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ABSTRACT
While various models have been proposed for generating so-
cial/friendship network graphs, the dynamics of user inter-
actions through online social network (OSN) based applica-
tions remain largely unexplored. We previously developed
a growth model to capture static weekly snapshots of user
activity graphs (UAGs) using data from popular Facebook
gifting applications. This paper presents a new continuous
graph evolution model aimed to capture microscopic user-
level behaviors that govern the growth of the UAG and col-
lectively define the overall graph structure. We demonstrate
the utility of our model by applying it to forecast the num-
ber of active users over time as the application transitions
from initial growth to peak/mature and decline/fatique phase.
Using empirical evaluations, we show that our model can ac-
curately reproduce the evolution trend of active user popula-
tion for gifting applications, or other OSN applications that
employ similar growth mechanisms. We also demonstrate
that the predictions from our model can guide the genera-
tion of synthetic graphs that accurately represent empirical
UAG snapshots sampled at different evolution stages.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General;
H.4.3 [Information Systems Applications]: Communi-
cations Applications

General Terms
Measurement, Algorithms

Keywords
Online Social Networks, Social Games, Social Gifting, Face-
book, Applications, Algorithms

1. INTRODUCTION
The growing popularity of online social networks (OSNs)

such as Facebook has led to extensive research on OSN
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friendship graphs [1, 2, 3]. Arguably, however, the worth
of an OSN resides in how much activity its users generate,
rather than simply how connected its users are. Unlike on-
line friendships that are mostly static, the amount of activity
between user pairs varies over time [4, 5]. Citing this dif-
ference, many researchers have highlighted the importance
of studying user activity as opposed to simple OSN friend-
ship graphs [6, 7]. User activity data from OSN-based ap-
plications hence provide a gateway to study the nature of
user dynamics on OSNs. In particular, a user activity graph
(UAG) can be constructed for each application where a node
represents a user and a directed edge represents an action
initiated by one user, targeting another (e.g., user A sends a
virtual gift to user B). Unlike friendship graphs, UAGs con-
sist of directed and transient edges, which are not necessarily
reciprocal.

We previously pioneered a large-scale measurement study
of user interactions on selected Facebook applications with 8
million users [8]. We showed how application dynamics are
pivotal in defining the structure of UAGs. Subsequently,
we developed a generative model for static snapshots of
UAGs [9] over short time-scales (one week), but it did not
capture the continuous evolution of the UAG/application
over time.

In this paper, we consider the problem of measuring and
modeling the long-term continuous evolution of UAGs from
OSN-based applications. Such an evolution model can pro-
vide important insights into patterns of user interactions and
how they morph across different stages (e.g., initial growth,
peak/mature, and decline) of OSN applications’ life span.
It forms a basis for investigating factors contributing to the
viral growth of applications and cascading effects.

Although useful in many aspects, modeling the evolution
of UAGs is a very challenging task given their dynamic na-
ture and the lack of user activity data due to privacy con-
cerns. To overcome those problems, we build our model
based on the insights gained from a detailed large scale data
set collected using the same methodology from our previous
work [8]. This data set contains three top Facebook applica-
tions that collectively account for more than 77 million
users and 5.3 billion entries of user activities. All three
applications: iHeart, iSmile, and Hugged belong to gifting
applications, the second largest genre of Facebook applica-
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tions. In such applications, when a gift is sent from User A to
User B, who has not installed the application yet, the Face-
book platform will deliver an Application Requests (ARs)
to User B, and User B can either accept it (install the appli-
cation) or ignore it. This AR based growth mechanism can
boost the active user number free of cost [9], and hence is
very popular among Facebook applications.
Our main contributions are summarized as the following:
• Using key insights gained from our longitudinal data, we

develop a dynamic graph evolution model aimed to capture
user-level behaviors that govern the macroscopic growth of
the UAG and collectively define the overall graph structure.
• We demonstrate the practical relevance of our model by

applying it to forecast the number of active users and predict
the saturation peak of an OSN application (both are useful
for developers). We evaluate our approach using both the
activity data collected by ourselves, and publicly available
data from application analytics site, AppData [10].
• We utilize the prediction results to generate synthetic

snapshots of UAGs at different evolution phases of the ap-
plications. Our synthetic graphs mimic several important
properties, including the graph size and degree distributions,
of the real UAG snapshots, and are hence useful for study-
ing how structural characteristics of UAGs change over time.
The ability to generate representative UAGs is useful for the
research community, especially since sharing real datasets is
prohibitive due to their sheer size and privacy concerns.
Note that we do not seek to solve the problem of dynamic

