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ABSTRACT
A salient dynamic property of social media is bursting be-
havior. In this paper, we study bursting behavior in re-
lation to the structure of fluctuation, known as fluctuation-
response relation, to reveal the origin of bursts. More specif-
ically, we study the temporal relation between a preceding
baseline fluctuation and the successive burst response us-
ing a frequency time series of 3,000 keywords on Twitter.
We find three types of keyword time series in terms of the
fluctuation-response relation. For the first type of keyword,
the baseline fluctuation has a positive correlation with the
burst size; as the preceding fluctuation increases, the burst
size increases. These bursts are caused endogenously as a
result of word-of-mouth interactions in a social network; the
keyword is sensitive only to the internal context of the sys-
tem. For the second type, there is a critical threshold in
the fluctuation value up to which a positive correlation is
observed. Beyond this value, the size of the bursts becomes
independent from the fluctuation size. Our analysis shows
that this critical threshold emerges because the bursts in
the time series are endogenous and exogenous. This type
of keyword is sensitive to internal and external stimuli. The
third type is mainly bursts caused by exogenous bursts. This
type of keyword is mostly sensitive only to external stimuli.
These results are useful for characterizing how excitable a
keyword is on Twitter and could be used, for example, for
marketing purposes.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Servies - Web-based services; H.1.2 [Models and
Principles]: User/Machine Systems; J.4 [Computer Ap-
pication]: Social and Hehavioral Sciences - Sociology

1. INTRODUCTION
Social media such as Facebook, Twitter, and Google Plus

have established their role as information-sharing tools, both
personally and commercially [7]. With the introduction of
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these new forms of social media, one can observe how people
respond to specific information on the web. When informa-
tion receives collective attention, the information appears as
a burst, an increase in the number of appearances about the
information for a certain period of time on social media. For
example, if we take the number of tweets that contain the
keyword earthquake as depicted in Figure 1, the bursts in
the keyword time series show a strong correlation with the
occurrences of earthquakes. This is because when there is an
earthquake, people tend to tweet about it using the keyword
earthquake. These bursts occur aperiodically in accordance
with the timing of the earthquakes.

Another example of bursts is in the keyword time series
such as school as depicted in Figure 1. We observe daily pe-
riodic bursts since people attend school every day on week-
days and people tweet about it. As these examples show,
by aggregating the time series of keywords on social media,
such as Twitter, we can extract patterns that exhibit under-
lying natural phenomena to human behaviors. There is also
a keyword such as joy, which does not show obvious bursts
but continuous fluctuations in the number of tweets as in
Figure 1.

A burst is one of the most salient temporal features on
Twitter. Several studies have investigated the properties of
these bursts to reveal insight into people’s collective behav-
ior [2, 8]. Crane and Sornette analyzed a property of a burst
in terms of endogenous and exogenous bursts [2]. Exogenous
bursts are caused by external influences such as earthquakes
or appearances in the mass media. Endogenous bursts are
caused as a result of word-of-mouth interactions in a social
network. Crane and Sornette found that whether a burst is
exo- or endo- can be found by looking at the peak ratio of
the burst; when the peak ratio is small, then the burst is
endogenous, otherwise exogenous. Lehmann et al. applied
their findings to a large-scale record of tweets, specifically
hash-tagged tweets, and using endogenous and exogenous
bursts, demonstrated that tweets can be clustered into four
classes [8].

In these studies, Twitter is a system that directly reflects
people’s responses. However, a system, even an artificial
one, should exhibit an autonomous internal structure [9, 11,
1]. This autonomous internal structure can be found, for
example, in a chemically made self-running oil-droplet [5,
4]. An oil droplet is a very simple artificial system made
of olive oil and alkaline water. Although the system is sim-
ple, through interactions with the environment, the droplet
starts to move around autonomously as a result of the emer-
gence of convection flow within the droplet. Another au-
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Figure 1: Examples of time series (red lines) and
detected bursts (gray bars; the height indicates the
burst level). A) The periodic type with a small time
scale (school, Monday), the periodic type with a large
time scale (flu), B) the intermittent type (earth-
quake, wind), and C) the noisy type (joy).

tonomous system, among many, is a neuron in the brain.
The brain shows active patterns consuming more metabolic
energy when the brain is resting; no input is fed into the
brain. This mode in the brain, known as the default mode,
has been extensively studied and revealed insights into sev-
eral functionalities of the brain [12, 13].

