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ABSTRACT
Online content ratings services allow users to find and
share content ranging from news articles (Digg) to videos
(YouTube) to businesses (Yelp). Generally, these sites al-
low users to create accounts, declare friendships, upload and
rate content, and locate new content by leveraging the ag-
gregated ratings of others. These services are becoming in-
creasingly popular; Yelp alone has over 33 million reviews.
Unfortunately, this popularity is leading to increasing lev-
els of malicious activity, including multiple identity (Sybil)
attacks and the “buying” of ratings from users.

In this paper, we present Iolaus, a system that leverages
the underlying social network of online content rating sys-
tems to defend against such attacks. Iolaus uses two novel
techniques: (a) weighing ratings to defend against multi-
ple identity attacks and (b) relative ratings to mitigate the
effect of “bought” ratings. An evaluation of Iolaus using mi-
crobenchmarks, synthetic data, and real-world content rat-
ing data demonstrates that Iolaus is able to outperform ex-
isting approaches and serve as a practical defense against
multiple-identity and rating-buying attacks.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security

Keywords
Content rating; Sybil; Vote buying; Social network

1. INTRODUCTION
Online content sharing services are a popular mechanism
for users to find and share content; sites exist to share con-
tent such as business recommendations (e.g., Yelp, TripAd-
visor), news articles (e.g., Digg, reddit), multimedia con-
tent (e.g., Flickr, YouTube), apps (e.g., iOS App Store,
Google Play), and URLs (e.g., StumbleUpon, del.icio.us).
Generally, these sites allow users to create accounts, declare
friendships, and upload and rate content. The sites’ extreme
popularity is evidenced by the massive amounts of content
that are uploaded: YouTube receives over 72 hours of new
video uploaded every minute [35], and Yelp boasts reviews
on over 889,000 businesses worldwide [47]. To locate rele-
vant and trustworthy content from among this massive set
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of uploaded content, users are encouraged to rate content,
with highly rated content receiving more prominent place-
ment. The most highly rated content typically appears on
the front page of the site or is listed more highly in search
results, garnering significant attention and traffic.

Unfortunately, the increasing popularity of online content
sharing sites has made them an attractive target for manip-
ulation. For example, malicious users often attempt to en-
sure that their content is more highly ranked (or that others’
content is more lowly ranked). On certain sites, such manip-
ulation can have significant financial consequences: Recent
studies have shown that increasing a business’s overall rating
on Yelp by one star can lead to 9% increase in revenue [19],
explaining the numerous instances of rating manipulation
that have been observed [1,26,30,32,33].

In general, manipulation on content rating sites is enabled
by two separate attacks:

• Malicious users can create multiple identities (i.e.,
Sybils [10]), and use these identities to provide pos-
itive ratings on their own content or negative ratings
on others’ content [30,32]. This is exacerbated by the
fact that accounts are typically free to create, requiring
only an email address and a solved CAPTCHA [42].

• Malicious users can “buy” positive or negative ratings
from otherwise legitimate users by offering small com-
pensation in exchange for ratings [1,33].1 This is made
worse by the fact that most content only receives a
few ratings, making it possible to greatly influence the
overall ranking with just a few additional ratings.

Such manipulation is undesirable for the site operator
(whose reputation is negatively impacted by successful ma-
nipulation) as well as honest end users (who depend on the
site to locate relevant and trustworthy content).

In this paper, we present the design and implementation
of Iolaus,2 a system that is designed to be run by the site
operator to mitigate the effect of rating manipulation via
the creation of multiple identities or the “buying” of ratings.
Iolaus works using two techniques: weighing ratings and rel-
ative ratings. First, Iolaus leverages the structure of the

1This compensation can take multiple forms, depending on
the particular site: for example, businesses can offer dis-
counts for Yelp ratings [1], and users can offer reciprocal
ratings for Flickr favorites [15].
2In Greek mythology, Iolaus was a nephew of Heracles. Io-
laus provided essential aid to Heracles by helping to defeat
the Hydra, a multi-headed monster who would grow two
heads each time an existing head was cut off.
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social network to bound the influence over the overall rating
that malicious users can achieve via the creation of multiple
identities. Iolaus assigns personalized weights to each rat-
ing, and selects the weights using a multi-commodity max
flow formulation. Doing so ensures that the total weight of
a single (human) user’s ratings is bounded, regardless of the
number of identities she creates.

Second, Iolaus uses the fact that most users provide few
ratings to reduce the effectiveness of “buying” ratings. In-
stead of using a single rating directly as a raw score (e.g.,
content C gets !!!), Iolaus transforms the user’s rating
to a ranking relative to all of the user’s other ratings (e.g.,
C is in the top 10% of content). Since most legitimate users
provide few ratings, “buying”ratings from random users pro-
vides significantly less benefits in Iolaus than it does today.

We demonstrate the effectiveness of Iolaus using three
techniques. First, using microbenchmarks, we show that
Iolaus has sufficiently low CPU and memory overhead to al-
low it to be practically deployed to the content sharing sites
of today. Second, using synthetically generated simulation
data and social network data from YouTube, we demon-
strate that Iolaus performs as expected, strictly bounding
the influence of malicious users and reducing their ability to
“buy” ratings from random legitimate users. Third, we col-
lect a complete dataset of businesses in two cities from Yelp,
covering roughly 2m ratings on over 39k businesses provided
by 1.5m users. We validate that Iolaus does not adversely
affect the rankings for honest users in absence of malicious
behavior, and is able to defend against multiple identity and
purchased-rating attacks when applied to Yelp.

2. RELATED WORK
We now briefly cover related work, encompassing Sybil at-
tack prevention and fake rating detection.

2.1 Blocking Sybils
Due to the attractive attack vector that free accounts pro-
vide, there is significant research interest in mitigating Sybil
attacks. Traditional defenses against Sybil attacks rely on
either trusted central authorities or tying identities to re-
sources that are hard to obtain, such as social security num-
bers [5], mobile phones [24], or crypto-puzzles [2,4,6].

