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ABSTRACT

Many query languages for graph-structured data are based
on regular path expressions, which describe relations among
pairs of nodes. We propose an extension that allows to re-
trieve groups of nodes based on group structural character-
istics and relations to other nodes or groups. It allows to ex-
press group selection queries in a concise and natural style,
and can be integrated into any query language based on
regular path queries. We present an efficient algorithm for
evaluating group queries in polynomial time from an input
data graph. Evaluations using real-world social networks
demonstrate the practical feasibility of our approach.

Categories and Subject Descriptors
H.2.3 [Database Management]: Query Languages

Keywords
Graph Query Languages; Semantic Web; Social Selection

1. INTRODUCTION

The World Wide Web has rapidly evolved from a net-
work providing access to static webpages to a highly interac-
tive experience. Web-based social networking services con-
nect millions of people and have deeply changed the way we
communicate with each other. Graphs are the natural data
structure to represent social networks. The swift growth of
social networking services fueled with further developments
in the Web (e.g., Semantic Web) has led to a rising interest
in graph databases and related query languages.

Today, SPARQL [33], the W3C" query language for RDF
[27], is probably the most widely known query language
for graph-structured data. SPARQL and many other graph
query languages allow users to retrieve nodes based on con-
junctive queries (CQs). A simple CQ for finding persons
who are friends with Adam and Eve could be expressed as
x friendof Adam A x friendof Eve. An extension called
regular path queries (CRPQs) allows querying for nodes
that are connected by a path satisfying a regular expression
rather than relying solely on static paths. CRPQs have been
thoroughly studied and form the basis for many query lan-
guages [15, 13, 2, 20, 10, 26, 37] including SPARQL 1.1 [1].
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With CRPQs, however, it is not possible to query sets of
nodes. For instance, Adam and Eve might not just want to
find their common friends, but a group of common friends
that are connected between them. Finding sets of nodes
that satisfy certain characteristics is of general interest for
graph-structured data, and particularly important for social
networks. Let us consider a graph representing the skills and
relationships of developers of open source projects. With
CRPQ-based query languages it is, for instance, not possi-
ble to find socially coherent teams capable of conducting a
certain project. While groups are a fundamental concept
in social networks they are not well supported by current
graph query languages.

In this paper we propose an elegant and simple, but at
the same time expressive, extension - conjunctive set regu-
lar path queries (CSRPQs), which extends CRPQs with the
notion of sets of nodes. Using the example of SPARQL, we
show how CSRPQs can be integrated into existing graph
query languages. We show that data complexity of CSRPQ
queries is in PTIME, and propose a novel algorithm for effi-
cient query evaluation, which leverages structure of the db-
graph and the query itself for search space minimization.
Experiments show that query evaluation is feasible even for
real-world social networks of large scale.

In the remainder of this paper, we first give a motivating
scenario in Section 2 and discuss related work in Section 3.
After recapturing CRPQs in Section 4, we present CSRPQs
in Section 5, and demonstrate their expressivity in Section 6.
Section 7 presents our algorithms for CSRPQ evaluation and
reasons about its complexity. An evaluation based on real-
world datasets is presented in Section 8. Section 9 concludes
the paper and gives a future work outlook.

2. MOTIVATION

The importance of social ties in software engineering is
often emphasized in literature [29, 17]. Conway’s law sug-
gests that “organizations which design systems [...] are con-
strained to produce designs which are copies of the com-
munication structures of these organizations” [14]. We can
rephrase it as: organization’s social network structure influ-
ences its systems architecture. Also, Peopleware [32] claims
the main reason for project failures to be the human fac-
tor, i.e., lack of communication or bad social environment,
and not the technology factor. Taking into account these
two postulates, a proper process of project team selection
can be defined as a selection of a subgraph, which exhibits
certain structural characteristics, from social and organiza-
tional overlay networks. For example, when assembling a



project team it is preferable to maximize social coherence
within the team as well as to maintain good social connec-
tions with other project teams. In social network analysis a
number of characteristics and patterns have been defined to
characterize social coherence of a group, such as geodesics, n-
clique, n-clan, n-club, k-core, k-plex, and so on [36]. Also, ef-
ficient coordination and integration of project teams requires
selection of special actors with certain structural properties,
such as closeness, degree, or betweenness centralities.

Let us consider now a motivating scenario with a few ex-
amples. An organization wants to start a new open source
software (OSS) project, consisting of a number of sub projects.
For this purpose it uses a social network comprised of in-
dependent software engineering experts as well as its own
employees. In the social network two software engineering
experts are considered to be connected if they either worked
on the same software engineering project in the past or they
are connected in a social networking site. Now, let us con-
sider few examples of queries the organization may want to
issue in order to select project teams:

1. Closeness centrality and connectedness. In case
of a core component, it may be needed to select a project
team that has good social connections to all the other teams,
i.e. located in an intersection of their neighborhoods. More-
over, the project team can be either implicitly or explicitly
connected. A team is implicitly connected if it forms a con-
nected graph. Otherwise, if team members are connected
via external nodes, the team is considered to be implicitly
connected. Closeness to other teams improves inter-team
communication, while explicit connectedness improves com-
munication within the team itself.

2. Cluster. To select a project team for implementa-
tion of a monolithic component (i.e., a component with a
lot of interdependencies between its parts) one might want
to select a clique (complete graph). This is necessary to
maximize, again, communication within the team and en-
sure that everyone is aware of all the changes introduced
by other team members. However, in practice cliques of re-
quired size and comprised of necessary experts can rarely be
found. Therefore, one may want to relax the requirement
by selecting a k-plex, where k-plex is defined as a graph G
where every vertex has a degree |G| — k.