Our interest here is Twitter, which exhibits bursting be-
haviors similar to the firing of a neuron in the brain and
has an internal structure that defines the response size, i.e.,
burst size, within the system. To investigate this notion
quantitatively, we use a theory called fluctuation-response
relation in statistical physics [14]. This theory says that if a
system exhibits fluctuation, the response size to an external
stimulus has a linear relation with the size of the fluctu-
ation. That is, the larger the fluctuation, the larger the
response size. For example, imagine a ball in a plate, and
the ball is fluctuating within the plate. If the fluctuation is
small, the ball would not get out of the plate when there is
a stimulus (e.g., tilt the plate with a human finger). How-
ever, if the fluctuation of the ball is large, the ball would
get out of the plate with a stimulus from outside. In gen-
eral, the fluctuation-response relation holds in the thermally
equilibrium system but is phenomenologically extended to
many non-equilibrium open systems from physics [14] to bi-
ology [10, 16] and economics [15].

Table 1: General statistics for the dataset
total number of tweets 297,792,366
total number of users 12,677,098
total number of keywords 1,550,770

We are interested in whether this fluctuation and response
relationship also holds in the Twitter keyword time series as
an autonomous property of Twitter. More specifically, we
regard the size of the burst as the strength of the response on
Twitter and the standard deviation in the number of occur-
rences of keywords as the fluctuation and studied the tem-
poral relationships. We found that the fluctuation-response
relation holds on Twitter as well. That is, when the fluc-
tuation is small, the response to external stimuli is smaller,
and when the fluctuation is larger, the response increases.

The rest of the paper is organized as follows. In section
2, we describe the data set used for the study as well as
the method for detecting bursts that divide each keyword
time series into the fluctuation periods (non-bursting peri-
ods) and bursting periods. In section 3, we show the detailed
analysis of fluctuation and response relation and report the
results. We also further classify these bursts as endogenous
or exogenous by looking at the peak ratio of each burst and
discuss the ratio in relation to the fluctuation-response rela-
tion. In section 4, we conclude and discuss future work.

2. MATERIALS AND METHODS
We describe the data used for this study as well as the

methods used for detecting bursts in the time series.

2.1 Data
We collected tweets (in Japanese) over a two-year pe-

riod beginning in July 2011, using Streaming API with the
sampling method available at the Twitter developers site1.
Then, we applied morphological analysis using MeCab soft-
ware, state-of-the-art software for Japanese morphological
analysis2. We then extracted the 3,000 most frequently used
Japanese nouns as keywords in the tweets.

In the collected data were many automated tweets posted
by programs called bots. Some of the data had peculiar
statistics due to these bots. To mitigate the bot effect, we
used the number of unique users to count the frequency of
the keywords, rather than the number of tweets. The basic
statistics of the data are shown in Table 1. We chose the
3,000 most popular keywords from 1,550,770 distinct key-
words and created a time series for each keyword by count-
ing the number of unique users in 10-minute time intervals.
We then smoothed each time series using a Gaussian kernel
with a standard deviation of 30 minutes.

2.2 Detection of bursts and fluctuations
Bursts and fluctuations form a continuous spectrum in a

time series; thus, we may not have the necessary criterion for
distinguishing between the two. However, we believe that
they are intuitively and qualitatively different. One sup-
porting argument is that the form of frequency distribution
suggests that it consists of a log-normal distribution with a

1Streaming API collects at most 1% of all tweets produced
on Twitter at a given time according to the documentation
available at https://dev.twitter.com.
2Available at https://code.google.com/p/mecab/.
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Figure 2: Overall fluctuation-response relation for
the 3,000 keywords. σ(A) and E(A) are the standard
deviation and the mean frequency of the baseline
periods, respectively. E(B) is the mean frequency of
the burst periods in a time series.

long-tail part. The log-normal distribution corresponds to
the fluctuation and the long-tail part to bursts. We thus la-
bel each period of the time series as either a burst or baseline
fluctuation.

We symbolize the time series by baseline fluctuation (Ai)
and burst (Bi) periods. That is, each time series is trans-
lated into a symbol sequence of A1, B1, A2, B2, . . . , An, Bn.
Each baseline period Ai is always followed by a burst Bi. As
we will see in detail, a burst period, Bi, is roughly defined
to exist when the frequency is two times the overall average
according to the Kleinberg algorithm [6] and otherwise as a
baseline period, Ai.