Recently, researchers have explored analyzing the struc-
ture of social networks as a mechanism for locating Sybil
identities [9, 20, 29, 37, 44, 45] (a more extensive background
is provided in [39]; we review the details relevant to Iolaus
here). Unfortunately, there are two drawbacks to using ex-
isting Sybil defense schemes in content rating sites. First,
existing schemes make the assumption that the honest re-
gion of the social network is densely connected with few
internal small cuts [41] (formally, that the honest region
is fast-mixing [25]). Recent work [18, 21] has cast doubt
on this assumption, suggesting that existing Sybil detection
schemes may end up accepting many Sybils or preventing
honest users from interacting with each other [41]. Second,
most pieces of content have few ratings; allowing even a
small number of fake identities into the system can allow an
attacker to“control” the rating for many items (for reference,
SybilLimit [44] accepts O(log n) Sybils per attack edge).

2.2 Tolerating Sybils
Instead of trying to explicitly label identities as Sybil or non-
Sybil, other approaches have focused on mitigating Sybil

attacks in content rating services. Such systems are known
as Sybil tolerant systems [39]. For example, DSybil [46] finds
trusted users in the network (referred to as guides), and has
provable optimality guarantees. However, DSybil can only
provide recommendations for users who have submitted a
sufficient number of ratings, which is often a small fraction
of the population in practice. For example, in our Yelp
data (fully described in Section 7), only 15% of users have
provided more than 5 reviews. Also, DSybil is designed for
rating systems where objects can only be either good or
bad; Iolaus targets content rating systems that allow users
to provide more fine-grained ratings.

SumUp [38] is another Sybil tolerant system that inspired
our design. SumUp uses tokens passed over the social net-
work in order to determine whether users’ votes will be
counted. While SumUp is conceptually similar to Iolaus,
SumUp unfortunately has three weaknesses that Iolaus ad-
dresses: First, SumUp assumes that the region of the social
network surrounding the user requesting the vote (called the
envelope) is free of malicious users; if a malicious user is
nearby, they receive many tokens and can issue many votes.
Second, outside of the envelope, SumUp allows manipula-
tion by malicious users: Honest users with multiple links
are only allowed to place a single vote, while malicious users
who divide their attack links across multiple accounts can
potentially place multiple votes. Third, SumUp was not
designed to address the “buying” of ratings from otherwise
honest users. We demonstrate in Section 7 that Iolaus ad-
dresses these drawbacks and outperforms SumUp on real-
world data.

2.3 Detecting fake ratings
Additionally, significant research has explored using data-
mining techniques to detect and characterize rating manip-
ulation. Systems have been built that use a variety of dif-
ferent inputs, including linguistic characteristics [27], user
behavior [16,17,23], sets of recommended items [7], and com-
mon sets of user-reviewer pairs [43]. While these techniques
can detect certain rating manipulation today, they rely on
particular characteristics of malicious behavior. Regardless,
such techniques could be used in combination with Iolaus.

3. IOLAUS DESIGN
We expect Iolaus to be deployed by the operator of a con-
tent rating site, such as Yelp or Flickr; we shall refer to
this entity as the operator. Iolaus is designed to replace the
existing content rating aggregation logic that the operator
uses (i.e., instead of taking the average or performing review
filtering [49], the operator would instead query Iolaus).

We assume that the operator collects ratings by a set of
user accounts (referred to as identities) on a set of content
objects; a user providing a rating on a given piece of content
is referred to as a rater. We assume that non-malicious users
provide honest ratings, with the exception of a small fraction
of “bought” ratings.

We assume that the operator also provides the ability for
users to declare “friends” and that friendship requires the
approval of both parties; many content rating services (e.g.,
Yelp, Flickr, YouTube) already have such a social network.
Similar to prior work [9, 37, 44, 45], we assume that links to
a non-malicious user take effort to form and maintain. In
other words, a malicious user cannot obtain an arbitrary
number of links to non-malicious users. Note that we make
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no assumptions about the difficulty of obtaining identities
(a single person may have many identities), or the structure
or links between the malicious identities. As a result, each
(human) user has a cut in the network between identities
that she owns and identities owned by other (human) users;
while she can create identities and links on her side of the
cut, she cannot unilaterally increase the size of her cut.

3.1 Input to Iolaus
We assume that the operator provides input to Iolaus:

• Social network Iolaus takes as input the list of social
links between the identities. We assume this is repre-
sented as an undirected graph G = (V,E), and that
this graph is connected.

• Ratings Iolaus also takes as input the set of user rat-
ings, represented by (identity, content, rating) tuples.
identity represents the user identity, content repre-
sents the content being rated, and rating represents
the identity’s rating.

3.2 System overview
The goal of Iolaus is to aggregate the ratings placed on con-
tent while ensuring that malicious users gain little additional
influence by creating multiple identities or “buying” ratings.
We make three observations that motivate Iolaus’s design:

1. Personalized aggregation Most existing content
rating aggregate schemes provide a single, global, ag-
gregated rating for each piece of content (e.g., a busi-
ness is !!! on Yelp). We take an alternate ap-
proach, allowing a personalized aggregated rating for
each identity. Such an approach naturally captures le-
gitimate differences of opinion (content ratings are, af-
ter all, opinions), and certain sites already provide per-
sonalized content ratings (e.g., Digg [36], Netflix [3]).
We refer to the identity for whom we are calculating
the aggregate rating as the collector.

2. Weighing ratings Existing approaches generally
make a binary choice to either accept or reject each
identity’s rating when aggregating (e.g., Yelp’s distinc-
tion between filtered and unfiltered reviews, SumUp’s
allowing or denying of votes). Instead, we weigh each
identity’s rating, and allow different identities to have
different weights.