3. Independent teams. In case of highly reliable soft-
ware systems a valid practice to minimize probability of fail-
ures is to execute several mutually replaceable components
in parallel. In order to mitigate failures introduced by a
human factor (software defects), it is important that such
mutually replaceable components are developed by teams
isolated from each other. This is necessary to avoid propa-
gation of erroneous approaches.

4. Liaison. When integrating two different components
being developed by project teams that have no direct so-
cial relations it may be helpful to search for a liaison/broker
between two teams. Such a liaison would facilitate commu-
nication and increase chances for successful integration.

5. Structural equivalence. In order to replace an ex-
pert, that recently left a project, it is necessary to find a
structurally equivalent expert, i.e. an expert that has almost
the same social neighborhood as the former expert with re-
spect to dependent project teams. This would decrease on-
boarding time and restore structural characteristics of the
team. Also, if it is not possible to find such a replacement,
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we may want to find a group of people that is structurally
equivalent.

Figure 1 shows an exemplary snippet from a graph repre-
senting relations among developers of OSS. Developers are
represented as nodes, and two of them are connected by an
edge if they are socially connected. One possible solution to
each of the five aforementioned queries is highlighted in the
figure.
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Figure 1: Simplified graph representing social re-

lationship among open source software developers.
Possible answers for OSS example queries are high-
lighted: 1) Closeness Centrality: yellow nodes, 2)
Cluster: green nodes (and blue nodes in case of 1-
plex), 3) Independent teams: green nodes for first
team and blue nodes for second team, 4) Liaison:
red node, 5) Structural equivalence: the two black
nodes connected with bold edge can replace each
other

In the next section we discuss existing graph query lan-
guages and show their shortcomings with respect to the
query examples enlisted above.

3. RELATED WORK

In this section we discuss existing graph query languages
and consider their capabilities of expressing the queries out-
lined in the previous section. A comprehensive overview of
existing graph query languages can be found in [38] and
[4]. Functionality of canonical Conjunctive Regular Path
Queries (CRPQs) has been employed in many graph query
languages, such as G [15], GraphLog [13], Lorel [2], StruQL
[20], UnQL [10], NAGA [26], Cypher [37], and SPARQL 1.1
[1].

Query 1 in the motivating scenario defined in CRPQs
would search for a disconnected set of nodes satisfying the
neighborhood condition, thus being incapable of finding a
tightly connected subgraph in a neighborhood. Queries ex-
pressed in CRPQ-based (and not only) languages typically
return node tuples, and are not able to return groups of
varying size. One exception here is NAGA, whose queries
return graphs. Extended Conjunctive Regular Path Queries
[5] can return paths along with nodes, which is somewhat
similar to returning groups. Another interesting exception is
SQL-based PQL [28] language, which can return nodes with
their neighborhoods. Query 2 is flexible in the sense that
it does specify neither exact number of nodes in a group to
be found, nor its exact topology, but rather general charac-
teristics. In literature there were a number of approaches
employed for definition of “flexible” topologies in query lan-
guages. Even canonical CRPQs allow number of nodes to
vary in paths. GraphQL [22] with repetition of graph mo-



tifs allows to define not only paths, but also, for example,
cycles and trees being thus more expressive in this matter
than regular path expressions. Approach studied in [19] re-
laxes constraints on topology of returned graphs in favor of
performance. This approach is the most extreme with re-
spect to allowed relaxations on topologies, and can lead to
completely irrelevant results. Queries specifying “flexible”
topologies are quite the opposite approach to approximate
graph matching [25, 21, 23], where queries define precise
graph structure, and returned results may not match but
rather be “close” to the query graph by means of edit oper-
ations (insert/delete/substitute).

In the domain of social networks there are several dedi-
cated graph query languages, such as SoQL [35], BiQL [16],
SocialScope [3], SNQL [30], QGraph [7], as well as exten-
sions of SPARQL for social network analysis [18]. SoSQL
is the only one of them that can specify flexible selection of
groups of nodes with SELECT FROM GROUP queries. Its
expressivity, however, is limited with respect to graph pat-
terns used in social network analysis, as it is not capable, for
example, to select groups exhibiting characteristics of k-plex,
n-clique, n-club, etc. Also, it does not have groups as first-
class citizens, i.e., it is not possible to specify paths or con-
nections between two or more groups. For instance, in Query
3: select two groups that are mutually isolated. Selection
of actors, as in Query 4 and Query 5, is also not supported.
Finally, SoSQL provides no algorithm for query evaluation,
which seems to be a complex computational problem.

BiQL [16] suggests integration of external tools for find-
ing graphs with certain characteristics, e.g., quasi-cliques or
clusters. Its distinguishing feature is unification of nodes
and edges, which makes it possible, though with integration
of external tools and algorithms, to find clusters of edges
and not only clusters of nodes. Integration of external tools
for querying certain graph patterns, however, reduces flexi-
bility of a query language with respect to definition of pos-
sible graph patterns. SocialScope [3] defines an algebraic
language with node and link selection operators, union, dis-
junction, subtraction and composition of graphs, as well as
set and numerical aggregations. Node and link selection can
utilize an optional scoring function. SNQL [30] is a query
language of similar functionality, as it has been claimed to
cover SocialScope [34]. SNQL is intended for data manage-
ment in social networks. It extends GraphLog with Skolem
functions to create new nodes as part of the output. Both
languages do not allow flexible selection of groups and ac-
tors exemplified in the motivating scenario. Extension of
SPARQL [18] for social network analysis can examine global
metrics of a graph, such as density and diameter. However,
it is not capable to search for groups exhibiting specific met-
rics. QGraph [7] is a visual query language employed in a
tool called Proximity [24], which is used for data mining in
social networks. QGraph queries graph patterns can have
numeric annotations, e.g., 'Find all directors that had at
least 2 movies each of them winning at least 3 awards’. Such
annotations resemble basic quantitative conditions needed
for k-plex, e.g., each node has at least N neighbors in the
group. However, QGraph does not have notion of groups to
succeed in such selection.