Kleinberg’s algorithm [6] is used to distinguish burst ac-
tivity (Bi) from baseline activity (Ai). The algorithm as-
sumes the Poisson process for tweets; that is, successive
tweets occur independently following Poisson distribution
f(x) = λe−λx, where λ is the mean frequency and x is the
interval of the successive tweets. We define the burst level
at each time t (i(t)) to distinguish burst activity from base-
line activity. This level is not fixed over time but evolves as
the mean frequency becomes s times larger than the over-
all mean frequency. We here set s = 2, so that the burst
level increases by one when the frequency is twice as large
as before. Formally, the mean frequency λ in the formulae
is substituted with λi(t) and is defined as λi(t) = λ̄si(t). The
entire mean value is denoted by λ̄.

Another parameter, γ, is also used to control the cost
of changing the burst level between successive time points.
The burst detection process identifies the time series of the
burst level by minimizing the cost function defined by fre-
quency matching and burst level stabilizing under constant
parameters s and γ. We used γ = 1 and extracted the time
periods in the time series that are i(t) > 0 as burst periods,
and otherwise as baseline periods. During the burst period,
we also spotted a time point when the frequency was the
highest; we called this point the peak of the burst.
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Figure 3: Three types of relationships identified be-
tween the baseline fluctuation, σ(Ai)/E(Ai), and the
peak burst size, pi/E(Ai). Type I: The response
size has a positive correlation to the amplitude of
its immediately prior baseline fluctuation (e.g., joy
and flu). Type II: A positive correlation between
the response size and the amplitude of the imme-
diate prior baseline fluctuation to a certain thresh-
old and has relatively large responses beyond the
threshold (e.g., school and Monday). Type III: Abrupt
responses ranging from small to large at a specific
threshold; most importantly, all responses are con-
centrated around the threshold (e.g., earthquake and
wind).

Using this setting, we labeled each period in a time series
as either a baseline fluctuation period or a burst period for
the 3,000 keyword time series. We then roughly classified
them into three patterns, periodic, intermittent, and noisy,
based on the temporal bursting patterns. The original time
series are depicted with red lines, and the detected bursts
are depicted with gray bars with the height indicating the
burst level. The bursts detected in these three typical pat-
terns are depicted in Figure 1. The three patterns are also
reported as representative patterns of other online media
such as blogs [3].

3. ANALYSIS
We study the temporal relation between the baseline fluc-

tuations and the bursts of the 3,000 keyword time series.

3.1 Fluctuation-response relation
The fluctuation is represented by the standard deviation

of the baseline frequency, denoted as σ =
√∑

x2
t − (

∑
xt)2.

To study the overall relationship between a baseline fluctu-
ation and a burst for all 3,000 keywords, the average fluc-
tuations and the average burst sizes for each time series are
plotted in Figure 2. In the figure, we observe a positive cor-
relation between the fluctuation sizes and the burst sizes.

We then closely studied the temporal relation between a
baseline fluctuation and a burst for each keyword by plot-
ting each transition from Ai to Bi for n number of pairs. We
found three typical classes of the relation exhibited. The
three typical plots, type I to type III, are shown in Fig-
ure 3. The first type, type I, shows a relationship between
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the baseline fluctuation and the burst such that the response
size (i.e., the maximum size, or the peak pi of the burst pe-
riod Bi) is correlated with the amplitude of the immediately
preceding baseline fluctuation σ (e.g., keywords such as joy
and flu in Figure 3, type I).

The second type, type II, has a point up to which the
fluctuation gradually amplifies where the fluctuation-burst
relation changes qualitatively and causes large bursts (e.g.,
the keywords school and Monday in Figure 3, type II). We
call this the critical threshold. Below this critical thresh-
old, the burst response has a positive correlation with the
preceding baseline fluctuation. Above the critical threshold,
the size of the response becomes independent from the fluc-
tuation size. Interestingly, these keywords have occasional
bursts due to events that break periodicities. Taking the
example of school, some periodicities originate in the cir-
cadian rhythm. Sometimes this periodicity breaks, and the
fluctuation increases, causing the bursts that follow to also
be larger (see Figure 4). These periodicity-broken phases
correspond to major school breaks, such as spring, summer,
and winter holidays. A disruption in repetitive everyday life
triggers a large burst.