3. Relative ratings Finally, existing approaches view
ratings as absolute (e.g., content C gets !!!). Given
that most identities rate few objects, this approach
does not consider the amount of information each rater
has provided (e.g., an identity who has only rated a
single piece of content “counts” the same as an identity
who has rated hundreds). In Iolaus, we transform raw
ratings into relative ratings before aggregation.

In the following two sections, we describe how Iolaus
chooses to weigh and interpret ratings, enabling it to de-
fend against Sybil attacks and the “buying” of ratings.

4. MITIGATING SYBIL ATTACKS
Iolaus defends against multiple identity (Sybil) attacks
through the weighing of ratings. Consider the set of raters
R ⊆ V on a single content object. Instead of taking the

A'A

G(V, E)

(a)

A

G(V, E) G(V, E)

A

(c)

A A A A A AA'

(b)

Figure 1: (a) A social graph, (b) malicious user A
conducts a Sybil attack by splitting her identity, (c)
malicious user A conducts a Sybil attack by creating
a Sybil cluster.

average of all ratings to be the aggregate rating, Iolaus uses
a weighting function w(r) → (0,∞) that assigns a positive
weight to every rater r ∈ R. The aggregated rating is then
simply the weighted average of these ratings

∑
r∈R w(r) · vr∑

r∈R w(r)

where vr is the rating of rater r. For existing systems which
weigh all ratings equally, w(r) = 1 for all r.

The key challenge, then, is to select a weighting function
that limits the ability for malicious users to gain additional
aggregate weight through Sybil attacks (where a user’s ag-
gregate weight is the total weight of the subset of her iden-
tities in R). We also desire to select a non-trivial weighting
function, which we define as a weighting function that as-
signs a non-zero weight to all identities.3

Below, we first formally define a Sybil attack in Iolaus’s
context, before detailing the properties we would like a
weighting function to have. Finally, we describe the weight-
ing function in Iolaus.

4.1 Sybil attack
Formally, suppose that a malicious user controls a set of
identities I ⊂ V . Consistent with prior work [45], we label
the cut (I, V \ I) as the attack cut (and the links along the
cut as attack links), as these links signify links between the
malicious user and identities controlled by other users. By
our assumptions in Section 3, the number of attack links is
bounded, but the number of identities in I and the number
of links between these identities are unbounded.

As a result, a malicious user is able to perform three ac-
tions as part of a Sybil attack, depicted in Figure 1:

1. Create additional identities A malicious user is al-
lowed to create any number of identities.

2. Create links between owned identities A mali-
cious user is allowed to create links arbitrarily between
identities she controls.

3A non-trivial weighting function is desired as we never ac-
tually know if a given rating was placed by a malicious or
non-malicious identity; allowing a weighting function to give
large numbers of identities 0 weight may discard most of the
useful ratings.
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Figure 2: (a) a simple social graph consisting of
three nodes a VC and two raters; V1 and V2, (b)
same graph, but a new rater, V3, is added to the net-
work, (c) same graph, but now V1 decides to split
her identity by creating a new node, V3.

3. “Split” identities on attack links A malicious user
is allowed to assign her end of her attack links to any of
the identities she possesses. For example, if the mali-
cious user possesses malicious identities A1. . .An, and
she has two attack links to non-controlled identities B
and C, she can assign any of her Ai identities to be
her endpoint of the attack links.

4.2 Sybil-proof
Ideally, we would like to select a weighting function that is
Sybil-proof, meaning the weighting function ensures that a
malicious user can gain no additional aggregate weight by
conducting a Sybil attack. Formally, assume we have social
networks G and G′, where G′ is the same as G except that
malicious user A has conducted any number of Sybil attack
actions (described in Section 4.1). For example, G and G′

may be the graphs shown in Figure 1 (a) and Figure 1 (b)
or (c). A Sybil-proof rating system would ensure that the
aggregate weight assigned to raters that A controls is the
same in both G and G′.

Unfortunately, Sybil-proof weighting functions on real-
world networks are forced to be trivial, meaning they assign
a weight of 0 to all raters that have multiple distinct paths to
the collector (which, in practice, is almost all raters). To see
why, consider the example shown in Figure 2 (b), where V C
is the collector and V 1, V 2, and V 3 are the raters. Consider
rater V 3, who has two distinct paths to V C. V 3 could be
(a) a legitimate, non-malicious identity, (b) part of a Sybil
attack by rater V 1, who splits her identity when linking to
V 2 as shown in Figure 2 (c), or (c) part of a Sybil attack
by rater V 2, who splits her identity when linking to V 1. In
either of the latter cases, each of V 1 and V 2 should get the
same (aggregate) weight as in the network shown in Figure 2
(a). Thus, any weighting function that is Sybil-proof must
assign V 3 a weight of 0.

As a result, requiring a weighting function to be Sybil-
proof precludes non-trivial weighting functions in practice.
Instead, we must relax our requirements.

4.3 Sybil-bounded
We relax the requirement of our weighting function from
being Sybil-proof to being Sybil-bounded. A Sybil-bounded
weighting function is one where, given a social network G
and malicious user A, there exists a bound BA > 0 such that

under any Sybil attack by A, the aggregate weight received
by A’s raters is always less than BA. In other words, a
malicious user may be able to get some additional weight
through Sybil attacks, but there exists a bound on the total
weight the malicious user will be able to receive, regardless
of the number of identities A creates.

Compared to a Sybil-proof weighting function, a Sybil-
bounded weighting function is strictly weaker (as malicious
users can gain additional weight via Sybil attacks). How-
ever, we demonstrate below that (a) we can construct Sybil-
bounded weighting functions that are non-trivial, and (b) we
can select a weighting function that has tight bounds (leav-
ing little additional weight to be gained via Sybil attacks).