network modeling in general. Instead, our model is driven
by the measurements of real UAGs from Facebook gifting
applications, and we demonstrate that it is applicable to
other applications that belong to the same genre or employ
the same underlying growth mechanism (i.e., cost-free user
recruitment by sending ARs). Our review of the top 250
Facebook applications suggests that ARs are widely used
for expanding the user population, but some applications
may use more than one growth mechanisms. Although our
model does not fully capture the dynamics of applications
that incorporate multiple mechanisms to drive the growth,
it still provides us with an insight into the impact of ARs
on the evolution of UAGs built on those applications. As a
result, for applications incorporating multiple mechanisms
to drive growth, our model can still help to investigate how
the impact of the AR base growth mechanism takes place.
In the next section, we summarize the related work, and

then provide an overview of our measurement methodology
and data set in Section 3 . Section 4 presents a measurement-
based characterization of individual node behavior across
time. Section 5 presents the microscopic state transition
model that captures user dynamics, which collectively de-
termine the evolution of the resulting UAG and its struc-
ture. It also discusses how the model can be applied to
predict number of active users and generate representative
synthetic UAG snapshots. We evaluate our approach in Sec-
tion 6. Section 7 concludes this paper with a discussion of
the possible extension of our model.

2. RELATED WORK
Most existing graph models for social networks are de-

signed specifically for friendship graphs [11, 3, 2, 12]. Those
studies generate edges between isolated nodes according to
two structural properties of social networks (i.e., preferential
attachment and triadic closure), and thereby create a graph

topologically similar to real networks. In addition, when ap-
plying the preferential attachment and triadic closure, latest
studies consider more information, such as social attributes
[13] and user locations [14], in order to generate more rep-
resentative synthetic graphs. Some recent work also allows
new nodes to arrive at a given constant rate, and then adds
edges between new nodes and existing nodes. This approach
can partially mimic the expansion of friendship graphs [2, 12,
13, 14]. For the case of UAGs, however, since both nodes
and edges are transient, these models can only be used to
generate static snapshots, which represent user activities ac-
cumulated in a given time window, instead of the continuous
evolution process. Moreover, for every snapshot, empirical
parameters including the number of active nodes (or the
nodes joining rate) are required as the inputs of these mod-
els.

The study of dynamic graphs [15, 16] and characterizing
temporal networks through parametric, generative models
remains an active research area. So far, two categories of
modeling strategies have been proposed. The first category
involves discretizing a temporal network by generating static
snapshots of the network in consecutive time windows. The
snapshots are then used to model how graph characteristics
change with time [17, 18]. The second approach adopts a
continuous process that predicts each node’s activity based
on its current and previous states [19, 20]. In order to model
the temporal sequence of user interactions, some studies use
small time granularities so as to capture only one user activ-
ity in each time slot [21]. The first approach is easier to ap-
ply and can leverage existing studies on static graphs, while
the second is more accurate in capturing details of dynamic
graph evolution. Unfortunately, current work adopting ei-
ther approach is incapable of modeling temporal networks
with both dynamic edges and nodes. In some recent stud-
ies, researchers assume that nodes neither join nor leave the
graph to reduce the modeling complexity [22, 23]. Although
such studies can be used in many scenarios, e.g., phone call
communications [19] and face-to-face interactions of a static
group of people [24], they do not suit our goal of model-
ing evolution of UAGs, since users may join or leave OSN
applications (and the UAGs) freely.

To describe the transient of nodes, prior work on epidemic
spread proposed the susceptible-infected-recovered (SIR) model,
which represents the temporal graph of disease infection as
a dynamic process on the static network of people’s con-
tacts. In the SIR model, in every time slot a susceptible
node might become infected with certain probability if con-
tacted by an already infected node, while the infected node
can recover with another probability. The latest SIR stud-
ies consider cases where the underlying contact network in-
volves heterogeneous [25], or even dynamic [26, 27] edges to
better mimic real-world scenarios. However, the SIR model
is still inadequate for our purpose due to its need for the
knowledge on the underlying user contacts network, which
is not available in our case. Through OSN platforms, user
interactions (contacts) may take place between any pair of
users (even between non-friends in many aplications), and
are hence hard to be predicted or modeled as a previously
known graph. Moreover, SIR model assumes the evolution
of temporal graphs as a homogeneous stochastic process, i.e.
the transition probabilities between ”susceptible”, ”infected”,
and ”recovered” for each node is invariant over time. Never-
theless, through our data analysis in Section 4, we demon-
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Figure 1: The evolution of graphic properties of the
UAG built on iHeart.

strate the necessity of introducing a time-variant model in
order to capture the time dependent nature of user behavior
patterns in OSN applications.
Although the SIR model cannot be directly applied to

model the long-term evolution of UAGs, it provides hints
for characterizing a temporal network with dynamic edges
and nodes. More specifically, the SIR model suggests that
one could capture the behavioral pattern of individual nodes,
and use this to explain the evolution of UAGs’ size and topol-
ogy. We employ this idea to design a state transition model
to represent user behavior in OSN-based applications. Our
model does not utilize any underlying network (i.e., a friend-
ship graph), and recruits new nodes at a rate dependent on
the current number of nodes.