12/11/17 12/12/01 12/12/15 12/12/29 13/01/12 13/01/26 13/02/09 13/02/23

Fr
eq

ue
nc

y

Date

Figure 4: Breaks in the periodicities for the keyword
school originating in the circadian rhythm causing
the following bursts to increase.

The third type, type III, is found in keywords such as
earthquake and wind, which are depicted in Figure 3 (type
III). For this type, the fluctuation-independent bursts range
from small to large merged at or above the critical threshold.
The threshold value varies from one keyword to another. In
the next section, we analyze the causes of the emergence of
this critical threshold in terms of endogenous and exogenous
bursts.

3.2 Endogenous and exogenous bursts
We identify each keyword’s bursts as endogenous or ex-

ogenous by extending Crane and Sornette ’s work in [2].
Namely, we consider not only the peak ratio but also com-
pare it with the respective burst sizes to classify endoge-
nous and exogenous bursts. More concretely, we measured
each burst’s peak-size ratio pi/Si against its scaled burst size
Si/E (Ai), where, pi is the burst peak height, and Si is the
burst size. Exogenous bursts are caused by external influ-
ences, and the peak-size ratio becomes larger than a certain
value; otherwise, the burst is defined as endogenous. Crane
and Sornette analyzed a property of a single burst; however,
we statistically analyzed a series of bursts at one time point
and classified them as one of two distinct types of bursts.

Figure 5 shows the plots for types I, II, and III, repre-
sented by the corresponding keywords, respectively. Each
point is colored using the fluctuation value depicted in Fig-
ure 3. The value is scaled from 0 to 1 for each keyword, with
blue the smallest fluctuation value and red the largest fluc-
tuation value. The peak-size ratio is either almost inversely
proportional to the burst size on a logarithmic scale and the
deviations from the proportional line. When the peak-size

ratio is inversely proportional to the burst size, the size of
the burst is bounded and rarely causes larger bursts. These
bursts are endogenous. The colors in the figure suggest that
these bursts have smaller fluctuation values. When the peak-
size ratio deviates from the inversely proportional line and
remains high, the average burst size is not bounded, result-
ing in larger bursts. These bursts are exogenous. The colors
in the figure suggest that these bursts have larger fluctuation
values.

Based on these criteria, we can see that type I bursts, rep-
resented by the keywords joy and flu in Figure 5, almost all
the bursts, are endogenous. Type II bursts as represented
by the keywords school and Monday are a mixture of en-
dogenous and exogenous bursts. The bursts with smaller
fluctuation values are endogenous, and the ones with larger
fluctuation values are exogenous. This mixture of the two
types of bursts is the critical threshold for the fluctuation
values discussed in the previous section. For type III bursts,
represented by the keywords earthquake and wind, most of
the bursts are exogenous with a high peak ratio regardless
of the burst sizes or the fluctuation values.

The relationship between fluctuation and response cor-
responds to endogenous bursts. In other words, when the
burst is endogenous, the amplitude of the baseline fluctua-
tion directly influences the burst size. However, the bursts
on and above the critical threshold are exogenous, and the
size of the burst becomes independent from the size of the
fluctuation. By measuring whether bursts in a keyword are
caused endogenously or exogenously, we can classify the key-
word as one of the three fluctuation relations (type I, II, and
III in Figure 3) and use it, for example, to characterize the
excitability of the keyword to an external stimulus.

4. CONCLUSION AND DISCUSSION
In this paper, a temporal relationship between a baseline

fluctuation and the subsequent response as a burst was stud-
ied. Twitter has a sensor that responds not only to external
stimuli but also to internal dynamics. This is observed in the
relationship between the baseline fluctuation and the burst
sizes in the keyword time series. In some keywords, a re-
sponse or a burst increases along with a baseline fluctuation.
These bursts are caused endogenously. Some keywords have
a threshold at the fluctuation value. Taking the threshold as
a dynamic phase transition, we can interpret the fluctuation
increase to the transition point as a critical fluctuation. At
or above the threshold, the response becomes independent
from the baseline fluctuation size, showing a wide range of
burst sizes as a result of external influences. This critical
threshold emerges as the result of different types of bursts,
endogenous and exogenous bursts. The threshold has differ-
ent values for different keywords and is self-organized due to
an external disruption or coupled with different oscillatory
behaviors. Other keywords show only exogenous bursts at
a specific fluctuation value showing a wide range of burst
sizes.

Based on these findings, we can identify, for example, how
responsive a keyword is to internal or external stimuli and
use it for marketing purposes.
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