4.4 Using max flow
Our goal now is to ensure that the weighting function is
Sybil-bounded (i.e., that aggregate weight of the identities
that the malicious user controls is bounded, regardless of
how the malicious user conducts a Sybil attack). To do
so, Iolaus expresses the problem of assigning weights as a
multi-commodity max flow [11] problem,4 viewing the social
network as a graph with all links having unit capacity, and
with the raters each sourcing a different flow, and with the
collector serving as all flows’ sink. We take the amount of
flow that each rater is able to source as that rater’s weight.

We choose multi-commodity max flow as it naturally has
the Sybil-bounded property that we desire [34]. To see why,
recall that the maximum flow between any two sets of nodes
is defined by the minimum cut in the graph between the
source and sink [13]. The attack links represent such a cut,5

implying that the total flow—and therefore total weight—of
the attacker is bounded, since the size of the attack cut is
bounded by our assumptions in Section 3. Thus, regard-
less of how the malicious user conducts a Sybil attack, the
aggregate weight of the attacker’s ratings is bounded.

Moreover, using multi-commodity max flow also ensures
that multiple malicious users gain no benefit from collusion.
To see how, suppose that there are two malicious users.
Without collusion, the two are each bounded by their re-
spective set of attack links; should they collude, they are
bounded by the union of their attack links.6

4.5 Ensuring tight bounds
Ensuring the presence of bounds limits the potential impact
of a Sybil attack, but to be useful in practice, we would
like to ensure the bounds are tight. Formally, we would like
to minimize the difference between the assigned weights and
the bound; doing so ensures that the malicious users can gain
the least amount of weight by creating additional identities.

Ideally, we would like to solve the multi-commodity max
flow problem using a linear solver such as CPLEX [8] or
GLPK [14]. Unfortunately, expressing the problem solely as
a linear maximization problem does not provide any guar-
antees about the tightness of the bounds to the assigned
weights: to the linear solver, any solution which maximizes

4In brief, multi-commodity max flow maximizes the total ag-
gregate flow between multiple source/sink pairs, with flows
competing with each other for links’ capacity.
5Of course, there may be additional, smaller, cuts between
the attacker’s identities and the sink.
6In fact, collusion may result in a lower aggregate bound,
as the two users may have attack links to each other that
become internal once they collude.
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Figure 3: Example of determining weights in Iolaus. Shown are (a) the social network with collector V C and
raters A, B, D and E (shaded), (b) paths selected for each rater, (c) resulting weights after normalizing D−B
link, (d) weights after then normalizing B − V C link, and (e) final weights for each rater.

the total flow throughput is sufficient. As a result, such a
solver may output solutions that have a very uneven distri-
bution of the total weight across sources. For example, in
the graph in Figure 2 (a), the solver may give V 2 weight 2
(along its two paths to V C) while giving V 1 weight 0.

Instead, Iolaus uses an approximation of max flow which
results in more even distribution of capacity between raters
and provides tight bounds on Sybil attacks, described below.

4.5.1 Determining weights
For each rater r ∈ R, Iolaus determines the max flow be-
tween r and the collector (ignoring all other raters), and de-
rives a set of non-intersecting paths Pr for this flow. When
multiple options for Pr exist, Iolaus selects arbitrarily be-
tween them. Next, Iolaus considers the graph where all
raters attempt to send 1 unit of flow along each of their
paths (i.e., for all r in R, each path in Pr is initially as-
signed weight 1). Since all links have unit capacity, there
may be certain links that are over capacity (i.e., multiple
raters have paths using that link). To resolve these situa-
tions, Iolaus normalizes the flow along these links by reduc-
ing the amount of flow proportionally. Formally, if a link
is used by raters {r1, r2, ...rn} with weights {w1, w2, ...wn},
each wi is normalized with

w′
i =

wi∑n
j=1 wj

where w′
i represents the value of wi after normalization.

Iolaus normalizes links from the least-overcapacity to the
most-overcapacity. Doing so ensures that malicious users
are first bottlenecked at their attack cut before affecting any
non-malicious users. To see why, recall that all of the paths
begin at a rater but end at the single collector. Thus, the
highest bottlenecks occur around the collector; links away
from the rater are less likely to be over capacity.

4.5.2 Example
As an example of Iolaus’s weighting in practice, consider
the social network shown in Figure 3 (a), with collector V C
and raters A, B, D, and E (C exists in the social network
but has not given a rating). Iolaus first determines a set of
non-intersecting paths with maximum flow for each rater;
these are shown in Figure 3 (b). At this point, there are two
links that are over-capacity: B−V C has total weight 3 and
D−B has total weight 2. Thus, Iolaus first normalizes D−B

(reducing one of D’s paths and E’s single path to weight
1
2 ); this is shown in Figure 3 (c). Then, Iolaus normalizes
B−V C (reducing B’s path to 1

2 and both of the previously
reduced paths to 1

4 ); this is shown in Figure 3 (d). At this
point, all links are at or below capacity; the total weight of
each rater’s path is the weight for that rater (Figure 3 (e)).

4.5.3 Discussion
We observe that this weighting function provides Iolaus’s
Sybil resilience by providing a Sybil-bounded weighting sys-
tem. For example, if node A in Figure 3 (a) were to attempt
a Sybil attack, she would not be able to increase her aggre-
gate weight beyond 1, regardless of the number of identities,
or links between these identities, that she creates. She is
always bounded by her attack cut of 1.

5. MITIGATING "BUYING" OF RATINGS
So far, we have described how Iolaus defends against mul-
tiple identity attacks; we now detail how Iolaus defends
against the “buying” of ratings. Preventing the “buying” of
ratings is one of the most difficult challenges facing content
rating systems today: Since there is no cost for placing a rat-
ing, it is extremely hard to determine if a particular rating
was indeed legitimate or the result of some form of out-of-
band compensation. This challenge becomes worse by the
fact that most content only receives a few ratings, making
it possible to greatly influence the overall ranking with just
a few additional ratings. The fact that being placed highly
on certain content rating sites (e.g., Yelp, TripAdvisor) can
have positive financial consequences [19] only further en-
courages compensation for positive ratings. To the best of
our knowledge, no previous work has directly addressed the
issue of dishonest ratings by legitimate users.