Many efficient algorithms (e.g., [9, 12]) were proposed for
selection of social formations exhibiting certain structural
characteristics (e.g., regular equivalence, n-clique, k-plex,
n-club), and implemented in such popular social network
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analysis tools as Pajek [6] and Ucinet [8]. Being capable of
handling some examples in the motivating scenario, these
algorithms, however, are limited to specific problems they
address and are not as flexible and expressive as a query
language might be. While offering far greater expressivity,
a query language requires a complete and generalized query
interpretation algorithm capable of solving mixed and com-
bined problems.

The overview of related work shows that no existing lan-
guage is able to fully cope with the queries enumerated in
Section 2. In the next section we provide definition of CR-
PQs, and then, in Section 5, we present our extension.

4. PRELIMINARIES

A database is defined as a directed graph K = (V,E)
labeled over the finite alphabet 3. If there is a path be-
tween node a and node b labeled with p1,p2, ..., pn We write
a 21P22Pn, b In the remainder of this section we give defini-

tions of (conjunctive) regular path queries, similar to other
works, like [11].

Definition 1 (Regular Path Queries). A regular path query
(RPQ) Q® «— R is defined by a regular expression R over
Y. The answer ans(QY, K) is the set connected by a path
that conforms to the regular language L(R) defined by R:

ans(Q, K) = {(a,b) e V x V | a B bfor p € L(R)}.

Congunctive regular path queries allow to create queries
consisting of a conjunction of RPQs, augmented with vari-
ables.

Definition 2 (Conjunctive Regular Path Queries). A con-
junctive regular path query (CRPQ) has the form

Q%(z1, .., Tn) — Y1 R1Y2 A oo A Y2rm—1 RmY2m,

where x1,...,%n,Y1,...,Ym are node variables. The vari-
ables z; are a subset of y; (i.e., {z1,...,2n} S {y1,..-,Ym}),
and they are called distinguished variables. The answer
ans(QC, K) for a CRPQ is the set of tuples (v1,...,v,) of
nodes in K such that there is a total mapping o to nodes,
with o(z;) = v; for every distinguished variable, and (o (y;),
a(yi+1)) € ans(QT, K) for every RPQ QT defined by the
term yiRiyi+1-

S. CONJUNCTIVE SET REGULAR PATH
QUERIES

In this section we describe how CRPQs can be extended
to overcome their shortcoming for finding sets of nodes. Our
extensions allow to express all queries presented in the mo-
tivating scenario. The proposed extensions can be used to
augment any graph query language that employs CRPQs,
like SPARQL.

Before we introduce set regular path queries (SRPQs),
which extend RPQs, we introduce a set of generalized quan-
tifiers. SRPQs allow to make statements about which frac-
tion of a set is affected by a path query. For giving SRPQs
the expressiveness necessary to handle sets we allow quan-
tifiers beyond the standard quantifiers V and 3, similar as
proposed in [31]. All extended quantifiers refer to a cer-
tain set. In the following we define the quantifiers we use
by showing the mapping they signify with relation to some
arbitrary set M.
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Figure 2: Exemplary graph K, serving as knowl-
edge base for some simple queries. Nodes represent
persons and edges represent the friendship relation.
Since we assume that this is a symmetric relation,
arrows have been omitted.

e Universal quantification Va = {M}
e Existential quantification 3y = {A S M : A # &}

e Counting quantification: Iy (Gn) = {A < M : |A| ©®
n}, where © € {>,>,=,<,<} and ne N

e Fractional quantification: 3 (Op) = {A < M : |A|O
p|M|}, where ® € {>, <} and p € [0,1]

We use capital Greek letters = and ¥ as placeholders for
one of the above defined quantifiers. SRPQs are similar to
RPQs, but extend them with the notion of sets. They come
in different flavors since we distinguish between paths from
a single node to a set of nodes, paths from a set to a single
node, and paths from a set of node to another set of nodes.
Like RPQs, all SRPQs are defined by a regular expression
R over X.

Definition 3 (SRPQ: Node — Set). A set regular path query
Q*Z — R describes a relation between a single node and a
set, based on a regular expression R together with a quan-
tifier Z. The quantifier defines to how many nodes from the
set the single node must be connected by a path conform-
ing to the regular language L(R). The respective answer set
ans(Q°Z, K) is defined as

{(a,B)eV x2": aBbfor beEp, p € L(R)}.

Ezxample. The following example queries refer to graph K,
as defined in Figure 2. SRPQ Q*¥ « friendof requires
that a node is connected to all nodes within a set. Thus,
a partial answer set is {(nl, {n2}), (n2, {nl,n3,n4,n5})} c
ans(Q*Y,K). The query Q**<* «— friendof friendof? re-
quires that the node is connected to less than three nodes
within the set. Nodes are connected when there is a “friendof™
path of length one or two. A partial answer set of this query
is {(n1, {n2,n5,16,n8}), (n2, {nl,n8})} < ans(Q**<% K).

Definition 4 (SRPQ: Set — Node). A set regular path query
Q%* — R describes a relation between a set and a sin-
gle node, based on a regular expression R together with an
quantifier Z. The quantifier defines how many nodes within
the set must be connected to the single node by a path
conforming to the regular language L(R). The respective
answer set ans(Q=*, K) is defined as

{(A,0)e2" xV:atbforacZa, p € L(R)}.

