
From Amateurs to Connoisseurs:
Modeling the Evolution of User Expertise

through Online Reviews

Julian McAuley
Stanford University

jmcauley@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
Recommending products to consumers means not only understand-
ing their tastes, but also understanding their level of experience.
For example, it would be a mistake to recommend the iconic film
Seven Samurai simply because a user enjoys other action movies;
rather, we might conclude that they will eventually enjoy it—once
they are ready. The same is true for beers, wines, gourmet foods—
or any products where users have acquired tastes: the ‘best’ prod-
ucts may not be the most ‘accessible’. Thus our goal in this pa-
per is to recommend products that a user will enjoy now, while
acknowledging that their tastes may have changed over time, and
may change again in the future. We model how tastes change due
to the very act of consuming more products—in other words, as
users become more experienced. We develop a latent factor rec-
ommendation system that explicitly accounts for each user’s level
of experience. We find that such a model not only leads to better
recommendations, but also allows us to study the role of user expe-
rience and expertise on a novel dataset of fifteen million beer, wine,
food, and movie reviews.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval

Keywords
recommender systems, expertise, user modeling

1. INTRODUCTION

“Even when experts all agree, they may well be mis-
taken”

– Bertrand Russell

In order to predict how a user will respond to a product, we must
understand the tastes of the user and the properties of the prod-
uct. We must also understand how these properties change and
evolve over time. As an example, consider the Harry Potter film
series: adults who enjoy the films for their special effects may no
longer enjoy them in ten years, once their special effects are obso-
lete; children who enjoy the films today may simply outgrow them
in ten years; future children who watch the films in ten years may
not enjoy them, once Harry Potter has been supplanted by another
wizard.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

This example highlights three different mechanisms that cause
perceptions of products to change. Firstly, such change may be tied
to the age of the product. Secondly, it may be tied to the age (or
development) of the user. Thirdly, it may be tied to the state (or
zeitgeist) of the community the user belongs to.

These mechanisms motivate different models for temporal dy-
namics in product recommendation systems. Our goal in this paper
is to propose models for such mechanisms, in order to assess which
of them best captures the temporal dynamics present in real product
rating data.

A variety of existing works have studied the evolution of prod-
ucts and online review communities. The emergence of new prod-
ucts may cause users to change their focus [19]; older movies may
be treated more favorably once they are considered ‘classics’ [20];
and users may be influenced by general trends in the community,
or by members of their social networks [26].

However, few works have studied the personal development of
users, that is, how users’ tastes change and evolve as they gain
knowledge, maturity, and experience. A user may have to be ex-
posed to many films before they can fully appreciate (by awarding it
a high rating) Citizen Kane; a user may not appreciate a Romanée-
Conti (the ‘Citizen Kane’ of red wine) until they have been exposed
to many inferior reds; a user may find a strong cheese, a smokey
whiskey, or a bitter ale unpalatable until they have developed a tol-
erance to such flavors. The very act of consuming products will
cause users’ tastes to change and evolve. Developing new models
that take into account this novel viewpoint of user evolution is one
of our main contributions.

We model such ‘personal development’ through the lens of user
experience, or expertise. Starting with a simple definition, expe-
rience is some quality that users gain over time, as they consume,
rate, and review additional products. The underlying hypothesis
that we aim to model is that users with similar levels of experience
will rate products in similar ways, even if their ratings are tem-
porally far apart. In other words, each user evolves on their own
‘personal clock’; this differs from other models of temporal dy-
namics, which model the evolution of user and product parameters
on a single timescale [20, 40, 41].

Naturally, some users may already be experienced at the time
of their first review, while others may enter many reviews while
failing to ever become experienced. By individually learning for
each user the rate at which their experience progresses, we are able
to account for both types of behavior.

Specifically, we model each user’s level of experience using a
series of latent parameters that are constrained to be monotonically
non-decreasing as a function of time, so that each user becomes
more experienced (or stays at least as experienced) as they rate ad-
ditional products. We learn latent-factor recommender systems for

897

898

Community evolution at uniform intervals:

(a)

Individual user evolution at uniform intervals:

(b)

Community evolution at learned intervals:

(c)

Individual user evolution at learned intervals:

(d)

Figure 2: Visualization of the models we consider. Horizontal
bars represent user review timelines; colors within each bar
represent evolution parameters for each user.

beginners or by experts—that is, we can discover which products
are acquired tastes.

The rest of this paper is organized as follows: We describe our
models for user evolution in Section 2, and we describe how to train
these models in Section 3. In Section 4 we describe our novel rating
datasets and evaluate our models. In Section 5 we examine the role
of our latent experience variables in detail, before reviewing related
work in Section 6 and concluding in Section 7.

2. MODELS OF USER EVOLUTION
We design models to evaluate our hypothesis that ‘experience’ is

a critical underlying factor which causes users’ ratings to evolve.
We do so by considering alternate paradigms of user and commu-
nity evolution, and determining which of them best fits our data.

Figure 2 visualizes each of the four models we consider. Each
horizontal bar represents a single user’s review timeline, from their
first to their last review; the color within each bar represents the
evolution of that user or their community. At each of these stages
of evolution, a different recommender system is used to estimate
their ratings. Recommender systems for adjacent stages are regu-
larized to be similar, so that transitions between successive stages
are smooth.