5.1 Relative ratings
Since placing a rating costs nothing to the identity, there is
little to dis-incentivize the identity from doing so. In Iolaus,
we add a virtual cost to placing a rating through the use
of relative ratings. At a high level, relative ratings consider
how content relates to other content the identity has rated.

To transform an identity’s raw rating to a relative rating,
we first consider all of that identity’s ratings on other con-
tent objects. The relative rating is then simply the ranked
score (between 0 and 1) relative to all of the identity’s other
ratings. For example, consider an identity who has provided
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ratings !!!!! for content object c1 and !! for content
objects c2 and c3. We observe that the identity ranked c1
higher than two other content objects; it is therefore in the
“top third” of content objects for this identity. The relative
rating for c1 is therefore the midpoint of the top third of
objects: 0.833 (the midpoint of [0.66,1]). Similarly, we ob-
serve that the identity ranked content objects c2 and c3 in
the “bottom two-thirds” of content objects, but we do not
know their order. Thus, the relative rating of c2 and c3 are
both assigned to 0.333 (the midpoint of [0,0.66]).

Formally, suppose that the identity provided raw ratings
{r1, r2, ...rn} on content objects {c1, c2, ...cn}. For simplic-
ity, assume these are sorted by ri. Each content object ci,
then, is assigned the relative rating

i− 0.5
n

with the exception that any set of content objects that have
the same raw rating are then assigned the average of all
relative ratings with the same raw rating. Examples of con-
verting raw to relative ratings for three different users are
shown in Table 1. Note that all of user U3’s raw ratings are
the same, so all end up with the same relative rating.

5.2 Discounting "bought" ratings
We now turn to examine how using relative ratings reduces
the impact of “buying” of ratings. Consider an identity who
is about to give a positive rating on a content object. With-
out relative ratings, the identity’s positive rating would be
viewed just like any other identity’s rating, and there is no
cost to the identity for providing the positive rating. In fact,
without relative ratings, the identity could provide positive
ratings on a number of content objects (i.e., “selling” her
ratings multiple times) without any impact.

With relative ratings, the impact of “buying” ratings from
a large number of identities is dramatically decreased. Since
most identities provide few ratings (e.g., the average number
of ratings per identity is less than two in our Yelp dataset),
buying a positive rating from a random identity is unlikely
to result in a high relative rating (as the n for most identi-
ties is quite small, meaning the resulting relative rating will
be much lower than a similar rating placed by a legitimate
identity who has placed more ratings).

Moreover, with relative ratings, placing a new rating
causes some of the identity’s other ratings to change, since

Rating
User # Raw Transformed Relative

U1
r1,1 !! 0.25 0.25
r1,2 !!!! 0.75 0.75

U2

r2,1 ! 0.1 0.1
r2,2 !! 0.3 0.3
r2,3 !!! 0.5 0.5
r2,4 !!!!! 0.7 0.8
r2,5 !!!!! 0.9 0.8

U3

r3,1 !!!!! 0.125 0.5
r3,2 !!!!! 0.375 0.5
r3,3 !!!!! 0.625 0.5
r3,4 !!!!! 0.875 0.5

Table 1: Example of converting raw ratings to rel-
ative ratings for three users. Raw ratings are first
converted to transformed ratings; any transformed
ratings with the same raw rating are then averaged.

inserting new rating into the ordered list of the identity’s rat-
ings affects the number of overall ratings (n), as well as the
order of some of the ratings (i). Thus, providing a strongly
positive rating of a new content object causes the relative
view of other positive ratings to be lowered, ensuring that
the identity can not simply repeatedly “sell” her ratings in
exchange for compensation while providing the same benefit
to all content items. Instead, to have the same effect as a
single positive rating today, a user must simultaneously rate
a large number of content objects negatively; this makes it
much more difficult for malicious users to“buy”ratings from
otherwise honest users.

6. DISCUSSION
In summary, the two parts of Iolaus work together to
strengthen content rating sites. The use of max flow-based
techniques ensures that users gain little benefit from creat-
ing multiple identities. The use of relative ratings reduces
the effectiveness of “buying” positive ratings from random
users, who generally do not have a significant rating history.
We now discuss a few deployment issues with Iolaus.

Underlying network As discussed in the design section,
Iolaus assumes existence of an underlying social network and
will not be applicable to services that lack such network.
Fortunately, most services today either directly have the so-
cial network or allow users to import their friends from other
social networks such as Facebook and Twitter.

Disconnected users In Section 3, we noted that Iolaus
assumes that the underlying social network is a connected
graph. This assumption is not unique to Iolaus (all social
network-based Sybil defense systems make a similar assump-
tion [28,38,44,45]). In order to allow users who are not con-
nected in the social network (e.g., guest users), Iolaus could
be modified to create a “virtual” account for the user, with
random links placed temporarily to allow rating calculation.

Rating interpretation Due to the use of relative ratings,
the final ratings calculated by Iolaus will be a real-valued
numbers between 0 and 1 (rather than, say, a number of
stars). One potential concern is over how users will interpret
such values. This range can trivially be mapped to any
desirable range by a simple percentile conversion (e.g., the
top 15% of content items receive !!!!!).

Additionally, the ratings in Iolaus are personalized, mean-
ing different users may see different rankings for the same
content object. While this will clearly require an explanation
to the users, existing sites such as NetFlix [3] and Digg [36]
already provide personalized content ratings (implying that
users do accept personalized ratings).

