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ABSTRACT
Modern web-scale behavioral targeting platforms leverage
historical activity of billions of users to predict user interests
and inclinations, and consequently future activities. Future
activities of particular interest involve purchases or transac-
tions, and are referred to as conversions. Unlike ad-clicks,
conversions directly translate to advertiser’s revenue, and
thus provide a very concrete metric for return on advertis-
ing investment. A typical behavioral targeting system faces
two main challenges: the web-scale amounts of user histories
to process on a daily basis, and the relative sparsity of con-
versions (compared to clicks in a traditional setting). These
challenges call for generation of effective and efficient user
profiles. Most existing works use the historical intensity of a
user’s interest in various topics to model future interest. In
this paper we explore how the change in user behavior can
be used to predict future actions and show how it comple-
ments the traditional models of decaying interest and action
recency to build a complete picture about the user inter-
ests and better predict conversions. Our evaluation over a
real-world set of campaigns indicates that the combination
of change of interest, decaying intensity, and action recency
helps in: 1) scoring significant improvements in optimizing
for conversions over traditional baselines, 2) substantially
improving the targeting efficiency for campaigns with highly
sparse conversions, and 3) highly reducing the overall his-
tory sizes used in targeting. Furthermore, our techniques
have been deployed to production and scored a substantial
improvement in targeting performance while imposing a neg-
ligible overhead in terms of overall platform running time.

Categories and Subject Descriptors: H.4.m [Informa-
tion Systems]: Miscellaneous

Keywords: Display Advertising; Behavioral Targeting; User
Modeling; Time-based Features

1. INTRODUCTION
One of the key goals of the display advertising targeting

is to identify the relevant audience for a given advertising
campaign. This audience selection problem has been at the
core of advertising from its beginnings in the 19th century
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to modern day Internet campaigns. Traditionally, audiences
have been selected based on user demographics and other at-
tributes. Such attributes have been associated with different
advertising channels by surveys. For example fashion mag-
azines contain women related advertising as the majority of
the population that consumes those magazines are women.
In the beginnings of the online advertising, such demograph-
ics or location based marketing was also the mainstream
trend. However, the Web setting provides means to track
user behavior in greater detail than the offline setting, in-
cluding capturing user’s search queries, page views, clicks on
ads and purchases.

This technology brings the ability to target users based
on their individual actions, rather than general buckets of
demographics or behavior. In addition, the recent trend in
behavioral targeting and display advertising has been for
the advertisers to instrument their web sites with embedded
code to allow third parties to capture the user transactions
on their sites. These transactions are commonly called con-
versions and can be used to obtain a sample of the general
population that is receptive to a given campaign. The his-
torical activity of users in such a seed set allows for modeling
response prediction techniques to be applied to learn behav-
ioral patterns that are indicative of the interest in a given
campaign. A few recent studies have reported work in such
settings [19, 2, 24, 3, 1].

In a real world setting, the task of predicting conversions
is made difficult by two, somewhat contradicting, factors.
First, the size of the seed set is usually very small compared
to the general population. Campaign seed sets can vary from
a handful of examples to a few thousands. Generalization
to a several billions sized population from such a small set
of examples is a difficult task. Second, the overall volume of
activity data that comes into the system daily is extremely
large composing multiple tera-bytes. These two factors re-
quire that we pre-process the raw data before modeling the
response prediction. The raw data is first refined and con-
densed into user profiles that are effective and efficient for
predicting the conversions. The efficiency requires profiles
that are manageable in size, while effectiveness is determined
by how much profiles are predictive of conversions.

In this paper we explore different ways to compose user
profiles from raw user data. We focus on determining how
the temporal patterns of different types of activity impact
the predictive power of the profiles. Existing approaches
use the frequency or intensity, and decay or recency of the
activity to determine the weight of the feature. For example,
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if a user in general often visits a page that describes scuba
diving, he might be interested in diving related products.
Furthermore, if the user has recently visited such pages, he
would be more likely to engage with such ads. Some forms
of such weighting schemes have been showing to be effective
in prior work [7]. In this paper we revisit the methods for
such feature weighting in a more systematic setting exploring
multiple options as decay function, length of user history,
etc. to determine which settings do reflect the user interests
in the most effective way.