(a) Community evolution at uniform intervals: First we consider
a model where ‘stages of evolution’ appear at uniform time inter-
vals throughout the history of the community. The model of Figure
2 (a) is in some sense the most similar to existing works [20, 40,
41] that model evolution of users and products using a single global
‘clock’. The intuition behind this model is that communities evolve
over time, and prefer different products at different time periods.
(b) User evolution at uniform intervals: We extend the idea of
community evolution and apply it directly to individual users (Fig. 2
(b)). This model captures the intuition that users go through differ-
ent life-stages or experience levels and their preferences then de-
pend on their current life stage.
(c) Community evolution at learned intervals: This model ex-
tends (a) by learning the rates at which communities change over
time (Fig. 2 (c)). The model is based on the intuition that a commu-
nity may not evolve at a uniform rate over time and that it is worth
modeling different stages of community evolution.
(d) Individual user evolution at learned intervals: Last, we con-
sider a model where each user individually progresses between ex-
perience levels at their own personal rate (Fig. 2 (d)). This model
is the most expressive of all four and is able to capture interest-
ing phenomena. For example, some users may become experts
very quickly while others may never reach the highest level of ex-
perience; others may behave like experts from the time they join
(e.g. the bottom right user of Fig. 2 (d)). This model is able capture
such types of behavior.

Models (a) and (b) are designed to assess whether user evolution
is guided by changes at the level of individual users, or by changes
in the community at large. We find that, given enough data, both
models lead to modest improvements over traditional latent-factor
recommender systems, though there is no clear winner between the
two. Once we learn the stages at which users and communities
evolve, as in (c) and (d), we significantly outperform traditional rec-
ommender systems, though the benefit of learning is much higher
when we model evolution at the level of each individual user, i.e.,
when we treat ‘evolution’ as analogous to ‘becoming an expert’.

Put simply, we fit recommender systems for different stages of
user evolution, and the models differ only in terms of how users
progress between stages. Thus the actual recommender systems
used by each model have the same number of parameters, though
the models of Figure 2 (c) and (d) have additional parameters that
control when users evolve. The model of Figure 2 (d) is the most
expressive, in the sense that it has enough flexibility to represent
each of the other models. For example, if no evolution took place
at the level of individual users, the model of Figure 2 (d) could learn
latent parameters similar to those of Figure 2 (c). In practice, we
find that this is not the case; rather we learn dynamics of individual
users that are quite different to those at the level of communities.

Model Specification
We shall first describe our most general model, namely that of Fig-
ure 2 (d). The other models in Figure 2 can later be treated as
special cases.

We start with the ‘standard’ latent-factor recommender system
[33], which predicts ratings for user/item pairs (u, i) according to

rec(u, i) = α + βu + βi + 〈γu, γi〉.

Here, α is a global offset, βu and βi are user and item biases (re-
spectively), and γu and γi are latent user and item features.

Although this simple model can capture rich interactions be-
tween users and products, it ignores temporal information com-
pletely, i.e., users’ review histories are treated as unordered sets.
Even so, such models yield excellent performance in practice [22].

899

We wish to encode temporal information into such models via
the proxy of user experience. We do so by designing separate rec-
ommender systems for users who have different experience levels.
Naturally, a user’s experience is not fixed, but rather it evolves over
time, as the user consumes (and rates) more and more products.

For each of a user’s ratings rui, let tui denote the time at which
that review was entered (for simplicity we assume that each product
is reviewed only once). For each of a user’s ratings, we will fit a
latent variable, eui, that represents the ‘experience level’ of the user
u, at the time tui.

Each user’s experience level evolves over time. As a model as-
sumption, we constrain each user’s experience level to be a non-
decreasing function of time. That is, a user never becomes less
experienced as they review additional products. We encode this
using a simple monotonicity constraint on time and experience:

∀u, i, j tui ≥ tuj ⇒ eui ≥ euj . (1)

What this constraint means from a modeling perspective is that dif-
ferent users evolve in similar ways to each other, regardless of the
specific time they arrive in the community.

In practice, we model experience as a categorical variable that
takes E values, i.e., eui ∈ {1 . . . E}. Note that it is not required
that a user achieves all experience levels: some users may already
be experienced at the time of their first review, while others may
fail to become experienced even after many reviews.

Assuming for the moment that each experience parameter eui is
observed, we proceed by fitting E separate recommender systems
to reviews written at different experience levels. That is, we train
rec1(u, i) . . . recE(u, i) so that each rating rui is predicted using
receui(u, i). As we show in Section 3, we regularize the parame-
ters of each of these recommender systems so that user and product
parameters evolve ‘smoothly’ between experience levels.

In short, each of the parameters of a standard recommender sys-
tem is replaced by a parameter that is a function of experience:

rec(u, i) = receui(u, i)

= α(eui) + βu(eui) + βi(eui) + 〈γu(eui), γi(eui)〉. (2)

Such a model is quite general: rather than assuming that our model
parameters evolve gradually over time, as in [20], we assume that
they evolve gradually as a function of experience, which is itself a
function of time, but is learned per user. Thus we are capable of
learning whether users’ ‘experience’ parameters simply mimic the
evolution of the entire community, as in Figure 2 (c), or whether
there are patterns of user evolution that occur independently of
when they arrive in the community, as in Figure 2 (d).

Because of this generality, all of the models from Figure 2 can
be seen as special cases of (eq. 2). Firstly, to model evolution of
communities (rather than of individual users), we change the mono-
tonicity constraint of (eq. 1) so that it constrains all reviews (rather
than all reviews per user):

∀u, v, i, j tui ≥ tvj ⇒ eui ≥ evj . (3)

Secondly, the ‘learned evolution’ models (c, d) and the non-
learned models (a, b) differ in terms of how we fit the experience
parameters eui. For the non-learned models, experience parameters
are set using a fixed schedule: either they are placed at uniformly
spaced time points throughout the entire corpus, as in Figure 2 (a),
or they are placed at uniformly spaced time points for each individ-
ual user’s history, as in Figure 2 (b).

In the next section, we describe how to learn these parameters,
i.e., to model the points at which a community or an individual user
changes.