Impact on non-malicious users Another potential con-
cern about using Iolaus is that it may change the current
ranking of businesses, potentially for the worse. We evalu-
ate this effect in Section 7, demonstrating that Iolaus does
not adversely impact the rankings for non-malicious users.

7. EVALUATION
We now turn to evaluate the performance of Iolaus. We im-
plemented Iolaus in C++ and Python. The implementation
is divided into two parts: one that locates paths in the so-
cial network, and one that uses those paths and the rating
history to calculate the rating.
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Finding multiple, disjoint paths between nodes in a large
social network is expensive, and näıve implementations can
easily result in poor scalability. To avoid this poor scal-
ability, Iolaus is implemented using Canal [40], a system
that approximates credit payments in large credit networks.
Canal uses landmark routing-based techniques to efficiently
locate disjoint paths in large networks; we modified Canal
to disable the credit transactions, and only use Canal to
quickly find paths.7

The remainder of the Iolaus implementation consists of
code that interacts with Canal, calculates weights, and
transforms raw ratings into relative ratings. This part is
implemented in 2,650 lines of Python.

7.1 Experimental setup
Social networks In the subsequent evaluation, we use both
real-world social networks and synthetic social networks of
varying sizes. Table 2 gives the statistics of the networks.
The synthetic networks are generated using nearest neighbor
method [31], with prescribed number of nodes, probability of
adding new nodes, and number of random pairs connected.
The resulting networks have been shown [31] to have char-
acteristics close to real-world social networks.

The real-world social networks come from two large con-
tent rating sites: YouTube and Yelp. First, we use the so-
cial network of YouTube users [22], as originally used in the
SumUp evaluation [38]. Unfortunately, the YouTube data
set only contains the social network, and does not contain
content ratings.

Second, we collect data from Yelp containing both social
network information and content ratings from two cities:
Boston and San Francisco. Specifically, we first determined
the set of all businesses on Yelp located within the each city;
this totaled 9,228 businesses in Boston and 30,339 in San
Francisco. Then, we collected all ratings on these businesses;
this totaled 278,719 ratings from 82,846 users in Boston and
1,655,385 ratings from 340,671 users in San Francisco.8 Fi-
nally, we collected all of the social connections of these users;
this resulted in a network of 383,557 users connected to-
gether with 888,335 links in Boston and 1,111,254 users and
3,920,553 links in San Francisco.

As Iolaus assumes that the social network is a connected
graph, we only consider users located in the largest con-
nected component (LCC) [22] of each Yelp graph. The LCC
encompasses the vast majority of the data: In Boston, it cov-
ers 327,515 (85.3%) users connected by 883,179 (99.4%) links
and providing 190,042 (68.1%) ratings. In San Francisco,
it covers 1,303,086 (82.7%) users connected by 3,912,279
(99.8%) links and providing 1,303,086 (78.7%) ratings.

Simulating Sybil attacks Similar to prior studies [38],
we simulate Sybil attacks by injecting malicious nodes and
adding attack links (links from malicious nodes to non-
malicious nodes). We refer to non-malicious nodes who are
linked to by malicious users as attacked nodes. Inspired by

7In Iolaus, we configure Canal to use 15 2-level universes,
three threads for creating universes, and sixteen threads for
finding paths.
8Yelp divides reviews into unfiltered and filtered reviews;
only unfiltered reviews are used by Yelp in determining a
business’ score. We collected both filtered and unfiltered
reviews.

Average
Network Nodes Links degree
YouTube 1.1 m 5.8 m 5.2
Yelp Boston 383 k 890 k 4.3
Yelp San Francisco 1.1 m 3.9 m 4.6
Synthetic 1 10 k 29 k 5.6
Synthetic 2 100 k 280 k 5.8
Synthetic 3 600 k 8.11 m 26.8
Synthetic 4 1 m 12.3 m 24.6

Table 2: Statistics of the social networks used
for evaluating Iolaus. The synthetic networks
are measurement-calibrated synthetic social net-
works [31].

prior work [41] we examine three different attack strategies
for selecting attacked nodes:

Random Attacked nodes are chosen randomly.

k-closest Attacked nodes are chosen randomly among the
k closest nodes (by hop distance) to the collector. This
represents a targeted attack on a particular collector.

k-highest Attacked nodes are chosen randomly from
among the k highest degree nodes in the network. This
represents the most effective attack for being“close” for
many collectors.

Note that we control the “power” of the attacker by varying
k; a smaller k implies that the attacker can better target
her attack (e.g., a small k in k-closest implies the attacker
is able to obtain attack links very close to the collector).

Simulating “bought” ratings We also simulate the “buy-
ing” of ratings by malicious businesses in Yelp. To do so,
we select random non-malicious users to provide “bought”
ratings; each one of these users is simulated to provide one
additional highly positive rating on the Yelp business that
is trying to manipulate the ratings.

Comparing against SumUp and Yelp We compare the
performance of Iolaus to SumUp [38] and a strawman ver-
sion of Yelp’s rating. For SumUp, we use the original code
(obtained from the SumUp authors) and configured to the
default values9 prescribed in the original paper [38].

In practice, Yelp has a review filtering mechanism de-
signed to block attacks, but its design is deliberately ob-
fuscated [48]. As a result, we are unable to compare Iolaus
directly against Yelp’s filtering mechanism (as we do not
know how it would perform when we introduce Sybil and
rating-buying attacks).