Ezample. The following example queries refer to graph K,
as defined in Figure 2. Query Q°* « friendof friendof
defines that there must be at least one node in the set that
is connected to the single node by a “friendof” path of length
two. A partial answer set is {({nl,n2},nb), ({nd},nl)} c
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ans s . e second example query defined as
Q™. K). Th d 1 defined as Q>%0%*

— friendof requires that more than half of the nodes within
the set are directly connected to the single node. A partial
answer would be the set {({nl,n4,n7},n2),({nl},n2)} c
anS(Q3>50%', K)

Definition 5 (SRPQ: Set — Set). A set regular path query
Q=Y — R describes a relation between two sets, based on a
regular expression R together with two quantifiers = and V.
The quantifiers define how many nodes from within the ”left”
set must be connected to how many nodes from the "right”
set by a path conforming to the regular language L(R). The
respective answer set ans(Q=", K) is defined as

{(A,B)e2" x2V: ab, acZ4, be Up, pe L(R)}

Ezxample. As before, the following example queries refer to
graph K, as defined in Figure 2. Query Q" « friendof
requires that all nodes within the first set are friends with all
nodes in the second set, for which a partial query answer is
{({n5,n6}, {n7,n8}), ({n1}, {n2})} c ans(Q"",K). Query
Q*3>% — friendof friendof? determines that there must
be at least one element in the first set that is connected to
more than two elements in the second set by a path of length
one or two. Thus, a partial query answer would be the set
{({n1,n5},{n6,n7,n8})} c ans(Q¥?>2, K).

Through introduction of set variables SRPQs extend RPQs
in a similar way as Monadic Second-Order Logic (MSOL)
extends First-Order Logic (FO). Along with set variables
MSOL introduces an atomic formula t € S, where t is a
first-order term and S is a set variable. Next, we show how
this atomic formula can be expressed in SRPQs. Empty
string L is a valid regular expression. However, it is never
used in RPQs, as L path does not convey any functional
load. In SRPQs it does: the query a L B means that node

a is an element of B, and A L B defines the subset relation.
In RPQs paths between nodes are specified over the input
graph G. Specification of more advanced structural proper-
ties, like explicitly connected groups, requires greater flex-
ibility on this matter. Therefore, we define the following
query type.
Definition 6 (SRPQ Closure). For the above defined query
flavors Q=¥ and Q=* the closures Q=¥ and Q=* further re-

strict the answer set by requiring that paths connecting A
and B/b stay within A, i.e.,

ans(Q%°,K) = {(A,b) e 2" x V :
abforaeZ,4, pe L(R) and
Vie{l,....n—1}a 22P% ¢ — ce A, forp=pi...pn}
and
ans(Q=Y,K) = {(A,B) e 2" x 2" :

abforacE4, be Up, pe L(R) and

P1---Pi
—

Vie{l,...,n—1}a = ce A, forp=pi...pn}.

Ezxample. The following example queries again refer to graph
K, as defined in Figure 2. Query Q** « friendof friendof
defines that there must be at least one node in the set that
is connected to the single node by a “friendof” path of length
two. A partial answer set is {({n1,n2},n5)} c ans(Q**, K),
but ({n1},n5) ¢ ans(Q?*, K).



Definition 7 (Set Size Query). A set size query Q"
(from,to) describes an unary relation. The variables from,
to € N, with from < to, define minimum and maximum
allowed set sizes. The respective answer set is defined as the
sets of subsets of sizes from from to to.

ans(Q' K) = {Ae 2V : |A| e {from,..., to}}

Ezample. The following example queries refer to graph K,
as defined in Figure 2. Query Q! « {2, 3} requires that all
sets have size 2 or 3. A partial query answer is {{nl,n2},
{n1,n3},{n1,n2,n3}} c ans(Q'!, K).

Definition 8 (Conjunctive Regular Set Path Query). A
conjunctive regular set path query (CSRPQ) has the form

Qs(xl, ,.I,‘n) «—

1gq1 mg,m
B[R 2]y2 A v A Gom—1[(Rn) "1 Y2 Jyom

N Zl[fl,tl] VANIFVAN Zl[fl,tl]
where z1,...,Zn,y1,...,Ym are either node or set variables.
Z = {Z,...,Zi} represents all set variables among y;, i.e.,

there is no set variable y, such that y, ¢ Z;. The variables
x; are among y;. The ~ symbol may be either empty or
—; the latter case is only possible if y; is a set and defines
a SRPQ closure. Each of the W is either a quantifier, or e.
Each R; is a regular expression. The answer set ans(QS ,K)
for a CSRPQ is the set of tuples (v1, ..., v,) of nodes and sets
of nodes in K such that there is a total mapping o to nodes
and sets of nodes with o(x;) = d; for every distinguished
variable, and (o(y;),o(y:+1) in the set of the answer set of
the respective query type; i.e., if y2;,—1 and y2; represent
both nodes, then y2,—1 R;y2; represents QR. If y2:—1 is node
and yo; is set, then Q’E. If y2,—1 is set and y2; is node, then
QF°. If yo;_1 is set and yo; is set, then Q=Y. And finally,
Zi| fi, ti] denotes set size queries.

6. CSRPQ EXPRESSIVENESS

In this section we demonstrate the expressiveness of CSR-
PQs via formal specification of the use cases from the moti-
vating scenario. For this purpose we use the formal notation
defined in the previous section. Also, we exemplify ease of
CSRPQs integration into CRPQ-based languages by show-
ing how the same queries could be implemented in CSRPQ-
enhanced version of SPARQL 1.1.