3. TRAINING THE MODELS
We wish to optimize our model parameters and latent experience

variables so as to minimize the mean-squared-error of predictions
on some set of training ratings rui ∈ T . Suppose each of our E
recommender systems has parameters

Θe = (α(e); βu(e); βi(e); γu(e); γi(e)),

and that the set of all experience parameters eui is denoted as E .
Then we wish to choose the optimal (Θ̂, Ê) according to the objec-
tive

(Θ̂, Ê) = argmin
Θ,E

X

rui∈T

1

|T | (receui(u, i) − rui)
2 + λΩ(Θ)

s.t. tui ≥ tuj ⇒ eui ≥ euj . (4)

This equation has three parts: the first is the mean-squared-error
of predictions, which is the standard objective used to train recom-
mender systems. The second part, Ω(Θ), is a regularizer, which
penalizes ‘complex’ models Θ. Assuming that there are U users,
I items, E experience levels, and K latent factors, then our model
has (1 + U + I + U ·K + I ·K)×E parameters, which will lead
to overfitting if we are not careful. In practice, similar experience
levels should have similar parameters, so we define Ω(Θ) using the
smoothness function

Ω(Θ) =

E−1X

e=1

‖Θe − Θe+1‖2
2, (5)

where || · ||22 is the squared �2 norm. This penalizes abrupt changes
between successive experience levels. λ is a regularization hyper-
parameter, which ‘trades-off’ the importance of regularization ver-
sus prediction accuracy at training time. We select λ ∈ 100 . . . 105

by withholding a fraction of our training data for validation, and
choosing the value of λ that minimizes the validation error. The
third and final part of (eq. 4) is the constraint of (eq. 1), which en-
sures that our latent experience parameters are monotonically non-
decreasing for each user.

Simultaneously optimizing all of the parameters in (eq. 4) is a
difficult problem, in particular it is certainly not convex [22]. We
settle for a local optimum, and optimize the parameters Θ and E us-
ing coordinate ascent [27]. That is, we alternately optimize (eq. 4)
for Θ given E , and for E given Θ.

Optimizing (eq. 4) for Θ given E , while itself still a non-convex
problem, can be approached using standard techniques, since it es-
sentially reduces to optimizing E separate recommender systems.
In practice we optimize model parameters during each iteration us-
ing L-BFGS [31], a quasi-Newton method for non-linear optimiza-
tion of problems with many variables.

Alternately, optimizing (eq. 4) for E given Θ means assigning
each of a user’s reviews to a particular recommender system, cor-
responding to that review’s experience level. The best assignment
is the one that minimizes the mean-squared-error of the predictions,
subject to the monotonicity constraint.

Optimizing a sequence of discrete variables subject to a mono-
tonicity constraint can be solved efficiently using dynamic pro-
gramming: it is related to the Longest Common Subsequence prob-
lem [4], which admits a solution whose running time (per user) is
bilinear in E and the number of ratings in their history.

This procedure is visualized in Figure 3, for E = 5 experience
levels, and a user with 8 ratings. Rows represent each of the five ex-
perience levels, while columns represent each of a particular user’s
ratings, ordered by time. The optimal non-decreasing set of expe-
rience levels is the shortest path from the ‘start’ to the ‘end’ of this

900

Figure 3: Experience fitting as a dynamic programming prob-
lem. Rows represent experience levels, columns represent rat-
ings, ordered by time.

graph, where the cost of visiting a node with rating rui at experi-
ence level k is the prediction error (reck(u, i) − rui)

2.
These two steps are repeated until convergence, that is, until

E does not change between successive iterations. On our largest
datasets, all parameters could be optimized in a few hours on a
standard desktop machine.

Again, the above procedure refers to the most general version of
our model, in which we learn monotonic evolution parameters per
user, as depicted in Figure 2 (d). Training the community version
of our model (Fig. 2 (c)) simply means replacing the monotonicity
constraint of (eq. 1) with that of (eq. 3).

4. EXPERIMENTS
Our goal in this section is to evaluate the models described in

Figure 2. We compare the following models:

lf: A standard latent-factor recommender system [21].

a: A model whose parameters evolve for the entire community
as a function of time (Fig. 2 (a)).

b: A model whose parameters evolve independently for each
user (Fig. 2 (b)).

c: A model whose parameters evolve for the entire community
as a function of time, where the ‘stages’ of evolution are
learned (Fig. 2 (c)).

d: A model whose parameters evolve independently for each
user, where the stages of evolution are learned (Fig. 2 (d)).

The models of Figure 2 (a) and (c) are most similar to exist-
ing models for temporal evolution, e.g. [22]: item parameters are
shared by ratings made at the same time. We aim to compare this
to models where parameters are shared by users at the same expe-
rience level, regardless of the specific time they arrive in the com-
munity (as in Fig. 2 (d)).

Experimental Setup
To evaluate each method, we report the Mean Squared Error (MSE)
on a fraction of our data withheld for testing, that is, for our test set
U we report

MSE(U) =
1

|U|
X

rui∈U
(receui(u, i) − rui)

2. (6)

We also use a validation set of the same size to choose the hy-
perparameter λ. Throughout our experiments we set the number

dataset #users #items #ratings
Beer (beeradvocate) 33,387 66,051 1,586,259
Beer (ratebeer) 40,213 110,419 2,924,127
Fine Foods (amazon) 218,418 74,442 568,454
Movies (amazon) 759,899 267,320 7,911,684
Wine (cellartracker) 44,268 485,179 2,025,995

TOTAL 1,096,185 1,003,411 15,016,519

Table 1: Dataset statistics.

of experience levels, and the number of latent product and item di-
mensions to E = 5 and K = 5; larger values did not significantly
improve performance in our experience.

Since it is unlikely to be fruitful to model the evolution of users
who have rated only a few products, we compare our models on
users with at least 50 ratings. Users with fewer than 50 ratings
are not discarded, but rather their ratings are combined so that they
are treated using a single ‘background’ model; we then model the
evolution of this entire group as though it were a single user.