7.2 Microbenchmarks
We begin by examining the amount of CPU time and mem-
ory required to determine an aggregate rating in Iolaus. Io-
laus is designed to be parallelized; it can be configured to use
multiple cores, and distributed across multiple machines, to

9We run SumUp with ρ = 0.5 and 20 non-greedy steps.
However, since attackers can split identities on attack links
(§ 4.1), the link pruning optimization in SumUp will only
make it harder for honest users to find paths (Sybils can split
their attack links across multiple identities, thereby avoiding
the effects of pruning). Hence, we turn off this feature to
make the comparison to SumUp fair.
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Figure 4: Sybil influence as the number of non-malicious raters is varied, for different attack strategies on the
YouTube graph with 100 attack links. The graphs show (a) random attacked nodes, (b) k-closest attacked
nodes, and (c) k-highest degree attacked nodes, with k = 200.

speed up computation time. We evaluate Iolaus deployed to
a single machine with dual 8-core hyper-threaded Intel Xeon
2.1GHz CPUs and 128GB of memory.

Using the different networks, we select a single collector
and a variable number of raters randomly from among all
nodes. We then measure the time required to determine
the aggregate rating, repeating the experiment 20 times and
reporting the average. Figure 5 presents the results of this
experiment. We observe that even when 100 users place a
rating, the time required to determine the aggregate rating
is under 5ms in all networks. In practice, most businesses
would take substantially less: in our Yelp dataset, only 8%
of businesses have more than 100 ratings. Moreover, the
site operator could easily cache the calculated ratings, either
with a fixed time-out or until a certain number of new ratings
are provided.

In Iolaus, Canal stores the social network in memory. As
a result, the memory requirements of Iolaus are determined
by the memory requirements of Canal. On a similarly con-
figured server to ours, Canal has been shown [40] to scale to
networks containing hundreds of millions of links.

7.3 Comparison against SumUp
We now compare Iolaus directly against SumUp. As SumUp
was only designed to mitigate the effect of Sybil attacks (and
not rating-buying attacks), we only examine Sybil attacks
here; in the following section, we examine both Sybil attacks
and rating-buying attacks on our Yelp data set. We use the
YouTube social network graph that was used in the original
evaluation of SumUp [38].

While Iolaus is a weighing system which assigns a weight
to every rater, SumUp either accepts or rejects a user’s rat-
ing outright. Thus, directly comparing the two systems is
not immediately straightforward. To make head-to-head
comparison, we need a single performance measure which
fits both systems. To do so, we consider SumUp also as a
weighing system, which assigns weights 0 or 1 to raters that
are rejected or accepted, respectively. We then define the
metric Sybil influence as

Sybil influence = Aggregate weight of Sybils
Aggregate weight of all raters

representing the fraction of the total weight controlled by
the Sybils. Thus, the smaller the Sybil influence value is,
the better the system is at mitigating Sybil attacks.

7.3.1 Varying non-malicious raters
We first examine the effect of number of non-malicious raters
on Sybil influence when the number of attack links is fixed.
As the number of non-malicious raters increases, with a fixed
number of attack links, we expect that both SumUp and
Iolaus have lower Sybil influence. In this experiment, we
select a random collector and 100 attack links, and vary the
number of non-malicious raters. We repeat the experiment
20 times and report the average Sybil influence.

Figure 4 presents the results of this experiment when us-
ing the random, k-highest degree, and k-closest attack link
strategies, with k = 200 (note that the k-closest scenario
represents a very strong attacker, as there are over 82,000
total users). For all cases, Iolaus outperforms SumUp in re-
ducing the impact of Sybils. The underlying reason is that
in SumUp, for the random and k-highest degree attacked
nodes, the Sybil raters are able to use each of the 100 attack
links to get one rater accepted, allowing the Sybils to have
significant influence.

In the case of the k-closest nodes strategy, Sybils are able
to be part of SumUp’s “envelope” around the collector, en-
abling them to cast multiple votes per attack link. With
Iolaus, the Sybils’ 100 attack links are forced to compete
with all of the non-malicious raters’ links. Sybils in Iolaus
still manage to receive significant weight as they are very
close to the collector, but have substantially lower influence
than SumUp. With most content objects having few rat-
ings, improved performance with few non-malicious raters
is extremely important.
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7.3.2 Varying attack links
We now examine the impact of the number of attack links on
the resulting Sybil influence. We expect that as the number
of attack links increases, the Sybil influence should increase
linearly. In this experiment, we select a random collector,
100 random non-malicious raters, and vary the number of
attack links. As before, we repeat the experiment 20 times
and report the average.

Figure 6 presents the results of this experiment for all
three attack strategies. We observe that Iolaus has lower
Sybil influence than SumUp under all three cases. The rea-
son for the superior performance is the same as before: in
SumUp, the Sybil raters are able to use each of the attack
links to get one rating accepted for random and k-highest at-
tacks, and multiple ratings accepted for the k-closest attack.
In Iolaus, the Sybil raters must compete with the aggregate
links of the non-malicious raters.

7.4 Iolaus on Yelp
We now evaluate Iolaus on real-world data (including both
social network and content ratings), examining Iolaus’s re-
silience to Sybil attacks and rating-buying attacks. In this
section, we use the Yelp data sets from Boston and San
Francisco, described in Section 7.1.

7.4.1 Ranking performance
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Figure 7: Scatterplot of Iolaus ratings versus Yelp’s
ratings for all Yelp Boston businesses. For the sake
of accuracy, Yelp’s ratings are not rounded to half-
hops (as they typically are on Yelp’s site). A strong
agreement between the two ratings is observed.

We begin by examining the impact of using Iolaus on the
overall ranking performance. In other words, how much does
using Iolaus for aggregating ratings affect objects’ rankings,
even when Sybil and rating-buying attacks are not occur-
ring? We use two approaches to address this question: First,
we examine the global ranking of businesses; we compare
these rankings to Yelp’s current ranking. Second, we exam-
ine the per-collector ranking of businesses by comparing to
ground-truth rankings provided by users.

In order to compare two rankings, we use the metric Area
under the Receiver Operating Characteristic (ROC) curve
or A′. In brief, this metric compares two ordered lists and
represents the probability that the relative ranking of two
items is in the same order in both lists [12]. Therefore,
the A′ metric takes on values between 0 and 1: A value of
0.5 represents no correlation between the lists, with higher
values indicating a better match and 1 representing a perfect
match between the two lists.