6.1 Closeness Centrality and Connectedness

Goal. Given the three predefined organizational groups
Teaml, Team2, and Team3, we need to assemble an explic-
itly connected team of three to five members with a maxi-
mum diameter of two. The team should have a connection
to every group.

Formal specification. In knowledge graphs organiza-
tional groups are usually represented as single nodes, e.g.,
Sales Department or Human Resources Department,
and affiliation of a person to a group is represented as a
connection between the corresponding nodes. We use the
same approach and assume there are three predefined nodes:
Teaml, Team2, and Team3. Affiliation of a person to a team
is represented with the inteam edge, and social connection
is represented with the knows edge in the semantic graph.
Question mark applied to an atom, e.g., knows?, in regular
expression specifies that the edge is optional.
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Q%(A) <« A |[(knows - inteam)?]team1
A A[(knows - intean)?]team?2
A A [(knows - inteam)>]team3
A A [(knows - knows?)"V]A A A[3, 5]

SPARQL. In the formal notation we used capital let-
ters to define variables representing groups. In SPARQL we
use two question marks (?7) for this purpose in analogy
with single question marks (?) that precede node variables.
ALL and SOME keywords are used to denote universal
and existential quantification respectively, and CLOSURE
keyword denotes a query closure. To conform to SPARQL
semantics we put group size operator in the FILTER clause.

SELECT ?°?A
WHERE {
SOME ?7?A knows/inteam ’Teaml’.

SOME ?7?A knows/inteam ’Team2’.

SOME ?7?A knows/inteam ’Team3’.

ALL CLOSURE (??A) knows{1l,2} ALL ?7?A .
FILTER ( ??A{3,5} ) }

Expressiveness. This example shows how explicitly con-
nected teams can be defined with CSRPQs. Note, that im-
plicitly connected teams can be defined by removing the
query closure.

6.2 Cluster

Goal. Find a socially coherent group of people of size 10,
which exhibits property of 2-plex.

Formal specification. In contrast to the previous ex-
ample, for the sake of simplicity we omit specification of
neighborhoods. According to the definition of 2-plex, we
need to find a team, where every team member has at least
8 = 10 — 2 connections to other team members.

SPARQL. In this query parameterized version of SOME
keyword denotes FO(COUNT) quantification. This goes in
line with previous example, where SOME keyword without
parameters denotes existential quantification.

Q5(A) SELECT 2?2
. v,3>8 WHERE
— Al(friendof) 1A "ALL 222 knows soME(>=8) 22a.
A A[10, 10] FILTER ( 2?A{10,10} ) }
Expressiveness. This example shows succinctness of

CSRPQs with respect to definition of structures with re-
laxed coherence.

6.3 Independent Teams

Goal. Find two independent teams of experts, i.e., no
inter-team social connections exist.

Formal specification. Here we specify neither any search
space, nor structural constraints for the teams A and B.
The interesting peculiarity is that negation expressed in the
query goal (i.e., no inter-team social connections exist) can
be expressed with countable quantifiers.



SPARQL. This query does not introduce any additional
extensions to SPARQL and simply reuses keywords already
defined in the previous examples.

SELECT 272 ??B
v a0 WHERE {

A [(knows)"?="]B ALL 2?2 knows SOME (=0) ??B
B [(knows)vﬂ:o]A ALL ?7?B knows SOME (=0) ?7?A
) FILTER ( ??A{3,5}, 2?B{3,5})

[3,5] A B[3,5] }

Q%(4A)

«—
A
A

Expressiveness. This example shows expressivity of CSR-
PQs with respect to definition of multiple groups. Also, it
shows how non-existence can be expressed with extended
quantifiers.

6.4 Liaison

Goal. Find a liaison between Operational Department
and a team of three external consultants C in order to fos-
ter adoption of new practices. The liaison should know at
least two out of the three consultants, and at least 70% of
Operational Department members.

Formal specification. In this example, in contrast to
the previous ones, it is necessary to find an actor, not a
group. The group T used in the example should repre-
sent the whole department. Therefore, in order to avoid
selection of subgroups we fix size of T to the known size
of Operational Department, which is retrieved as an
additional query expressed in canonical CRPQ®*?? (CRPQs
extended with aggregation).

SPARQL. This example shows that notion of groups also
allows specification of predefined constant groups, i.e., group
of four consultants. For this purpose we use syntax reminis-
cent to many mainstream programming languages. In order
to retrieve size of Operational Department we use a

nested SPARQL query.

C := {jil], jade, jack}

SELECT ?a
WHERE {

Qeount(t) ?a knows SOME (>70%) ?22T.

- t[(inteam)]optdept ALL ??T inteam ’'OptDept’.

?a knows SOME (>2)

Qs(a) { {"jill’, ’jade’, ’Jjack’}.
— a [(knows)>0-7]T SELECT COUNT (?t) as ?c
AT [(inteam)v]optdept }WHERE {?t inteam ’OptDept’}
A a [(knows)>2]|C FILTER ( 22T{?c,?c} )
A T[Qcount’ Qcount] }

Expressiveness. This example shows how CSRPQs can
define selection of single nodes based on relations to groups.

6.5 Structural Equivalence

Goal. In order to replace a coordinator John we need
to find a structurally equivalent person, i.e., a person that
has the same social and organizational connections as John.
Sometimes, however, it may not be possible to find a single
person fulfilling this requirement, and a group of persons
may be needed.
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Formal specification. This example is somewhat sim-
ilar to the previous one as we want to consider the whole
neighborhood of a predefined node, e.g., group (T) in both
examples. Therefore, for the sake of clarity, we omitted the
aggregation query as it can be, with a small adjustment,
reused from the previous example.