3. MEASUREMENT METHODOLOGY AND
DATASETS

The growth process of an UAG depends on the growth
mechanism employed by the OSN application. In this pa-
per, we first focus on gifting applications, and then evaluate
the applicability of our model to other genres of applica-
tions that also employ the AR-based growth mechanisms.
Our study is based on three categories of datasets described
below.
The first category includes anonymized user activity data

collected from three popular Facebook gifting applications,
which were owned and operated by Manakki LLC during
the period of our study. These applications are: iHeart
(launched in June 2009, installed by 77 million users, 64
weeks’ data), iSmile (launched in August 2008, installed
by 43 million users, 85 weeks’ data), and Hugged (launched
in February 2008, installed by 28 million users, 140 weeks’
data). For each recorded activity, this dataset includes the
senders’ and recipients’ anonymized Facebook UIDs as well
as timestamps at which the activities were initiated.
Our dataset spans more than a year of user activities on

the three gifting applications, and therefore provide us with
rich information on the patterns of long-term UAG evo-
lution. In particular, the data from iHeart were collected
immediately after it was launched, and hence covering the
whole lifespan of the application (its growth, peak, and de-
cline phases). Fig. 1 shows the number of user activities on
iHeart, and indicates three distinct phases: the growth pe-
riod (until week 46, 2009), the peak period (week 47, 2009
to week 5, 2010), and the decline period. In December 2009,
iHeart was one of the top three Facebook applications by
monthly active users (MAU). For each application, we con-

Table 1: Dataset Overview
Application Launch

Date
Records
Since

Total
Users

Peak
WAU

Hugged Feb 2008 Mar 2008 28M 550K

iSmile Aug 2008 Jun 2009 43M 850K

iHeart Jun 2009 Jun 2009 77M 5.2M

Send Gifts Mar 2011 Mar 2011 N/A 25.5K

Birthday Cards N/A Nov 2009 N/A 16M

Free Gifts N/A Oct 2011 N/A 90K

Coco Girl N/A Oct 2011 N/A 550K

Truth about You N/A May 2012 N/A 4.2M

School Feed Aug 2011 Aug 2011 N/A 7.8M
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Figure 2: Length distribution of the interval be-
tween a user’s first and last activity.

struct the associated UAG G = (V,E) by adding a tempo-
ral edge (e ∈ E) between two unique nodes A and B (where
A,B ∈ V ) when the User A performs an activity on the User
B through the application. We also find that the clustering
coefficient of the weekly UAGs remain low (about 0.03) and
stable across weeks during the growth and peak phases, but
gradually decreases in the decline phase (to about 0.011).

The second category of datasets contain the number of
monthly, weekly, and daily active users on other Facebook
applications, which is publicly available from the applica-
tion analytics site AppData ([10]). We use these datasets to
evaluate the effectiveness of our model on a larger basis. We
do this by randomly picking three gifting applications from
[10], namely Send Gifts, Birthday Cards, and Free Gifts.

Third, we pick several popular non-gifting applications,
which also use ARs as the dominant mechanism for growth,
to evaluate the applicability of our model beyond the genre
of gifting.

In Section 6, we fit our model to the above datasets, and
test whether it can reproduce the evolution of the number
of active users in those applications. Table 1 summarizes
the datasets analyzed in this paper (WAU refers to weakly
active users).

4. NODE BEHAVIOR CHARACTERISTICS
In this section, we attempt to characterize individual nodes’

properties and behaviors based on analysis of data from
iHeart, iSmile, and Hugged. We also briefly discuss the
key empirical observations that provide guidelines for formu-
lating the state transition probabilities in our model. The
time granularity used in our model is one week, which we
have previously shown to be long enough for the structural
properties of UAG to stabilize [9] while sufficiently short to
capture the details of UAG evolution.
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(b) Hugged
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(c) iHeart

Figure 4: The active ratio as a function of time.
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(b) Hugged
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Figure 5: The expansion cost as a function of time.
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Figure 3: Length distribution of the interval be-
tween a user’s two consecutive activities.