To examine the global ranking, we first rank all 9,228
Yelp Boston businesses using Iolaus for 10 randomly selected
collectors. We then take the average of the Iolaus ranking
across these 10 collectors to be the overall ranking of each
business. Finally, we compare the order of ranked businesses
in Iolaus to Yelp’s order. We find that Iolaus’s order com-
pares to Yelp’s order with an A′ of 0.88. This indicates a
strong agreement between the two orders, indicating that
Iolaus does not significantly impact the ordering when Sybil
and rating-buying attacks are not occurring. A scatterplot
of the two rankings compared is presented in Figure 7.

Next, we compare the ranking error of Yelp, SumUp, and
Iolaus. To do so, we first select a set of 500 users who have
ranked at least 10 businesses. For each of these users, we cal-
culate the Yelp, SumUp, and Iolaus rating of the businesses
that user has rated, excluding the user’s own rating. Each of
these ratings are essentially predicted ratings; we then com-

City Yelp–Filtered SumUp Iolaus
Boston 0.724 0.724 0.702
San Francisco 0.712 0.713 0.703

Table 3: Accuracy (A′) of different systems in pre-
dicting users’ rankings of businesses. All systems
perform similarly, showing that Iolaus does not sig-
nificantly altering the rankings of businesses in Yelp.

927



 0

 20

 40

 60

 80

 100

 0  50  100  150  200A
vg

. r
an

ki
ng

 m
ov

em
en

t

Number of attack links

SumUp (Boston)
SumUp (SF)

Iolaus (Boston)
Iolaus (SF)

Figure 8: Average ranking movement of Iolaus and
SumUp under different numbers of attack links.

pare the predicted ratings to the actual ratings provided
by the user, and measure the differences using A′. Table 3
presents the results of this experiment for Yelp data in both
Boston and San Francisco. We observe that all three sys-
tems are comparable, with Iolaus performing slightly worse.
This indicates that Iolaus does not dramatically change the
rankings of businesses.

7.4.2 Defending against Sybils
We now investigate Iolaus’s performance on the Yelp dataset
under Sybil attacks. For these experiments, we simulate
Sybils placing highly positive ratings on a target business,
and use the k-highest degree attack strategy with k = 200.
Even though Figures 4 and 6 suggest that k-closest attack is
the strongest, this attack is targeted at a particular collector.
To influence the ranking for many collectors, Sybils are best
served by attacking high-degree nodes.

Unfortunately, we cannot directly compare the SumUp’s
score with Iolaus’s score (recall that SumUp’s score is in
terms of stars, whereas Iolaus’s score is transformed to the
unit interval). Thus, we compare the relative score of differ-
ent businesses. To make the results comparable across cities
and repetitions of the same experiment, in this section, we
only consider businesses with exactly 10 ratings.

To measure the impact of the Sybil attack, we first select
a target business from the lowest-ranked 25% of businesses
with 10 ratings. The target business is the business that is
trying to conduct a Sybil attack or “buy” ratings to increase
its ranking. We then select a list of businesses to compare
the target business against. We select these business with
a wide distribution of ranks—up to 20 businesses with an
average rating in each 1

2! interval—resulting in a list of 111
businesses (not all intervals contain 20 businesses). Finally,
we measure the impact rating manipulation by measuring
the difference (in terms of the number of places) the target
business moves up in the ranking of 111 businesses after
manipulation. We refer to this metric as ranking movement;
lower ranking movement is better (an ideal system, of course,
would allow 0 ranking movement).

Figure 8 shows the average ranking movement for 10 tar-
get businesses conducting Sybil attacks, averaged across 10
randomly selected collectors. With SumUp, the target busi-
ness is able to significantly change the ranking, making it-
self appear much more highly ranked. This manipulation is
possible as SumUp allows the Sybils to place an additional
rating with each additional attack link. However, Iolaus
manages to much more tightly bound the Sybils’ influence,
allowing significantly less ranking manipulation.
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7.4.3 Defending against rating “buying”
Next, we investigate the ability for Iolaus to defend against
rating-buying attacks. In these experiments, we do not add
any Sybils or attack links, but instead, select a varying num-
ber of random non-malicious users to provide “bought” rat-
ings. We simulate the non-malicious users providing highly
positive reviews on a business. To evaluate the impact of this
attack, we use the same businesses as in 7.4.2, and measure
the impact of the attack using ranking movement.

Figure 9 presents the results of this experiment. As be-
fore, the results are the average across the same 10 collec-
tors as in 7.4.2. We observe that, without any resistance to
rating-buying attacks in SumUp, malicious users are able to
greatly influence the overall ranking the business receives.
However, with Iolaus, the overall impact on the target busi-
ness’s ranking is much lower, as the relative ratings reduce
the impact of the purchased ratings.

Comparing Figures 8 and 9, we observe that rating-buying
is a much stronger attack than Sybil attack, and has greater
impact on final ratings. This result is expected, as bought
ratings come from legitimate users who are likely well-
integrated into the social network. However, we can see
that Iolaus performs much better against such attacks in
comparison to SumUp, which was not designed to protect
against rating “buying.”

8. CONCLUSION
We have presented Iolaus, a system that is designed to be
deployed by the operator of an online content rating site and
can defend against multiple-identity (Sybil) attacks and the
“buying” of ratings. Iolaus is built using two techniques.
First, Iolaus uses the weighing of different ratings to ensure
that the total influence that any (human) user can have is
bounded, regardless of the number of identities that the user
creates. Second, Iolaus converts raw ratings into relative
ratings, dramatically reducing the impact of the buying of
ratings in practice. An evaluation demonstrated that Iolaus
has low overhead and can be applied to the online content
rating systems of today.
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