SPARQL. Again, to keep the definition succinct, in SPARQL

implementation we also omitted the nested aggregation query.

Q% (EQ) SELECT 27EQ
« john [(workswith)¥|T WHERE {

. v ’john’ workswith ALL ?°?2T.
A EQ [(workswith)"]T  goup 5950 workswith ALL 227.
A EQ[1,3] FILTER ( 2?EQ{1,3},
A T[Qcount Qcount] ??T{?count, ?count}) }
b

Expressiveness. This query exemplifies an opposite ap-
proach to the one employed in the previous example. In
the previous example we allowed to neglect certain connec-
tions in favor of the size of the resulting group (single node),
while in this example we relax the constraint on the resulting
group size in order to preserve all connections.

7. COMPLEXITY OF QUERY EVALUATION

In this section we discuss complexity of CSPRQs evalua-
tion, optimization techniques enabled by the design of CSR-
PQs, and propose an algorithm for the purpose of query
evaluation. Greater expressiveness always comes at a price,
and CSRPQ extension is no exception here. The problem
of SRPQ evaluation contains a variant of a subset selection
problem, e.g., find a subgraph connected to a node a, incur-
ring thus high complexity. In the next two subsections we
discuss upper bounds for the problem of CSRPQ evaluation.

7.1 Data Complexity

We fix query @ over a finite alphabet X, and K to be
the maximum of upper bounds for all the groups specified
in the query. Now, to show data complexity of CSRPQs we
consider the following decision problem:

PROBLEM: CSRPQS-EVAL(Q)

INPUT: A 3-labeled db-graph G of size N,
a tuple of nodes 7, and a tuple of
groups V'

QUESTION: Does (7, V) belong to Q(G)

Since number of groups is fixed in the query, let us denote
it as some constant C'. Similarly, let us define ¢ as a number
of nodes in the query. In order to answer the problem we
need to traverse N 5*C possible solutions. Since ¢, C, and
K are all fixed, we can see that data complexity of CSRPQ
evaluation is in PTIME.

7.2 Query Complexity

We turn now to query complexity, i.e., where a query Q
is an input parameter, while -labeled graph G is fixed.

PROBLEM: CSRPQS-EVAL(G)

INPUT: A CSRPQ query @ over 3, a tuple
of nodes 7, and a tuple of groups V'

QUESTION: Does (v, V) belong to Q(G)




Let us define k1, ..., k; as upper bounds of groups specified
in @, where [ is number of groups. Let us also define c as
number of nodes in the query graph. In order to answer the
problem we need to traverse N°+F1+-F51 pogsible solutions.
Given that N is fixed we can see that query complexity of
CSRPQ evaluation is in EXPTIME.

7.3 The CSRPQ Evaluation Algorithm

The key observation behind CSRPQ evaluation is the manda-

tory presence of constraints on the group size. A candidate
for inclusion in a set should not only preserve structural
characteristics of the set, but also enable other potential
candidates to be added later in order to satisfy the set size
constraints. This approach enables for efficient search space
pruning techniques. For example, a node with degree 5 can-
not be selected as a candidate for a clique of size 10. With-
out the loss of generality we can consider CSRPQs with any
number of predefined node/set constants and only one set
variable specified. Such an CSRPQ technically can be repre-
sented as a composite filter F'(G, S, K) that selects potential
candidates from the search space S for inclusion in assem-
bled so far set G with target set size upper bound K. Given
queries QZ2,,;, where the left operand is the single set vari-
able and the right operand is a constant node ¢, and queries
Q=Y ¢, where both operands are the single set variable itself,
let us consider several examples of filters F(G, S, K):

3>5e
const

5—|G*|vs

— R: Fo(G,S,K) = f(s) > |G*| >5v K >
peL(R) c, where Gy = {g* € G|g* peL(R) c}.
pei()R)

o Qlly — R. Fo(G,S,K) = f(s) > V¥geG:g

s A s LR g ~d(s) = K — |G|, where d(s) denotes an
out degree of a node s.

vis<m

self — R FQ(G,SyK) : f(S) - VQ e G:

(de(g) = min{m, |G| —m+1} v g PEL(R) s) Ada(s) =
min{m, |G|—m+1}, where d¢(s) denotes an out degree
of a node s towards elements of a set G.

° Q\sfglf <~ R. FQ(G7 SaK) = f(s) —Jpe L(R)7 |p| =
1,Vg € G,3u e L(R) : pu e L(R) A s 25 g, where for
each u there exists a physical path corresponding to u
that resides within G.

Algorithm 1 sketches basic inductive routine for CSRPQ
evaluation. Given a set G, we say that it does not violate
CSRPQ @, if it is possible to add nodes to G, such that all
SRPQs in Q are satisfied including the set size query. The
algorithm takes set G of size L, and tries to build a set G*
of size L + 1, G < G*. The core of the algorithm, filter
function Fg represents conditions of CSRPQ @ violation.
Fg returns a set of nodes from the search space, such that
the set G*, induced by adding any of them to G, does not
violate (). Then, the algorithm traverses through each of
the nodes returned by F outputting all solutions.