Next, we explore the impact of the change in user behav-
ior as indication of interests in a campaign. The intuition
here is that many campaigns promote goods and services in
which the consumer has an occasional interest. For example
when going for a vacation in California, the user might ex-
plore different attractions and hotels before the visit. This
online search activity will start at certain time before the
vacation and seize thereafter. The right time for the user to
be exposed to a campaign that suggests tours of San Fran-
cisco would be when the change in behavior is detected: the
user did not have much activity in this topic before the re-
cent spike. We explore multiple ways to generate profile
features based on the change of interest, including short-
term and long-term changes in interests, and their power to
improve the prediction of conversion for display advertising
campaigns.

Contributions:. Our contributions in this paper are as
follows:

• We concretely formulate decayed-intensity and recency
features and present a variety of interest change fea-
tures to capture temporal patterns in user interests.

• In light of the behavioral targeting platform presented
in [3], we empirically show that our temporal features
help in improving the targeting performance across a
variety of advertising campaigns, both in terms of pre-
diction accuracy of learned models, and in terms of the
degree of correlation between features and campaigns.

• We show the important effect of our temporal features
in highly reducing the user history lengths and num-
ber of features used in targeting. This increases the
ability of the behavioral targeting platform to contin-
uously process web-scale user histories in an efficient
and periodic fashion.

• Finally, we show the high ability of our temporal fea-
tures in improving targeting for campaigns with rare
conversions.

• In addition to our thorough empirical evaluation, our
techniques were deployed to production and showed
tangible gains in targeting performance (in terms of
online metrics such as eCPA) without imposing any
running time overhead on the underlying platform.

Organization of the paper:. This paper is organized as
follows. We present our approach in complete detail in Sec-
tion 2. We begin the section by giving background on the
underlying behavioral targeting setting and establishing the
terminology and notation used throughout the paper. We
present the frequency-based feature weighting technique of
the underlying platform in Section 2.4. Then in Sections 2.5

and 2.6 we concretely formulate the different temporal fea-
tures, including both recency features and interest change
features, as well as the rationale behind each of them. In
Section 3 we present the results of our empirical evalua-
tion of the impact of these temporal features in a real-world
web-scale behavioral targeting setting. We postpone the dis-
cussion of related works to Section 4 as it gives us a better
opportunity to compare them to our approach. Finally, Sec-
tion 5 concludes the paper and discusses future research di-
rections.

2. PROPOSED APPROACH
As mentioned before many past works have studied the

use of user interest in topics for the behavioral targeting of
display ads. In this paper we seek to study the impact that
change in user interests can have on targeting accuracy. In
order to do so, in this section we define various measures
of change of user interest that we will then evaluate in our
large scale experiments. We will first define measures that
capture the recency of users’ interests, and then proceed
to constructing various ways to model the change in these
recent interests. However, we begin this section by giving
background on display advertising platforms and setting up
the terminology and notation used in our description of our
proposed approach.

2.1 Background on Display Advertising
In this paper we focus on display ads as graphical ads are

presented on the web pages of publishers, both large and
small. From its meager beginnings in the 1990’s, display ad-
vertising has grown to an estimated $12.33 billion industry
in 2011, according to emarketer.com. In terms of classical
advertising objectives, display advertising covers both brand
advertising where the advertisers aim to improve users’ im-
pression about a product or a brand; and direct advertising
(or performance advertising), where the ad is intended to
incite the user to click on the ad, which will subsequently
redirect the user to an advertiser specified landing page. Per-
formance advertisers seek a specific action from the user as
a result of the advertisement, be it buying a product or ser-
vice, signing up for an email list, or filling out a form. These
advertiser-defined events are called conversions.

Traditionally, the display advertising effectiveness is mea-
sured using either click-through rate #clicks

#ads shown or conver-

sion rate #conversions
#ads shown . Publishers such as Google and Yahoo!

therefore seek to maximize the click-through rate and the
conversion rate of the advertisements shown on its webpages
by showing their ads to users who are more likely to click
or convert on the advertisement. Identifying such users is
based on features extracted from users’ past online activ-
ities such as page visits, search queries, ad clicks, etc. In
this paper we focus on using the co-bidding information to
improve the response prediction for a given advertiser and
a given ad.

2.2 User Profile Basics
We begin with a brief overview of the underlying behav-

ioral targeting platform (presented in [3]). The platform
optimizes various existing campaigns where the advertisers
pay per conversion (or action), commonly known as cost-
per-action (CPA) campaigns. Each campaign is first tuned
manually by using traditional demographic and behavioral
targeting. The system objective is to refine the targeting

72



constraints using the user behavioral actions to maximize
the number of conversions per ad impression without greatly
increasing the number of impressions, which increases the
value of our inventory.