4.1 Node States Definition
In the UAGs built upon iHeart, iSmile, or Hugged, a tem-

poral, directed edge is added between two nodes when a user
sends an item/gift to another user. For the convenience of
expression, we refer to this as an “action” of the node repre-
senting the gift sender.
Fig. 2 illustrates the distribution of the time intervals be-

tween users’ first and last activities. Although an applica-
tion can span over one hundred weeks, most users perform
all of their activities within a much shorter time span (more
than 50% of users were only active for less than 20 weeks).
On the other hand, Fig. 3 illustrates the distribution of time
intervals between two consecutive activities of the same user.
We can see that the likelihood for the consecutive activity
from the same user to take place within a week since his/her
previous activity is less than 50%. This finding shows that,
in a social application UAG, it is rare for a node to con-
tinuously generate activities through multiple weeks. The

observations from Fig. 2 and Fig. 3 indicate the necessity of
introducing an intermediate state, in which the probability
for a node to generate an action in each week is larger than
0 but smaller than 1.

Based on our findings above, we define three node states:
Active. A node is in active state if it generates at least

one action within a week.
Alive. A node enters the alive state since it joins the

UAG (as a potential sender). In this state, every node has a
positive probability smaller than 1 to be active in each week.

Quit. A node in quit state no longer generate any action
and is assumed to have abandoned the application.1

In our empirical analysis, if a node has been inactive for
a period longer than the preset threshold, it is assumed to
have already left the graph (transition to Quit) since its
last action. We use one month as the default value of this
threshold. Slightly increasing or decreasing the threshold
will not affect the main findings of this paper.

4.2 Active Ratio
We define the term “active ratio” as the portion of alive

nodes that are active in each week. This metric provides
us hints on how to model the weekly behavior of nodes in
the ’Alive’ state. Fig. 4 shows how the values of active ratio
change through time for all our three applications. As shown
by the data fitting results shown in Fig. 4, this metric is
approximately linear with respect to time. The absolute
relative error of the fitted linear model to the real data are
5.9% for iHeart, 12.1% for Hugged, and 7.5% for iSmile.

1A small fraction of nodes that quit may generate actions
after extended period of absence, and we treat them as new
nodes in our model.
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Figure 6: The distribution of node life-span (the time interval in which a node remains in the alive state).

4.3 Expansion Cost
To model the evolution of UAGs, it is also important to

infer the number of new nodes joining the graph in each
week. In applications that employ ARs as the major growth
mechanism, a large portion of new users are recruited by
the ARs sent to them from current users. Alternatively,
users may also install an application when they see it on
the application list of the OSN platform, or discover that
their friends are using it. Not surprisingly, the rate of new
nodes joining is highly dependent on the population of exist-
ing users. Fig. 5 plots the ratio of current number of active
nodes to the number of new nodes joining in the following
week. We define this ratio as the “expansion cost”, i.e., how
many existing users it takes to recruit a new user. Simi-
lar to the active ratio, our results show that the expansion
cost is also approximately linear with respect to time (ab-
solute relative error: 9.7% for iHeart, 10.8% for Hugged,
and 11.28% for iSmile), and monotonically increases after
the application is launched. This finding indicates that, as
time passes by, an application needs more and more active
users to recruit the same amount of new users, and hence
will gradually saturates. When the rate of nodes leaving
exceeds joining/staying, the application will begin to shrink
and eventually die out.

4.4 Life-span Distribution
In addition to the expansion cost that characterizes the

recruitment of new nodes, we use the distribution of nodes’
life-span, the time interval in which a node remains in the
Alive state, to predict when nodes will leave the graph. As
shown in Fig. 6, a large portion of nodes transition into the
Quit state immediately after their first action, and the life-
span distribution of the remaining nodes can be perfectly
fitted into an exponential function.The goodness of fit (R-
Square) are 0.9767, 0.9865, and 0.9901 for iHeart, Hugged,
and iSmile, respectively.

5. MODELING THE EVOLUTION OF UAGS

5.1 State Transition Model
This section presents our node state transition model that

describes the dynamics of microscopic user behavior through
time, which in turn govern the evolution of the UAGs. Our
model can be explained using the state transition graph
shown in Fig. 7 and the notations used are listed in Table
2. Our model only contains state transitions for action ini-

tiators. Nodes that only receive and never generate actions
are not considered here.

All the new nodes that join the graph after generating
their first actions are considered Active in their first week
according to our definition. However, as shown in Section
4.4, a large proportion of new nodes quit the graph immedi-
ately after the first week and, as a result, significantly differ
from the remaining nodes whose life-span follows the expo-
nential distribution. Therefore we introduce a separate state
“new joining”, which transitions into the Quit state with a
probability PIQ, to model the behavior of this type of new
nodes.

After surviving the first week, nodes will remain in Alive
state. As described in Section 4.1, an Alive node can ei-
ther be inactive (noted as Alive & inactive in the transition
graph) or generate at least one action (noted as Active) in
each week, and will switch between these two states with
certain probabilities.