As a basis for CSRPQEv a1, algorithm we took the algo-
rithm proposed by Chiba and Nishizeki [12], which has been
designed for search of complete subgraphs (cliques) of pre-
defined size k. They have shown that the algorithm has time
complexity O(ka(G)*~?m), where G is an input graph, m
is number of edges and a(G) is arboricity of the graph. The
arboricity of a graph is a measure of how dense the graph
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Algorithm 1: CSRPQ evaluation CSRPQEv AL

Input: Search space S,group size K;

program stack G, list of already processed nodes P;
CSRPQ Q;

Result: List of graphs

if K = 0 then

| output G

end

/* initialize the neighborhood function
x/

In(s) < FQ(S,G,K) ;

/+ filter the neighborhood

N —{si € S/P|fn(si)};

for neighbor € N do
G* «— G U {neighbor};
CSRPQEvAL(S, K —1,G*, P U {neighbor}, Q);
P «— P v {neighbor};

end

*/

is: graphs with many edges have high arboricity, and graphs
with high arboricity must have a dense subgraph.

As it can be seen, performance of CSRPQEv a1 heavily
depends on the efficient reduction of the search space at each
step. Therefore, given a query graph @, graphs containing
high number of subgraphs that satisfy @Q, or are close to Q
within small edit distance, result in longer execution times.

CSRPQEv ar, algorithm can be easily converted to a greedy
algorithm. Indeed, instead of traversing in undefined order
all nodes in N, it can first choose the fittest one in order
to come up with a first solution faster. Randomization ap-
proaches are also possible to balance query evaluation time.
Greedy and randomization approaches are crucial when it
is enough to return only one result. Also, similarly to the
subset selection problem, our problem exhibits natural data
parallelism, making thus applicable parallel data processing
techniques.

So far we discussed only evaluation of queries defining
groups with structural constraints, i.e., constraints that spec-
ify relations within the group. Absence of such constraints
may introduce high space complexity incurred by large re-
sult set. For example, a CSRPQ query specifying selection
of a group F' without any predefined structure from a finite
search space S could yield |P<|r|(S)| possible results, where
|P<r|(S)] is a power set of S of cardinality |F'|. The result
set, however, can be represented as a single element describ-
ing a commutative monoid corresponding to the power set.
This approach would discard time required to enumerate
possible answers as well as minimize space needed for the
output.

8. EVALUATION

Query evaluation performance is one of the key attributes
of database query language success. In Section 7 we have
shown that data complexity of CSRPQ evaluation isin PTIME.
Since data complexity of CRPQ evaluation is in NLogspace
and NLOGSPACE c PTIME it is hard to reason about
actual query evaluation times. Therefore, we quantify the
evaluation time of CSRPQ queries by conducting experi-
ments. In the remainder of this section we compare the time
of CSRPQ evaluation based on our approach (Algorithm 1)



with a baseline. Also, we investigate key aspects influencing
CSRPQ evaluation time.

8.1 Evaluation Setup

Our evaluation is based on two real-world data sets from
the social networks Slashdot? and Friendster®. Both data
set graphs consist of anonymous users represented as nodes
and social relationships represented as edges. Friendster is a
social gaming web site and Slashdot is a community-enabled
news website. Table 8.1 depicts main structural characteris-
tics of the two data set graphs. Due to the large size of the
Friendster graph, which exceeded our evaluation computer’s
physical memory constraints, we extracted a subgraph con-
sisting of around 11 million nodes out of the full graph, which
contains almost 120 million nodes.

Friendster | Slashdot

#Nodes | 10,999,986 77,359

#Edges | 297,395,506 | 905,468

Avg Node Degree 27.036 11.705
Node Degree Dev 94.939 36.844
Max Node Degree 4,014 2,508
Avg Clustering 0.169 0.0555
Clustering Dev 0.309 0.382

Table 1: Main characteristics

The queries chosen for evaluation try to cover a large spec-
trum of CSRPQs by varying structural constraints (e.g., how
tightly connected the group should be), the search space size
(e.g., in what neighborhood the group should be searched
for), and the size of the group defined by the query. Query
1 represents a query with strict structural constraints (com-
plete subgraph), while Query 2 looks for less strictly defined
groups (k-plex). For each query the group size is provided
as input parameter, while the search space size is varied by
both input parameter rand and its neighborhood depth.

Query 1 selects a complete graph A of size n in the neigh-
borhood of input node rand. The neighborhood includes
friends of the predefined node, as well as friends of friends.

Q1(A) <« rand[(friendOf friendOf?)"]A
A A[(friendOf)"7] A
A rand[(friendOf)’]A A A[n,n]

Query 2 selects a 2-plex B from the neighborhood of
input node rand. Here numeral n not only specifies group
size, but also its structural characteristics.

Q2(B) <« rand[(i)a]B
A B[(friendOf)?**"?|B A B[n,n]

Strictness of structural constraints influences the number
of results: Query 1 above describes more rigid structural
constraints than Query 2, e.g., there might be no cliques
in a graph, but many 2-plexes. For the input parameter n,
which defines the group size, we choose values 5, 10, 15, and
20, as they seem to be reasonable for real life group selection
tasks. For the input node rand we randomly chose evenly
distributed non-isolated nodes, 200 nodes for Friendster and
100 nodes for Slashdot, to get informative, averaged results.

http://snap.stanford.edu/data/soc-Slashdot0811.html
Shttp://archive.org/details/friendster-dataset-201107
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All CSRPQ evaluation scenarios are implemented in Java
1.7.0 x64, and time values are measured using the standard
APT’s System.nanotime() method. The system configura-
tion used for the tests is: Intel Core i7 2840QM (2GHz,
Sandy Bridge), 8GB DDR3 1333MHz RAM, Windows 7 x64.
Even though Algorithm 1 is inherently parallel, we execute
all experiment runs in a single thread in order to show the
real running time.