We assume that the events prior to the conversion contain
an indication of its occurrence and we do not use any events
past the conversion event in our prediction framework. As
shown in Figure 1, we consider user history as a sequence
of events relative to some target time, τ , at which time the
user is a candidate for targeting. We decompose the user’s
sequence of events around the target time τ as follows:

u(τ) = (EF (τ), ET (τ))

where EF (τ) = {e | e ∈ E ∧ t(e) < τ}
and ET (τ) = {e | e ∈ E ∧ τ ≤ t(e) ≤ τ + δ}

Here EF (τ) denotes the events prior to the target time
which we call the feature window and ET (τ) denotes the
events that occur between τ and τ + δ which we call the
target window and is set to be of length of a range of hours
to a day, whereas t(e) denotes the occurrence time of event
e.

Hence, we model behavioral targeting as a machine learn-
ing task where each user history is converted into a training
example: a user-history is a positive example if it is as-
sociated to a conversion in the target window, a negative
example otherwise. 1 A user can only be a positive or a
negative example, but not both at the same time. Given
training users {1, . . . ,m} define T =

〈
(x1, y1), ..(xm, ym)

〉
∈

(Rn×{−1,+1})m to be the training data, where xi is a fea-
ture vector constructed from the events of the user i in the
feature window, yi = +1 if the ith example is positive, and
yi = −1 otherwise. The test set is defined similarly. Us-
ing this problem definition, our platform periodically train
per-campaign models using a linear Support Vector Machine
(SVM) algorithm.

2.3 User Profile Representation
A user representation method consists of a function φ :

U → Rn, where Rn is the Euclidean space of dimension n.
A target label function is defined as γ : U → {−1,+1}.
Given this, we extract an appropriate feature and target
label set as (x, y) = (φ(u), γ(u)). We then select a vector
w ∈ Rn by solving the following optimization:

arg min
w∈Rn

w2 + C
m∑

i=1

L(w ! xi)

where L(ŷ, y) = max(1 − ŷy, 0) and C is a constant that
controls the balance between regularization and minimizing
the loss on the training set.

In this work, we investigate different user representation
operators φ(u), basically when converting events to features,
through leveraging our temporal feature extraction tech-
niques in computing different weights for each feature.

2.4 Baseline Feature Weighting
We now describe the feature weighting in our baseline

system (described in great details in [3]). For all feature

1If the user has been to multiple impressions of the same ad,
the conversion is attributed to the last impression

Figure 1: Targeting model is trained on user histo-
ries (rectangles) as they existed prior to the start of
the conversion process (open circle) that led to the
conversion (solid circle). For evaluation, all users are
given the same target time (yesterday) and the ad
server may choose to show ads at some point in the
future to start the conversion process (open circle).

types, and for all models, our baseline uses a common fea-
ture weighting operator φ : E# → Rn which we call relative
frequency bag of events (or simply we denote it as the fre-
quency). The frequency of an event is defined as the number
of days in which the user has performed the event. Events of
different types are considered separately, for example, page
visits, search queries, etc. We normalize all the values of
all features that comprise a feature type such that their L2
norm is 1. This ensures that no one type of feature domi-
nates the feature vector associated with a user’s history.

To clarify we consider an example. Consider the feature
type page visits and denote by event p the“visit to any sports
page”; q and r denote visits to pages on other topics. If the
user had visited the pages p, q, and r in a sequence over four
days as follows:

e = (p1, p1, p2, q2, r3, q4)

where each event pi denotes cluster id of the the visit on page
p on day i, then the frequency bag of events representation
for page visits would be: Fp(e) = (p : 2, q : 2, r : 1) where
we use the convention of p : n to mean that the feature p
has the value n in the feature vector. Here, the cluster id of
page p was visited 3 times but on just 2 distinct dates.

2.5 Features: Recency of User Interests
It has been established by past works that many data min-

ing approaches benefit from exploiting the timing of events
along with the data associated with them. For instance,
Koren [15] use recency to improve the performance of rec-
ommendation systems. Here, we study whether recency of
user interest can lend a useful signal for behavioral targeting
of display ads.

In our application we intuitively expect that the recent
user interests would be more useful than older user inter-
ests as a predictor of which advertisements the user is likely
to engage with, or convert on. This might be due to many
reasons. For example, a user’s recent interest in “bmw cars”
might be more useful for advertising than a user’s older in-
terests in“audi cars”because of changing choices, while a re-
cent interest in “skiing equipment”might be more indicative
than an older interest in“tennis rackets”because of changing
seasons. Finally, recent interests might capture the progres-
sion of user’s real-life activities – progression from searching
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for mortgage brokers to searching for home renovation com-
panies – and hence might have higher signal for targeting
advertisements.