Most transition probabilities in our model are time depen-
dent. There are two time notations used in Fig. 7, t and t’. t
denotes the number of weeks since the beginning of the appli-
cation, and t’ denotes the number of weeks after a particular
node joins. All the transition probabilities are functions of
three fundamental metrics: (1) PIQ, (2) PQ(t

′), the proba-
bility of transitioning from Alive to Quit, and (3) PA(t), the
probability of Alive nodes becoming Active. These metrics
are also the input required by our model. Moreover, in order
to describe the size change of an UAG, the expansion cost
(noted as EP (t) ) is required as well.

Based on the observations presented in Section 4, we for-
mulate PA(t) and EP (t) as a linear function of t, and PQ(t

′)
as a function of the nodes’ exponential lifespan distribution.
i.e.

PA(t) = a ∗ t+ b (1)

EP (t) = c ∗ t+ d (2)

PQ(t
′) =

e ∗ exp(f ∗ t′)

1−
t′−1∑
t′′=1

e ∗ exp(f ∗ t′′)
(3)

where t′ ≥ 1. Since PQ(t
′) and PIQ describe the probability

density function (PDF) of nodes’ life-span distribution, the
summation of PIQ and the integral of e ∗ exp(f ∗ t′) over
t′ ∈ [1,+∞) should be 1. As a result, the value of e is
dependent of f , and only f is required by our algorism. In
other words, our proposed evolution model for UAG requires
six input parameters {a, b, c, d, f, PIQ}.
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Figure 7: State transition model that describes the
behavior of individual nodes.

Table 2: Notations of the state transition model
New

Joining
The node joins the UAG and takes its

first action in the current week

Alive &
Inactive

The node is alive, but takes no action in
the current week

Active The node takes at leat one action in the
current week

PIQ The probability that a new node quits the
graph immediately after its first action

PQ(t′) The probability for a node to quit in the
current week

PA(t) The probability for alive nodes to be
active in the current week

5.2 Modeling and Predicting the Number of
Active Users

A very practical use of our UAG evolution model is to
predict the number of active users in an OSN application in
future weeks based on initial empirical observations. Know-
ing the number of active users, the source of all dynamics,
is a key step for studying many other structural properties
of UAGs.
Let A(t), AL(t), and N(t) denote the total number of

active, alive, and new joining nodes in week t. Let AL(t)(t′)
denote the number of nodes that join the graph in week
(t − t′) and are still alive in week t. From state transitions
illustrated in Fig. 7, we have

A(t) = N(t) +AL(t) ∗ PA(t) (4)

N(t) = A(t− 1)/EP (t− 1) (5)

AL(t) =

t−1∑
t′=1

AL(t)(t′) (6)

AL(t)(t′) = N(t− t′) ∗ (1− PIQ) ∗ (1−
t′−1∑
t′′=1

e ∗ exp(f ∗ t′′))

(7)
Using Equation (4)-(7), we can get A(t), AL(t), and N(t)

based on information from weeks no later than (t− 1), and
the results can then be used to calculate A(t+1), AL(t+1),
and N(t + 1). Thus, by recursively utilizing Equation (4)-
(7), we will be able to generate the whole process of how
the active user population in an OSN UAG evolves through
time.

In practice, we can estimate {a, b, c, d, f, PIQ} by fitting
the data collected in a short initial monitoring period into
Equation (1)-(3) (the time window for data collection in all
of our experiments is 20 weeks), and input the fitted param-
eters into our model to forecast the number of active users
in the future. We now discuss how to address two practi-
cal challenges in employing our model as a prediction tool.
The first challenge is to accurately estimate the number of
existing nodes that are Alive when we first monitor an OSN
application. One option is to pre-monitor the application
for a month, and count all the nodes that are active at least
once. Then, using this as a basis, we can start collecting
data and estimating other input parameters after this pe-
riod. Secondly, the exact time when the application was
launched may be unknown. Hence, it may be difficult to
determine the value of t, which is relative to the launching
date. To address this issue, we assume the week when data
collection starts as the first week of the application (t =1),
so the PA(t) and EP (t) we get are the original functions
with a time-shift. Since both functions are linear with re-
spect to time, the final results of the prediction would not
be affected.

5.3 Generating Representative UAG Snapshots
In this subsection, we demonstrate how the results of ac-

tive user number prediction can be used to guide the gener-
ation of synthetic weekly snapshots of the UAG. Note that
these snapshots are static graphs, and a directed edge is
added if its source end takes at least one action on its desti-
nation end within the time window over which the snapshot
is generated. We follow the approach proposed in [9] to
generate the synthetic weekly UAG, while taking advantage
of the prediction results to enhance the modeling accuracy.
We include the detailed description of the mechanism (Al-
gorithm 1) here for completion.