We use two schemes to build our test sets: our first scheme con-
sists of selecting a random sample of reviews from each user. This
is the standard way of selecting test data for ‘flat’ models that do
not model temporal dynamics. The second scheme we use to build
our test set is to consider the final reviews for each user.

The latter setting represents how such a system would be used
in practice, in the sense that our goal is to predict how users would
respond to a product now, rather than to make post hoc predictions
about how they would have responded in the past. However, sam-
pling reviews in this way biases our test set towards reviews written
by more experienced users; this is no longer the case when we sam-
ple reviews randomly.

Of course, we do not fit latent experience parameters for the rat-
ings in our test set. Thus for each rating used for testing, we assign
it the experience level of its chronologically nearest training rating.

Datasets
Our choice of rating data reflects a variety of settings where users
are likely to have ‘acquired tastes’. The datasets we consider are
summarized in Table 1. Each of our datasets were obtained from
public sources on the web using a crawler, and are made available
for others to use.1 We consider the beer review websites BeerAdvo-
cate and RateBeer, the wine review website CellarTracker, as well
as reviews from the Fine Foods and Movies categories from Ama-
zon. In total we obtain over 15 million ratings from these sources.
In principle we obtain the complete set of reviews from each of
these sources; data in each of our corpora spans at least 10 years.

We previously considered BeerAdvocate and RateBeer data in
[28], though not in the context of recommendation. Recommen-
dation on (different) Amazon data has been discussed in [15] and
[25].

Since each of these rating datasets has a different scale (e.g. beers
on RateBeer are rated out of 20, wines on CellarTracker are rated
out of 100, etc.), before computing the MSE we first normalize all
ratings to be on the scale (0, 5].

Evaluation
Results in terms of the Mean Squared Error (MSE) are shown in
Tables 2 and 3. Table 2 shows the MSE on a test set consisting

1http://snap.stanford.edu/data/

901

BeerAdv.
(overall)

BeerAdv.
(taste)

BeerAdv.
(look)

RateBeer
(overall)

Amazon Fine
Foods

Amazon
Movies

CellarTracker

(lf) latent-factor model 0.452 (.01) 0.442 (.01) 0.313 (.01) 0.496 (.01) 1.582 (.02) 1.379 (.00) 0.055 (.00)

(a) community at uniform rate 0.427 (.01) 0.417 (.01) 0.293 (.01) 0.458 (.01) 1.527 (.02) 1.371 (.01) 0.051 (.00)

(b) user at uniform rate 0.437 (.01) 0.423 (.01) 0.300 (.01) 0.477 (.01) 1.548 (.02) 1.376 (.01) 0.053 (.00)

(c) community at learned rate 0.427 (.01) 0.417 (.01) 0.293 (.01) 0.458 (.01) 1.529 (.02) 1.371 (.01) 0.051 (.00)

(d) user at learned rate 0.400 (.01) 0.399 (.01) 0.275 (.01) 0.406 (.01) 1.475 (.03) 1.051 (.01) 0.045 (.00)
benefit of (d) over (lf) 11.62% 9.73% 12.19% 18.26% 6.79% 23.80% 18.50%

benefit of (d) over (c) 6.48% 4.12% 6.13% 11.42% 3.53% 23.34% 13.20%

Table 2: Results on users’ most recent reviews. MSE and standard error.

BeerAdv.
(overall)

BeerAdv.
(taste)

BeerAdv.
(look)

RateBeer
(overall)

Amazon Fine
Foods

Amazon
Movies

CellarTracker

(lf) latent-factor model 0.430 (.01) 0.408 (.01) 0.319 (.01) 0.492 (.01) 1.425 (.02) 1.099 (.01) 0.049 (.00)

(a) community at uniform rate 0.415 (.01) 0.387 (.01) 0.298 (.01) 0.463 (.01) 1.382 (.02) 1.082 (.01) 0.048 (.00)

(b) user at uniform rate 0.419 (.01) 0.395 (.01) 0.305 (.01) 0.461 (.01) 1.383 (.02) 1.088 (.01) 0.048 (.00)

(c) community at learned rate 0.415 (.01) 0.386 (.01) 0.298 (.01) 0.461 (.01) 1.374 (.02) 1.082 (.01) 0.048 (.00)

(d) user at learned rate 0.409 (.01) 0.373 (.01) 0.276 (.01) 0.394 (.01) 1.189 (.03) 0.711 (.01) 0.039 (.00)
benefit of (d) over (lf) 5.05% 8.61% 13.45% 19.94% 16.61% 35.31% 20.49%

benefit of (d) over (c) 1.55% 3.33% 7.20% 14.50% 13.47% 34.32% 18.23%

Table 3: Results on randomly sampled reviews. MSE and standard error.

of the most recent reviews for each user, while Table 3 shows the
MSE on a random subset of users’ reviews.

Table 2 shows that our model significantly outperforms alterna-
tives on all datasets. On average, it achieves a 14% reduction in
MSE compared to a standard latent factor recommender system,
and a 10% reduction compared to its nearest competitor, which
models user evolution as a process that takes place at the level of
entire communities. Note that due to the large size of our datasets,
all reported improvements are significant at the 1% level or better.

By considering only users’ most recent reviews, our evaluation
may be biased towards reviews written at a high level of experi-
ence. To address this possibility, in Table 3 we perform the same
evaluation on a random subset of reviews for each user. Again, our
model significantly outperforms all baselines. Here we reduce the
MSE of a standard recommender system by 17%, and the nearest
competitor by 13% on average.

Reviews from BeerAdvocate and RateBeer have multiple dimen-
sions, or ‘aspects’ to users’ evaluations. Specifically, users evaluate
beers in terms of their ‘taste’, ‘smell’, ‘look’, and ‘feel’ in addition
to their overall rating [28]. Tables 2 and 3 show results for two
such aspects from BeerAdvocate, showing that we obtain similar
benefits by modeling users’ evolution with respect to such aspects.
Similar results from RateBeer are omitted.