In order to model the recency of user interests to capture
the effect outlined above, we exploit the exponential decay
formulation, which has been popular in the past in such
frameworks. Under this framework, the intensity of a feature
is modulated by how long ago it occurred, with the intensity
decaying exponentially with increasing time.

In our system, the weight of the decayed intensity fea-
ture generated based on a given user behavioral feature p is
computed as follows:

Wintensity(p) =
∑

i

d(tpi−τ)) (1)

where, Wintensity(p) is the weight of the decayed intensity
feature of p, d is the decay factor, tpi is the date of occur-
rence i of feature x in the user history, and τ is the target
date. Note that the exponent of d is always negative, thus
the weight function will always be decaying when the gap
between the feature and the target increases. Note that the
unbounded sum in the above formula means the sum over
all the user history available in a user profile.

While Eq 1 is a principled way to model recency in user
interests, it has a deficiency that it relies on a parametric
form and parameter values that might be ill-suited for cer-
tain users or advertising campaigns. Another way to capture
recency of a user’s interest in way that does not have this
deficiency is through the absolute number of days since the
last occurrence of a feature. For example, if a large num-
ber of days have passed since the last time a user searched
for a “san francisco hotel rates” then it might indicate that
though the user was interested in it, it might no longer be
the case; the user might have already culminated the travel.
In these cases a recency feature which measures the number
of days since last activity associated with a feature might be
useful.

Formally, this recency feature is computed as follows:

Wrecency(p) = τ − tpn (2)

where Wrecency(p) is the weight of the recency feature of p,
tpn is the date of the last occurrence of feature p in the user
history.

2.6 Features: Change in User Interests
In Section 2.5, we described how we model the recency

aspect of a feature. In many cases, however, it is not the
decayed-intensity or last occurrence of feature that matters,
but the change in user interests, or even the degree of change
that are more important. As an example, consider a user
who periodically searches for information on“bmw cars”but
recently has ramped up her searches. Compare this user
with another user whose activity stream contains constant
frequent set of searches on “bmw cars”. While both users
might have the same number recent on-topic searches, the
former one is more suitable for an advertisement from BMW.
In this case the change in behavior was considered important
after the recent intensities of the users matched. The reduc-
tion in feature intensity can also serve as a useful aspect of
a feature for the purposes of advertisement targeting.

In order to capture these interest change effects we pro-
pose a measure that computes the difference in the activity
related to a feature in the most recent time period to the

activity further in the past. As is clear, to make the above
definition concrete we have to fix the notion of a time pe-
riod, the two time periods being compared, as well as how
the activity levels in the time periods are compared.

Size of Time Periods:. The size of the time periods over
and across which we compare user activity have to be set
carefully so as to avoid any biases. For example, if the size
of a time period is not a multiple of a week then care must be
taken to deal with the weekend effect; online user behavior
differs widely between weekdays and weekends. Moreover,
too small a period might not be suitable because of data
sparsity issues, while too large a period might smooth out
the signal. In order to deal with these issues we compare
various choices of size of time periods and report on the
results.

Time Periods to be Compared:. In order to detect
change the activity levels in the most recent time period we
have to employ a notion of baseline user activity in another
time period. In our experiments, we compare the user activ-
ity in the most recent time period to two different sources of
baselines. In one case the baseline activity comes from the
entire known user history; we label this as long-term change.
In the second case the baseline time period is an equal sized
period of time just before the most recent time period (this
is referred to as short-term change).

Absolute vs Relative Change:. The degree of change
can be measured in two different ways. In the first case we
investigate the use of an absolute increase or decrease in
the activity level from the baseline time period to the most
recent time period. These features can be formally defined
as follows:

• Long Term Absolute Interest Change

Wabs−long−term(p) =
∑

pi:tpi∈P−1

−
∑

pi

(3)

Wabs−long−term(p) = −
∑

pi:tpi /∈P−1

(4)

where Wabs−long−term(x) is the long-term component
of the interest change feature, P−1 is the last period
before the target,

∑
pi:tpi∈P−1

is the sum of the occur-

rences of feature pi in the last period, and
∑

pi
is the

sum of occurrences of feature p throughout the user
history (where variable i represents a given day i in
which the feature p appeared and the sum is over all
possible values of i). Note that in Equation 4, the defi-
nition of Wabs−long−term(p) boils down to the negation
of the sum of occurrences of p throughout the user his-
tory in case p never occurred in P−1.