This mechanism requires the following additional param-
eters: (1)d(x), the distribution of the number of days an
active node is activated (i.e. generates at least one action)
in a week, (2) m(y), the distribution of the number of ac-
tions from a node, if activated, in a day, (3) sl, the limitation
of actions a node is allowed to generate in a day (this con-
straint comes from the upper-bound of daily send activities
set by some OSN platforms, such as Facebook), (4) β, the
percentage of inactive nodes, whose out-degree is 0, in an
UAG snapshot.

Based on our characterization of UAGs generated upon
real data, between 70% to 75% of active users in a given
week are only activated for a day, and this percentage decays
approximately as a power law with number of days activated
(e.g.,only between 1.5% and 2% users are active for all seven
days). Our measurements also show that the distribution of
actions initiated by a activated user per day follows a power
law [9]. As a result, we formulate d(x) and m(y) as

d(x) = g ∗ x−γd (8)

where x ≥ 1,

m(y) = h ∗ y−γm (9)

where y ≥ 1. Similar to e and f , only γd and γm are required
to describe these two power-law distributions. Therefore,
the additional inputs required by the synthetic graph gen-
eration mechanism is actually a four-tuple {γd, γm, sl, β}.

Among these parameters, sl is an external input param-
eter that is set by the OSN platform. For all other pa-
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rameters, we found that their values are relatively stable
throughout the life-span. Take iHeart as an example, the
mean values of {γd, γm, β} across all the weeks in the data
sets are {1.8233, 0.8467, 0.8852}, while their standard de-
viations are {0.0780, 0.0546, 0.015}. Since the deviations
are quite small compared with the means, we can compute
the means of parameters based on empirical data collected
during the initial monitoring period (during which the pa-
rameters for active user number prediction are estimated ),
and use the results as the input of our mechanism to gener-
ate synthetic graphs for all other weeks.
At the first step of our mechanism, A(t) ∗ 1

(1−β)
isolated

nodes are placed in the graph, in which A(t) nodes are active
and the rest are inactive (A(t) is determined by our active
user number prediction model). The whole generation pro-
cess is divided into 7 time slots, each representing one day.
In each time slot, an active node will be activated, and how
many actions it is going to take are determined by Equation
(8) and Equation (9). Note that all nodes determined to be
activated for more than 7 time slots will only be active for
7 time slots. Similarly, nodes determined to take more than
sl actions in one day will stop after the sl

th action.
When a node generates an action, the target will be cho-

sen according to the principle of preferential attachment [28],
i.e. the probability for a node to be picked is proportional to
its current in-degree. If currently there is no edge from the
action initiator to the target, a new edge will be added be-
tween them. Preferential attachment has been reported as
an effective way to model the in-degree distribution of social
network graphs by many recent studies [2]. However, there
are still some practical issues remaining to be addressed.
First, every inactive node should have an in-degree no less
than 1. Because a node that is neither the source nor the des-
tination of any action would not have been recorded in the
data, and hence may not appear in the graph. As a result,
if there are still inactive nodes without any incoming edge
in the graph, the destination of a new added edge should
be randomly chosen among them. Second, after all inactive
nodes are provided with one incoming edge, the in-degree of
all active nodes is still 0. Therefore, if we adopt the pref-
erential attachment model, the destinations of edges will all
be assigned as inactive nodes. To address this problem, we
modify the assignment principle as: an active node is chosen
to be the edge destination with a probability proportional
to its current in-degree plus 1.
After 7 time slots, the synthetic snapshot is produced. Al-

gorithm 1 shows the pseudocode for our synthetic snapshot
generation mechanism. In the pseudocode, IPL(γd, 7) and
RPL(γm, sl) are integer- and real-valued random variables
with distributions following Equation (8) and (9). The ex-
ponents of the two power law distributions are cut-off at 7
and sl, respectively. Moreover, the variable actx is the num-
ber of time slots a node has previously been active. It works
with another intermediate variable difx to adjust the error
caused by discretization (line 10-14 in Algorithm 1).

6. EVALUATION

6.1 Active User Number Prediction
We first evaluate the performance of our model in predict-

ing the number of active users in an UAG using the data of
iHeart, iSmile, and Hugged. For each of the applications,
we estimate all the six parameters {a, b, c, d, f, PIQ} based

Algorithm 1 Generating Representative UAG Snapshots

Require: γd, γm, sl, β, A(t);
1: Initialize a graph G = (V,E) (V is the node set, E is

the edge set). Divide V into three subsets, Va, Vi, Vin ;
2: Add A(t) ∗ 1

(1−β)
isolated nodes into V . Assign A(t) of

them into Va, rest into Vi;
3: for all x in Va do
4: Activate x;
5: dx = IPL(γd, 7);mx = RPL(γm, sl); actx = 0;
6: difx = ⌊dx ∗mx⌋ − dx ∗ ⌊mx⌋ ;
7: end for
8: for each i in [1, 7] do
9: for all activated x in Va do
10: if difx ≥ actx then
11: dailyactions = ⌊mx⌋ ;
12: else
13: dailyactions = ⌊mx⌋+ 1;
14: end if
15: for each j in [1, dailyactions] do
16: if Vin is not empty then
17: Randomly pick a node y from Vin;
18: Add an edge (x, y) to E;
19: Move y from Vin to Vi;
20: else
21: Pick up a node y from V , with probabilities

proportional to out-degrees for nodes in V , and
proportional to out-degree +1 for nodes in Va;