It is perhaps surprising that we gain the most significant bene-
fits on movie data, and the least significant benefits on beer data.
However, we should not conclude that movies require more exper-
tise than beer: a more likely explanation is that our movie data has
a larger spectrum of expertise levels, whereas users who decide to
participate on a beer-rating website are likely to already be some-
what ‘expert’.

We gain the most significant benefits when considering reviews
written at all experience levels (as in Table 3) rather than consider-
ing users’ most recent reviews (as in Table 2). However we should
not conclude from this that experts are unpredictable (indeed in
Section 5 we confirm that experts are the most predictable). Rather,
since inexperienced users are less predictable, we gain the most
benefit by explicitly modeling them.

We also note that while we obtain significant benefits on Amazon
data, the mean-squared-errors for this dataset are by far the highest.
One reason is that Amazon users use a full spectrum of ratings from
1 to 5 stars, whereas CellarTracker users (for example) rate wines
on a smaller spectrum (after normalizing the ratings, most wines
have scores above 4.25); this naturally leads to higher MSEs. An-
other reason is that our Amazon data has many products and users
with only a few reviews, so that we cannot do much better than sim-
ply modeling their bias terms. As we see in Section 5, bias terms
differ significantly between beginners and experts, so that modeling
expertise proves extremely beneficial on such data.

5. QUALITATIVE ANALYSIS
So far, we have used our models of user expertise to predict

users’ ratings, by fitting latent ‘experience’ parameters to all rat-
ings in our corpora. Now we move on to examine the role of these
latent variables in more detail.

Throughout this section we use the term ‘expert’ to refer to those
reviewers (and ratings) that are assigned the highest experience
level by our model (i.e., eui = E). We use the term ‘beginner’
to refer to reviewers and ratings assigned the lowest level (i.e.,
eui = 1). Again, we acknowledge that ‘expertise’ is an interpre-
tation of our model’s latent parameters, and other interpretations
may also be valid. However, in this section, we demonstrate that
our latent parameters do indeed behave in a way that is consistent
with our intuitive notion of expertise.

We begin by examining how a user’s experience level impacts
our ability to predict their rating behavior. Table 4 compares the
prediction accuracy of our model on reviews written at different
experience levels. We find in all but one case that users at the high-
est experience level have the lowest MSE (for Amazon Movies they
have the second lowest by a small margin). In other words their rat-
ing behavior can be most accurately predicted by our model. This
is not to say that experts agree with each other (which we discuss
later); rather, it says that individual experts are easier to model than
other categories of user. Indeed, one can argue that some notion of

902

e = 1 e = 2 e = 3 e = 4 e = 5

BeerAdvocate 0.423 0.396 0.471 0.449 0.358
RateBeer 0.494 0.469 0.408 0.533 0.300
Amazon Fine Foods 1.016 1.914 1.094 2.251 0.960
Amazon Movies 0.688 0.620 0.685 1.062 0.675
CellarTracker 0.061 0.039 0.041 0.037 0.028

Table 4: MSE per experience level e

‘predictability’ is a necessary condition for such users to be consid-
ered ‘experts’ [12].

While we find that beginners and intermediate users have lower
prediction accuracy, it is surprisingly the ‘almost experts’ (eui =
E − 1) who are the least predictable; from Table 4 we see that
such users have the highest MSE in three out of five cases. From
this we might argue that users do not become experts via a smooth
progression, but rather their evolution consists of several distinct
stages.

Experience Progression
Next, we study how users progress through experience levels as
a function of time. Figure 4 shows the (cumulative) time taken
to progress between experience levels (the final bar represents the
entire lifetime of the user, since there is no further level to progress
to). The dark blue bars show the progression for those users who
progress through all levels of experience, i.e., it ignores those users
who arrive to the site already experienced as well as those who
never obtain the highest experience levels. The yellow bars show
users who reach all but the highest experience level.

How much time is spent at each experience level?
First, we observe that on most datasets, the final experience level
is the ‘longest’, i.e., it covers the longest time period, and includes
the largest number of reviews. This makes sense from the model-
ing perspective, when taken together with our previous finding that
experts’ ratings are easier to predict: the model is ‘finer-grained’
during the stages of user evolution that are most difficult to fit accu-
rately. Fewer distinct experience levels are required later on, once
users’ rating behavior has ‘converged’.

Do users who become experts differ from those who
don’t?
Secondly, Figure 4 compares users who progress through all levels
of experience to users who do not. Yellow bars show the progres-
sion of users who reach all but the final experience level. Surpris-
ingly, while such users enter roughly the same number of ratings
per level (Fig. 4, bottom) as those users who eventually become
experts, they do so much slower (Fig. 4, top). Thus it appears as
though the rate at which users write reviews, and not just the num-
ber of reviews they write, is tied to their progression.

Do experts agree with each other?
Thirdly, Figure 5 shows the extent to which users agree with each
other as they become more experienced. ‘Agreement’ has been ar-
gued to be another necessary condition to define users as experts
[12]. To study this, we consider ratings of the same product, writ-
ten at the same experience level. Specifically, for each item i and
experience level k, we find the set of users who rated that item at
that experience level, i.e., we find all u such that eui = k. We then
compute the variance of such ratings for every item and experience
level. Our goal is to assess how this quantity changes as a function

of users’ experience. We do so for all products that were reviewed
at least 5 times at the same experience level. Since this limits the
amount of data we have to work with, we first linearly interpolate
each user’s experience function over time (so that their experience
function is a piecewise linear function, rather than a step function),
and compute this quantity across a sliding window.

