well as with
touches on mobile devices. This functionality is achieved using
the jQuery-UI library.

Another problem we dealt with was that users were unaware of
the availability of annotations that are used for enrichment. To
handle this, we provide custom controls for our video SmartTile.
Those custom controls offer the same functionality as the standard
controls but are extended with a visualization of annotation
segments. Each segment is represented as a thin yellow line under
the seeking bar. This enables the users to easily identify how
many and how long additional information is available.

In the next chapter we describe the demonstration we will present.

4. DEMONSTRATION
Our demo presents an example workspace for automatically
enrich media using semantic extraction. We show a video tile that
plays a German newscast. The video has German transcriptions in
the WebVTT format attached. Next to the video tile there are a
few other kinds of SmartTiles that will present related information
from the Web as well as some tiles that are used as intermediate
components in the enrichment process. Since the video provides
German subtitles and we currently support English text only, the
subtitles get translated by a translate tile, which will then publish
the text in the translated form. The English text is received and
processed by the semantic extraction SmartTile. The results of the
semantic extraction - keywords that are published on different
topics - are displayed in different representations, as there are
SmartTiles for displaying maps, images, tweets or articles. The

Figure 1. Media enrichment on multiple screens utilizing semantic extraction

113

user can rearrange the workspace, add or remove SmartTiles and
can join multiple screens to a shared session. Within the session
the events are synchronized and the user can exchange SmartTiles
between the screens. An architectural overview of this
demonstration is depicted in Figure 1.

To show that and how our approach and demonstrator works with
different videos and subtitles, we integrate a special YouTube
connection. The user is able to add a video from YouTube using
the URL or ID of the video. The ID is used to get the URLs of the
actual video streams, which are added as the source attribute for
the HTML5 video tag. Since we rely on given subtitles or
annotation, the YouTube video has to have closed captions. Those
videos can be found by setting a filter on the YouTube search
page. Our approach uses WebVTT files to synchronize the
annotations with the playing video. YouTube does not offer the
subtitles in this format. Therefore, we provide a Web service that
transforms the closed captions from YouTube into the
standardized WebVTT format. It uses a simple grouping
algorithm to join single text lines into larger blocks. The service is
also capable of the automatic translation of the subtitles. Since the
service is directly responding the WebVTT structure, we can use
the URL of the service as the source attribute of the text track
element in the video tag. After the video is added to the
SmartScreen and the metadata is loaded, the semantic extraction
process described above is performed.

Demonstration: The prototype presented in this paper is
available for testing at:
http://vsr.informatik.tu-chemnitz.de/demo/chrooma/www14demo/

5. RELATED WORK
Closely related to enriching videos with additional content is the
HTML5 media framework Popcorn.js [8]. This framework is
“written in JavaScript for filmmakers, web developers, and
anyone who wants to create time-based interactive media on the
web” [8]. The framework allows one to attach time-based events
to web videos and audio files. The events can trigger various
actions, which are defined in plugins. For example you can
display simple text, a map, images, tweets or information from
Wikipedia. Most plugins display this information in a defined
HTML container element. As mentioned before, adding new
plugins, which can make use of other Web services, can extend
this functionality. The framework also provides parsers for
multiple subtitle formats. Thus, all those formats can be used to
populate a subtitle track. Popcorn.js is a client-side only
framework. There are no server-side components. The layout is
fixed and cannot be modified by the end-user. While our approach
enables enriching videos by displaying related content on multiple
screens, Popcorn.js does not cover any multi-screen aspects as
well as communication between plugins. Furthermore, there is no
semantic extraction available.

6. LESSONS LEAREND AND OUTLOOK
The presented prototype enhances the approach of media
enrichment by using semantic extraction. We extend our previous
work to extract keywords from given subtitles using the
AlchemyAPI. Our approach uses extracted named entities to
enrich a given video with additional related content. We reduce
the limitations of our recent work by implementing fallback
mechanisms to support more platforms and browsers. We use our
own WebVTT parser in JavaScript for browsers that do not yet

support new HTML5 APIs. Furthermore, the usage of SockJS
offers multiple fallback transports for the cross-screen
communication if the user agent does not support the WebSockets
API. New features for interaction and customization improve the
user experience and enable multi-user, multi-screen scenarios.

Our future work will focus on how to present information on
mobile devices, such as smartphones and tablets, with respect to
their screen size and resolution to improve the usability.
Especially the research of the human perception of information on
mobile devices would be challenging. Furthermore, based on the
semantic extraction of keywords and entities, we want to use
Semantic Web technologies to discover more related and
interlinked content. The AlchemyAPI already offers Linked Data
for their extracted keywords and entities, which can be exploited.

7. ACKNOWLEDGMENTS
This work was supported by the Sächsische Aufbaubank within
the European Social Fund in the Free State of Saxony, Germany
(Project Chrooma+).

8. REFERENCES
[1] AlchemyAPI | Transforming text into knowledge:

http://www.alchemyapi.com/. Accessed: 2013-10-08.

[2] Entity Extraction | AlchemyAPI:
http://www.alchemyapi.com/products/features/entity-
extraction/. Accessed: 2013-10-08.

[3] Entity Extraction API Documentation | AlchemyAPI:
http://www.alchemyapi.com/api/entity-extraction/.
Accessed: 2013-10-08.

[4] Fullscreen API: http://fullscreen.spec.whatwg.org/.
Accessed: 2013-10-08.

[5] HTML Standard | The video element:
http://www.whatwg.org/specs/web-apps/current-
work/multipage/the-video-element.html#timed-text-
tracks. Accessed: 2013-10-08.

[6] Krug, M. et al. 2013. Media Enrichment on Distributed
Displays by Selective Information Presentation: A First
Prototype. Paper presented at the 5th International
Workshop on Lightweight Integration on the Web
(ComposableWeb 2013) (2013).

[7] Oehme, P. et al. 2013. The Chrooma + Approach to
Enrich Video Content using HTML5. Proceedings of the
22nd international conference on World Wide Web
companion (WWW ’13 Companion) (2013), 479–480.

[8] Popcorn.js | The HTML5 Media Framework:
http://popcornjs.org/. Accessed: 2013-10-08.

[9] Smith, A. and Boyles, J. 2012. The Rise of the
“Connected Viewer.”

[10] SockJS | WebSocket emulation: http://sockjs.org/.
Accessed: 2013-10-08.

[11] The WebSockets API: http://w3.org/TR/websockets/.
Accessed: 2013-10-08.

[12] WebVTT: The Web Video Text Tracks Format:
http://dev.w3.org/html5/webvtt/. Accessed: 2013-10-08.

114