The baseline algorithm is based on transforming CSRPQ
to SPARQL queries and evaluating them using Apache Jena.
Only the pure SPARQL evaluation time is measured, with-
out query transformation overhead. The transformation is
necessary because SPARQL does not support queries for
group patterns. However, it is possible to rewrite a fixed
query expressing strict structural constraints (complete graph)
as a conjunction of terms, i.e., as a series of CRPQs. Relax-
ation of structural constraints (k-plex) can be expressed as
a disjunction of CRPQs, where each single term represents a
possible group pattern. This can be seen as a demonstration
of the problem CSRPQ tries to solve, because with growing
complexity and size of the queried groups, length and com-
plexity of the SPARQL query increases exponentially. This
is the reason the group size in baseline evaluation was set to
5 only, as bigger group sizes resulted in immersive queries
impossible to be handled by the SPARQL evaluation engine.

The code we use for evaluation along with baseline query
examples is publicly available®, and can be compiled and
executed to verify the published results.

8.2 Comparison to Baseline

Algorithm 1 is compared to the baseline algorithm by ex-
ecuting Query 1 and Query 2 for different input nodes and
data sets. Each single dot in Figure 3 represents the execu-
tion on particular query instance, i.e., with fixed input node.
The horizontal axis reflects the size of the search space that
is relevant for executing the defined queries, i.e., accumula-
tion of node degrees of input nodes’ direct neighbors. Query
evaluation times for our approach are shown as red trian-
gles, valid query evaluations for the baseline are depicted as
blue diamonds, and green 'x’ stand for instances, for which
the baseline failed to deliver the result within 30 minutes.
In such timeout cases we discontinued query evaluation.

Figure 3 demonstrates that our approach outperforms the
baseline in orders of magnitude. There are many timeouts
for the baseline algorithm; in contrast, our algorithm is al-
ways able to return the query result without timeout viola-
tions. Thus, CSRP(Q extension proves to be not only more
expressive, but obviously also enables efficient search space
pruning and traversal that marks already visited nodes, as
discussed in the previous section.

8.3 Influences on Evaluation Time

In this section we illustrate how varying groups sizes influ-
ence the evaluation time of Algorithm 1, together with infor-
mation about the corresponding sizes of result sets. In par-
ticular, Figure 4 depicts dependencies between the queried
group size and resulting average query evaluation times ((a)
for Query 1 and (c) for Query 2), and between the group
size and average number of results ((b) for Query 1 and (d)
for Query 2).

“http://jena.apache.org/
Shttp://www.infosys.tuwien.ac.at /prototypes/csrpq
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tion. Each dot denotes a single query evaluation.
+ and symbols stand for regular and timed-out
CRPQ baseline evaluations respectively, 4+ symbols
denote CSRPQ-based evaluations.

The evaluation results show that the group size exponen-
tially influences query evaluation time only up to some limit.
We can see that group sizes greater than 10 do not result
in substantial increase of evaluation time. As per design of
our CSRPQ evaluation algorithm, further increasing of the
group size will eventually lead to zero evaluation time as it
will not be possible to find a single node with high enough
degree, so that query evaluation can be stopped immediately
with empty result set.

As for the amount of results, we notice that a big number
of results guarantees high query evaluation time. But vice
versa does not hold, i.e., absence of results does not guaran-
tee fast evaluation. This confirms our observation that the
key aspect of query evaluation time is the similarity of the
underlying search space graph structure to the query graph
structure. A big number of subgraphs structurally similar to
the query graph, i.e., with small edit distances, would result
in increased evaluation times.

Overall, the evaluation results prove the feasibility of Al-
gorithm 1 for solving CSRPQs, even for large, real world
data sets. It is much more efficient compared to solving a
corresponding SPARQL query with a state of the art evalu-
ation engine. Evaluation times of our algorithm depends on
the query and the dataset, and how effectively pruning can
be applied.

9. CONCLUSION AND FUTURE WORK

Being able to query groups based on structural properties
and relations to other entities is an important asset for lan-
guages working on graph-structured data. However, to the
best of our knowledge, there is no query language backed
by an evaluation engine able to express such queries. We
present CSRPQs, which extend CRPQs with such group se-
lection capabilities. Being more expressive, CSRPQs also
enable efficient evaluation techniques, outperforming thus

769

1000000 100000

< 100000 £ oo P
£ A%ﬂ F = ~—
2 10000 E/ < o0
S 1000 2 \
& o 100
& 100 %
3 10 1 =Friendster § 10 || =Friendster
#Slashdot < #Slashdot
1 1
5 10 15 20 5 10 15 20
Group size Group size
(a) Average runtime for (b) Average number of results

Query 1. for Query 1.
10000 1000
/B_——e——a P D\X =Friendster
@ 3 #Slashdot
£ 1000 2
< o £ 100
£ o
= A
ol | \
& & 10
&
g 10 4 SFriendster b}
#Slashdot 2

5 10 15 20 5 10 15 20

Group size Group size

for (d) Average number of results
for Query 2.

(¢) Average runtime

Query 2.

Figure 4: Influences of queried group size and size
of result set on the evaluation time.

CRPQ-based implementations. Experiments show that our
CSRPQ-based implementation is capable of finding groups
in orders of magnitude faster than the state-of-the-art CRPQ-
based SPARQL query evaluation engine.

As discussed in Section 3, there exist many algorithms
for selecting social formations exhibiting specific structural
characteristics (e.g., clique, k-plex). Being more restric-
tive, these special-purpose algorithms might be more effi-
cient than the general-purpose query evaluation algorithm
at hand. By operating with the notion of a set, however,
CSRPQs enable the evaluation algorithm to recognize spe-
cial cases and fall back to the special-purpose algorithms,
which is to be considered in the future work. Also, appli-
cation of approximation approaches to CSRPQs is an inter-
esting topic to investigate.
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