Indeed, in Figure 5 we find that users do tend to agree with each
other more as they become more experienced, i.e., their ratings
have lower variance when they review the same products. This is
consistent with our finding that experts’ ratings are easier to predict
than those of beginners.

User Retention
Next we consider how experience relates to user retention. We want
to study how users who leave the community (defined as users who
have not entered a review for a period of six months) differ from
those who remain in the community. Figure 6 visualizes the ex-
perience progression of these two groups. Here we consider the
first 10 ratings for all users who have entered at least 10 ratings
(Fig. 6, top), and the first 100 ratings for all users who have entered
at least 100 ratings (Fig. 6, bottom); this scheme ensures that every
datapoint is drawn from the same sample population.

We find that both classes of users enter the community at roughly
the same level (at the time of their first review, both groups have
roughly the same experience on average). However, as the number
of reviews increases, users who go on to leave the community have
lower experience compared to those who stay. In other words, they
gain experience more slowly. This discrepancy is apparent even
after their first few reviews. This failure to become experienced
may be a factor which causes users to abandon the site, and could
be used as a feature in ‘churn prediction’ problems [11, 18]. We
mention the parallel work of [9], which also studies BeerAdvocate
and RateBeer data: there, a user’s failure to adopt the linguistic
norms of a community is considered as a factor that may influence
whether they will abandon that community.

Acquired Tastes
In Figure 1, we hinted at the idea that our model could be used
to detect acquired tastes. More precisely, it can help us to iden-
tify products that are preferred by experts over beginners (and vice
versa).

To do so, we compare the difference in product bias terms be-
tween the most expert (experience level 5) and the least expert (ex-
perience level 1) users. That is, we compute for each item i the
quantity

di = βi(5) − βi(1).

Thus a positive value of di indicates that a product is preferred
by experts over beginners, while a negative value indicates that a
product is preferred by beginners over experts.

How do expert and beginner biases differ?
In Figure 7 we compare the average rating of each product to di

(for products with at least 50 ratings). Our main finding in this
figure is that there exists a positive relationship between products
that are highly rated and products that are preferred by experts.
In other words, products with high average ratings are rated more
highly by experts; products with low average ratings are rated more
highly by beginners. Recall that in Figure 1 we examined the same
relationship on RateBeer data in more detail.

One explanation is that the ‘best’ products tend to be ones that
require expertise to enjoy, while novice users may be unable to ap-
preciate them fully. This phenomenon is the most pronounced on

903

users who never become experts
users who become experts

1 2 3 4 5
experience level

0
20
40
60
80

100
120
140
160
180

tim
e

to
pr

og
re

ss
(w

ee
ks

)

BeerAdvocate

1 2 3 4 5
experience level

0

50

100

150

200

250

tim
e

to
pr

og
re

ss
(w

ee
ks

)

RateBeer

1 2 3 4 5
experience level

0

50

100

150

200

250

300

tim
e

to
pr

og
re

ss
(w

ee
ks

)

Amazon Fine Foods

1 2 3 4 5
experience level

0

50

100

150

200

250

300

350

tim
e

to
pr

og
re

ss
(w

ee
ks

)

Amazon Movies

1 2 3 4 5
experience level

0

50

100

150

200

250

tim
e

to
pr

og
re

ss
(w

ee
ks

)

CellarTracker

1 2 3 4 5
experience level

0

50

100

150

200

250

300

350

tim
e

to
pr

og
re

ss
(r

at
in

gs
) BeerAdvocate

1 2 3 4 5
experience level

0

50

100

150

200

250

tim
e

to
pr

og
re

ss
(r

at
in

gs
) RateBeer

1 2 3 4 5
experience level

0

10

20

30

40

50

60

tim
e

to
pr

og
re

ss
(r

at
in

gs
) Amazon Fine Foods

1 2 3 4 5
experience level

0

10

20

30

40

50

tim
e

to
pr

og
re

ss
(r

at
in

gs
) Amazon Movies

1 2 3 4 5
experience level

0

50

100

150

200

tim
e

to
pr

og
re

ss
(r

at
in

gs
) CellarTracker

Figure 4: Users who never become ‘experts’ tend to progress slower than users who do. Cumulative time (top), and number of
ratings (bottom), taken to progress between experience levels.

1 2 3 4 5
experience level

0.32

0.34

0.36

0.38

0.40

re
vi

ew
va

ria
nc

e

BeerAdvocate

1 2 3 4 5
experience level

0.24

0.26

0.28

0.30

0.32

0.34

0.36

re
vi

ew
va

ria
nc

e

RateBeer

1 2 3 4 5
experience level

0.9

1.0

1.1

1.2

1.3

1.4

1.5

re
vi

ew
va

ria
nc

e

Amazon Fine Foods

1 2 3 4 5
experience level

1.0

1.1

1.2

1.3

1.4

1.5

1.6

re
vi

ew
va

ria
nc

e

Amazon Movies

1 2 3 4 5
experience level

.012

.013

.014

.015

.016

.017

.018

re
vi

ew
va

ria
nc

e

CellarTracker

Figure 5: Experienced users agree more about their ratings than beginners. Experience versus rating variance (when rating the
same product).

our Movies and RateBeer data, and exists to a lesser extent on our
BeerAdvocate and Fine Foods data; the phenomenon is absent alto-
gether on our CellarTracker data. Again, we should not conclude
from this that movies require more ‘expertise’ than wine, but rather
that our Movies data has a larger separation between beginners and
experts.

Perhaps more surprising is the lack of products that appear in the
top left or bottom right quadrants of Figure 7, i.e., products with
below average ratings, but positive values of di, or products with
above average ratings but negative values of di. In other words,
there are neither products that are disliked by beginners but liked
by experts, nor are there products that are liked by beginners but
disliked by experts.