22: if (x, y) /∈ E then
23: Add an edge (x, y) to E;
24: end if
25: end if
26: end for;
27: dx = dx − 1; actx = actx + 1;
28: if dx=0 then
29: Deactivate x;
30: end if
31: end for
32: end for
33: return G

on 20 weeks of data, and conduct the prediction for all the
future weeks. Our records for iHeart can be traced back
to when the application was launched (64 weeks in total),
while the data for iSmile and Hugged start at a more ma-
ture phase (85 and 140 weeks, respectively).2 As stated in
Section 5.2, our model is capable of predicting active user
population regardless of when the measurement begins rel-
ative to the launching date of the application. The results
also demonstrate that the predictions for the three applica-
tions are all fairly accurate. We use the average value of
absolute relative errors to quantify the performance of our
prediction and the results are shown in Fig. 8. The average
errors for iSmile, Hugged, and iHeart are 13.8%, 14.6%, and
10.7%, respectively.

Note that the major errors of prediction occur during holi-
day weeks (e.g. Christmases and Valentine’s days for iHeart
and iSmile, and the Mothers’ day for Hugged), where more
users are active due to exogeneous effects, which leads to

2iSmile dies out in October 2010, after which only a small
amount of users are active each week. Therefore, our per-
formance evaluation only uses data prior to this date.
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Figure 8: Comparison between the predicted number of active users and real data records.
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Figure 9: Reproduce the evolution process for applications from appdata.com.

sub-linear expansion cost. Notwithstanding, the holiday fac-
tor does not affect the prediction for the subsequent weeks.
This observation shows that users are more likely to use the
social applications on holidays, but those transient extra ac-
tivities do not help significantly in attracting new users. In
our future work, we will consider using an external variable
to describe the impact of holidays on the active user popu-
lation.

6.2 Universality
Next, we examine whether our model can reproduce the

evolution process of other social applications besides iHeart,
iSmile and Hugged. Note that the data from AppData [10]
only contains the number of active users in every week. The
lack of sufficient information makes the user number pre-
diction a very difficult task. Therefore, in this group of
experiments we estimate the model parameters based on all
the available data, instead of only the first 20 weeks, and
try to find out a set of input {a, b, c, d, f, PIQ} that enables
our model to reproduce weekly active node numbers that are
close to the real data. We adopt an iterative search method
to guess a proper set of parameters for each application. In
all of our experiments, the target set of {a, b, c, d, f, PIQ}
can always be found. This indicates that our model is able
to explain the UAG evolution of all applications we have
tested.
Similar to Section 6.1, we consider an application (Send

Gifts) that has data records since its inception, and two
other applications (Birthday Cards, Free Gifts) of which we
only have data traces for the post peak (mature) phase.
We calculate the absolute relative errors for the modeling
of Send Gifts and Free Gifts before the applications die out
(January 2012 for Send Gifts, May 2010 for Free Gifts). The
average errors are 15.2% and 14.3% for those two applica-
tions, respectively (Fig. 9).
While analyzing data from Birthday Cards, we found that

the number of active users sharply increases in October 2010,

and the evolution of active user population greatly deviates
from its original trend after that date. It is highly possi-
ble that certain external factors, e.g. paid advertising, have
been introduced that result in this abrupt change. Unfor-
tunately, our current model does not consider the impact of
such external factors. As a result, we only calculate the av-
erage error of the modeling results on Birthday Cards upon
data collected earlier than October 2010. The resulting aver-
age error is 13.2%. We will try address the issue of external
factors affecting the evolution of UAGs in our future work.

Lastly, Fig. 10 illustrates the error when our model is
applied to reproduce the evolution of UAGs from applica-
tions other than gifting. All the three applications are cho-
sen from the top 100 most popular Facebook applications.
Truths about You is an interactive quizzing platform that
allows friends to ask and answer questions about themselves.
School Feed is an online classmate network integrated with
Facebook. While Coco girl is a virtual shopping tool en-
abling users to purchase digital items and show them to
friends. The average absolute relative errors for those three
applications are 9.7%, 7.2%, and 13.7% respectively, indi-
cating that our model can also be used to predict the evolu-
tion of non-gifting applications as long as they employ the
AR-based growth mechanism as the major tool to recruit
new users. Most of the applications that our model fail to
capture (such as social games) incorporate multiple growth
mechanisms, including paid advertising or direct email con-
tact, which are not considered in our model.