It is worth trying to rule out other, more prosaic explanations
for this phenomenon: for instance, it could be that beginners give
mediocre reviews to all products, while experts have a larger range.
We mention two negative results that discount such possibilities:
firstly, we found no significant difference between the average rat-
ings given by beginners or experts. Secondly, we did not observe
any significant difference in the variance (that is, the variance across
all of a user’s reviews, not when reviewing the same product as in
Figure 5).

Which genres are preferred by experts or beginners?
In Figure 1 we showed that there are entire genres of products that
tend to be preferred by experts or by beginners. Specifically, we
showed that almost all strong ales have positive values of di (pre-
ferred by experts), while almost all lagers have negative values of
di (preferred by beginners). Of course, it is not surprising (to a
beer drinker) that experts dislike lagers while preferring India Pale
Ales (IPAs), though it is more surprising that beginners also have
the same polarity with respect to these products—the experts are
simply more extreme in their opinions.

Table 5 shows which genres have the lowest and highest values
of di on average, i.e., which products are most preferred by begin-
ners and experts (respectively). We focus on BeerAdvocate, Rate-
Beer, and CellarTracker, which have the most meaningful genre
information. The results are highly consistent across BeerAdvo-
cate and RateBeer, in spite of the differing product categorizations
used by the two sites (Kvass is a form of low-alcohol beer, Kristall-
weizen is a form of wheat beer, IPA is a form of strong ale, and
Gueuze is a type of lambic). Again, there is a clear relationship be-
tween products’ overall popularity and the extent to which experts
prefer them; non-alcoholic beer is naturally not highly rated on a
beer rating website, while lambics and IPAs are more in favor.

904

users who stay in the community
users who leave the community

1 2 3 4 5 6 7 8 9 10
review number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
pe

rie
nc

e
le

ve
l

BeerAdvocate

1 2 3 4 5 6 7 8 9 10
review number

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

ex
pe

rie
nc

e
le

ve
l

RateBeer

1 2 3 4 5 6 7 8 9 10
review number

0.0

0.5

1.0

1.5

2.0

2.5

ex
pe

rie
nc

e
le

ve
l

Amazon Fine Foods

1 2 3 4 5 6 7 8 9 10
review number

0.5

1.0

1.5

2.0

2.5

3.0

ex
pe

rie
nc

e
le

ve
l

Amazon Movies

1 2 3 4 5 6 7 8 9 10
review number

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ex
pe

rie
nc

e
le

ve
l

CellarTracker

20 40 60 80 100
review number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ex
pe

rie
nc

e
le

ve
l

BeerAdvocate

20 40 60 80 100
review number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ex
pe

rie
nc

e
le

ve
l

RateBeer

20 40 60 80 100
review number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ex
pe

rie
nc

e
le

ve
l

Amazon Fine Foods

20 40 60 80 100
review number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ex
pe

rie
nc

e
le

ve
l

Amazon Movies

20 40 60 80 100
review number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ex
pe

rie
nc

e
le

ve
l

CellarTracker

Figure 6: Users whose experience progresses slowly are more likely to abandon the community. First 10 ratings of all users who have
at least 10 ratings (top), and first 100 ratings of all users who have at least 100 ratings (bottom).

6. RELATED WORK
Traditional recommender systems treat each user’s review his-

tory as a series of unordered events, which are simply used to build
a model for that user, such as a latent factor model [22]. In spite of
the excellent performance of such models in practice, they naturally
fail to account for the temporal dynamics involved in recommen-
dation tasks.

Some early works that deal with temporal dynamics do so in
terms of concept drift [23, 37, 39]. Such models are able to account
for short-term temporal effects (‘noise’), and long-term changes
in user behavior (‘drift’), for example due to the presence of new
products within a community.

Sophisticated models of such temporal dynamics proved critical
in obtaining state-of-the-art performance on the Netflix challenge
[3], most famously in [20]. As discussed in [20], few previous
works had dealt with temporal dynamics, other than a few notable
exceptions [2, 10, 35]. Around the same time, ‘adaptive neigh-
borhood’ models were proposed [24], that address the problem of
iteratively training recommender systems whose parameters ought
to change over time.

Better performance may be obtained by modeling large-scale
global changes at the level of entire communities [41], or by devel-
oping separate models for short term changes (e.g. due to external
events), and long-term trends [40].

Other works that study temporal dynamics at the level of prod-
ucts and communities include [29], where the authors studied how
existing ratings within communities may influence new users, and
how community dynamics evolve; and [13], who studied how users
are influenced by previous ratings of the same product.

Expertise has been studied in domains other than recommender
systems, for example in the literature on education and psychology
[5, 34]. One area where ‘expertise’ has received significant atten-
tion is web search. The role of expertise with respect to search
behavior is a rich and historied topic, whose study predates the
emergence of modern search engines [14]. Of particular interest

is [38], since the authors study how users evolve (with respect to
the level of technical content in their queries) as they gain exper-
tise. We also briefly mention the topic of expertise identification
[1, 6, 16, 32]. This line of work is orthogonal to ours, in that it
deals with discovering experts, rather than recommending products
based on expertise; however, such works offer valuable insights, in
the sense that like our own work, they attempt to model the behav-
ior of expert users.

7. DISCUSSION AND FUTURE WORK
An interesting finding of our work is that beginners and experts

have the same polarity in their opinions, but that experts give more
‘extreme’ ratings: they rate the top products more highly, and the
bottom products more harshly. Thus naively, we might conclude
that we should simply recommend both groups of users the same
products: nobody likes adjunct lagers, so what does it matter if
beginners dislike them less? The counter to this argument is that in
order to fully appreciate a product (by giving it the highest rating), a
user must first become an expert. Thus perhaps we should focus on
making a user an expert, rather than simply recommending what
they will like today.

This viewpoint motivates several novel questions. Can we deter-
mine, based only on which products a user reviews, whether they
will become an expert? Can we recommend not just products, but
sequences of products, that will help them to become an expert, or
maximize their total enjoyment?

Another avenue of research is to study linguistic differences be-
tween experts and non-experts. ‘Expertise’ has been studied from
the perspective of linguistic development [34], for example in the
context of second-language acquisition [8, 36]. Since our rating
data comes from review corpora, we can use it to study how users’
rating expertise relates to their reviewing expertise. Do experts
write longer reviews or use fewer personal pronouns? Are their
reviews considered more helpful by others in the community [30]?

905

906

9. REFERENCES
[1] O. Alonso, P. Devanbu, and M. Gertz. Expertise

identification and visualization from CVS. In Working
Conference on Mining Software Repositories, 2008.

[2] R. Bell and Y. Koren. Scalable collaborative filtering with
jointly derived neighborhood interpolation weights. In
ICDM, 2007.

[3] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup
and Workshop, 2007.

[4] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest
common subsequence algorithms. In SPIRE, 2000.

[5] D. Berliner. The Development of Expertise in Pedagogy.
AACTE Publications, 1988.

[6] J. Bian, Y. Liu, D. Zhou, E. Agichtein, and H. Zha. Learning
to recognize reliable users and content in social media with
coupled mutual reinforcement. In WWW, 2009.

[7] N. Craswell, D. Hawking, A. Vercoustre, and P. Wilkins.
P@noptic expert: Searching for experts not just for
documents. Ausweb Poster Proceedings, 2001.

[8] A. Cumming. Writing expertise and second-language
proficiency. Language learning, 2006.

[9] C. Danescu-Niculescu-Mizil, R. West, D. Jurafsky,
J. Leskovec, and C. Potts. No country for old members: User
lifecycle and linguistic change in online communities. In
WWW, 2013.

[10] Y. Ding and X. Li. Time weight collaborative filtering. In
CIKM, 2005.

[11] G. Dror, D. Pelleg, O. Rokhlenko, and I. Szpektor. Churn
prediction in new users of Yahoo! Answers. In WWW CQA
Workshop, 2012.

[12] H. Einhorn. Expert judgment: Some necessary conditions
and an example. Journal of Applied Psychology, 1974.

[13] D. Godes and J. Silva. Sequential and temporal dynamics of
online opinion. Marketing Science, 2012.

[14] I. Hsieh-Yee. Effects of search experience and subject
knowledge on the search tactics of novice and experienced
searchers. Journal of the American Society for Information
Science, 1994.

[15] N. Jindal and B. Liu. Opinion spam and analysis. In WSDM,
2008.

[16] P. Jurczyk and E. Agichtein. Discovering authorities in
question answer communities by using link analysis. In
CIKM, 2007.

[17] M. Karimzadehgan, R. White, and M. Richardson.
Enhancing expert finding using organizational hierarchies.
Advances in Information Retrieval, 2009.

[18] M. Karnstedt, T. Hennessy, J. Chan, P. Basuchowdhuri,
C. Hayes, and T. Strufe. Churn in social networks. In
Handbook of Social Network Technologies. Springer, 2010.

[19] J. Kolter and M. Maloof. Dynamic weighted majority: An
ensemble method for drifting concepts. JMLR, 2007.

[20] Y. Koren. Collaborative filtering with temporal dynamics.
Commun. ACM, 2010.

[21] Y. Koren and R. Bell. Advances in collaborative filtering. In
Recommender Systems Handbook. Springer, 2011.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 2009.

[23] L. Kuncheva. Classifier ensembles for changing
environments. In Multiple Classifier Systems. Springer, 2004.

[24] N. Lathia, S. Hailes, and L. Capra. Temporal collaborative
filtering with adaptive neighbourhoods. In SIGIR, 2009.

[25] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering. IEEE
Internet Computing, 2003.

[26] H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King. Recommender
systems with social regularization. In WSDM, 2011.

[27] D. MacKay. Information Theory, Inference and Learning
Algorithms. Cambrdige University Press, 2003.

[28] J. McAuley, J. Leskovec, and D. Jurafsky. Learning attitudes
and attributes from multi-aspect reviews. In ICDM, 2012.

[29] W. Moe and D. Schweidel. Online product opinions:
Incidence, evaluation, and evolution. Marketing Science,
2012.

[30] D. Nguyen and C. Rosé. Language use as a reflection of
socialization in online communities. In ACL Workshop on
Language in Social Media, 2011.

[31] J. Nocedal. Updating quasi-newton matrices with limited
storage. Mathematics of Computation, 1980.

[32] A. Pal, R. Farzan, J. Konstan, and R. Kraut. Early detection
of potential experts in question answering communities. In
UMAP, 2011.

[33] F. Ricci, L. Rokach, B. Shapira, and P. Kantor, editors.
Recommender Systems Handbook. Springer, 2011.

[34] S. Romaine. The language of children and adolescents: The
acquisition of communicative competence. Wiley, 1984.

[35] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web
search based on user profile constructed without any effort
from users. In WWW, 2004.

[36] S. Thorne, R. Black, and J. Sykes. Second language use,
socialization, and learning in internet interest communities
and online gaming. The Modern Language Journal, 2009.

[37] A. Tsymbal. The problem of concept drift: Definitions and
related work. Technical report, Trinity College Dublin, 2004.

[38] R. White, S. Dumais, and J. Teevan. Characterizing the
influence of domain expertise on web search behavior. In
WSDM, 2009.

[39] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. In Machine Learning,
1996.

[40] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang,
and J. Sun. Temporal recommendation on graphs via long-
and short-term preference fusion. In KDD, 2010.

[41] L. Xiong, X. Chen, T. Huang, J. Schneider, and J. Carbonell.
Temporal collaborative filtering with bayesian probabilistic
tensor factorization. In SDM, 2010.

907

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