6.3 Representation of Structural Properties
We now use the data traces of iHeart to evaluate the per-

formance of the synthetic snapshots generation mechanism
proposed in Section 5.3. We estimate all the required param-
eters {a, b, c, d, f, PIQ, γd, γm, β} based on 20 weeks of data,
and set sl to be the same as announced by Facebook. Using
the estimated parameters, we predict the UAG snapshots
for all future weeks.
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Figure 10: Reproduce the evolution process for applications in genres other than gifting.

Table 3: Evaluation of the node number, edge num-
ber, and largest connected component size of syn-
thetic graphs

Node Number Edge Number Size of LCC

Week Emp Syn Emp Syn Emp Syn

34, 2009 9.8M 10.7M 11.8M 12.3M 8.7M 9.5M

45, 2009 22.3M 26.3M 29.6M 31.5M 19.1M 23.5M

50, 2009 44.7M 39.3M 110.0M 103.2M 41.4M 38.1M

01, 2010 31.4M 33.0M 43.8M 48.2M 30.0M 30.5M

06, 2010 30.9M 35.3M 47.6M 52.0M 28.5M 30.9M

14, 2010 19.0M 20.2M 23.7M 24.2M 17.9M 18.4M

19, 2010 11.6M 11.2M 13.0M 12.8M 10.2M 10.8M

26, 2010 9.9M 8.3M 11.1M 10.0M 8.5M 7.8M

30, 2010 6.5M 5.7M 6.9M 5.8M 5.9M 5.4M

The comparisons of number of nodes, number of edges,
and the size of largest connected component (LCC) between
the empirical graphs and synthetic graphs are shown in Ta-
ble 3. These results demonstrate that the synthetic graphs
can mimic the original snapshots with high accuracy. Par-
ticularly, for different time periods, the largest connected
components of the synthetic graphs consist of more than
95% of all the nodes, and the second largest components
are of negligible size (less than 20 nodes). This is consistent
with what we have observed in the empirical data. More-
over, although the clustering coefficient (CC) of the syn-
thetic graphs is not precisely the same as the empirical data,
the synthetic graphs all have very small CC (less than 0.025).
This result accurately represents the trend that UAGs from
gifting applications all tend to have much smaller CC than
many other applications, such as social games.
In addition, the synthetic graphs also have similar degree

distribution as the original graphs. Due to space limitations,
we only show our results for week 2009-34, 2009-45, and
2010-14 in Fig. 11. The goodness of fit (R-squre) for in-
degree and out-degree distributions are above 0.98 and 0.88
in all of the three weeks, indicating good matches.

7. DISCUSSION AND FUTURE WORK
Using insights gained from unique longitudinal (64-140

weeks) user activity data from three popular Facebook gift-
ing applications, we study and model microscopic user be-
haviors that give rise to the long-term evolution of user activ-
ity graphs (UAGs) for OSN-based applications. We demon-
strate that our model can be used to predict the number of
active user population in both gifting and non-gifting OSN

applications that employ the same underlying growth mech-
anism (i.e., cost-free user recruitment by sending ARs)for
recruiting new users. We evaluate our model using Face-
book application data shared by application developers as
well as publicly available statistics from application analytic
web site, AppData. Lastly, we also show the utility of our
model in estimating some of the required input parameters
for generating synthetic snapshots of the UAG evolution pro-
cess. Our results show that the synthetic weekly graphs can
mimic several structural properties of UAGs derived from
our empirical data.

While our work provides a big step forward compared to
prior work that can only model static snapshots of UAG
graphs, our current growth model has some limitations that
are worth exploring further. First, our synthetic graphs
only represent the graph size, connected component, clus-
tering coefficient, and degree distribution of the empirical
UAG snapshots. Existing studies [2, 8] have pointed out
that a proper suite of metrics for social network analysis
should also contain properties such as joint degree distri-
butions, and community characteristics. In order to mimic
these properties, we need a more sophisticated mechanism
to determine the destination of each new edge when it is
generated in our model. Second, our current model does
not account for several external factors that might influence
the evolution of UAGs, such as seasonal effects (e.g., hol-
idays). Lastly, we are unable to model applications that
employs multiple growth mechanisms, such as the popular
social gaming applications. Modeling social games, however,
is a more challenging task due to the high variability in game
design and mechanics’ complexity [8]. Nevertheless, we be-
lieve our work provides a general methodology for model-
ing UAGs from other genre of applications by considering
the most popular growth mechanism (i.e., the cost-free in-
vitation that is used in all applications), and will motivate
further research into modeling evolution of UAGs on OSN
platforms.
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