• Short Term Absolute Interest Change

Wabs−short−term(p) =
∑

pi:tpi∈P−1

−
∑

pi:tpi∈P−2

(5)

where P−1 and P−2 are the last and second-last time
periods before the target, respectively. The first term
in the Equation 5 is the sum of the occurrences of
feature p in the last period, and the second term is the
sum of occurrences of feature p in the second-last time
period.

Unfortunately, this version of the feature addresses the
amount of change but does not capture the change relative to
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the baseline value. For example, under the absolute change
feature a user who does switch from searching for “bmw
cars” on average once a day to on average of 5 times a day is
considered the same as a user who goes from searching for
the same query from 20 times a day to 25 times. It seems
intuitive that the user who has the largest relative jump is
most suitable for advertisements from the BMW campaign.
In order to test this intuition we encoded it in a feature that
measures this relative jump. More formally,

• Long Term Relative Interest Change

# periods =
# total days

# days in a period
(6)

NSWP−1(p) =

∑
pi:tpi∈P−1

+0.01

# days in period P−1
(7)

NSWH(p) =

∑
pi

+(0.01 ∗# periods)

# total days
(8)

Wrel−long−term−pos(p) =
NSWP (p)
NSWH(p)

(9)

Wrel−long−term−neg(p) =
NSWH(p)
NSWP (p)

(10)

where P−1 is the last time period. The annotations rel-
ative and long-term are defined above; the positive and
negative annotations come from the aspect of increase
or decrease in user activity that the feature is attempt-
ing to capture. NSWH(x) is the sum of occurrences of
feature x throughout the user history, NSWP−1(x) is
the normalized smoothed weight of x for period P−1,
while NSWH(x) is the normalized smoothed weight of
x for the whole user history,

∑
pi:tpi∈P−1

is the sum

of the occurrences of feature p in the last period, and∑
pi

is the sum of occurrences of feature p throughout
the user history (where variable i represents a given
day i in which the feature p appeared and the sum is
over all possible values of i).

• Short Term Relative Interest Change

NSWP−2(p) =

∑
pi:tpi∈P−2

+0.01

#days in period P−2
(11)

Wrel−short−term−pos(p) =
NSWP−1(p)

NSWP−2(p)
(12)

Wrel−short−term−neg(p) =
NSWP−2(p)

NSWP−1(p)
(13)

As above, here P−k refers to the kth time period before
target date, and the positive and negative annotations
refer to the increase and decrease in the user activity
that is being emphasized in the feature. Wshortterm(x)
is the short term component of the interest change fea-
ture, length(P1) is length of the last period before the
target, length(P2) is length of the last period before
the target, the SP (x) is the sum of the occurrences
of feature x in the last period, SH(x) is the sum of
occurrences of feature x throughout the user history,
NSWP (x) is the normalized smoothed weight of x for
period p, while NSWH(x) is the normalized smoothed
weight ofx for the whole user history.

∑
pi:tpi∈P−2

is

the sum of occurrences of feature p in the before last
period, P2.

# days # users # features # campaigns dataset size
56 5.2B 834K 200 252GB

Table 1: Basic statistics of the data used.

Note that the period length is ideally the same across
P−1 and P−2, but in case some user has a shorter his-
tory, we account for that by using means like (number
of activity per day) as opposed to raw activity counts.
Also, note the Laplace smoothing and the normaliza-
tion added to all four definitions of relative interest
change.

3. EMPIRICAL ANALYSIS
In this section we will present the empirical evaluation of

the temporal features we proposed in Section 2. We will first
describe the experimental methodology and then present re-
sults on impact of these features on the performance of be-
havioral targeting. We will then study the variation in per-
formance due to various parameters. Finally, we will present
anecdotal evidence to show that the patterns learned by our
features and empirical analysis make intuitive sense.

3.1 Evaluation Methodology

3.1.1 Data
To model the performance of our temporal feature gen-

eration techniques, we build targeting models for display
advertising campaigns based on the targeting system for
conversion-optimization presented in [19, 24, 3]. Table 1
presents some statistics about our data set. We collected 4
weeks of advertising data (i.e., impressions, clicks, and con-
versions) for 200 campaigns. We note here that users that
opt-out of behavioral targeting are not profiled. Each cam-
paign is treated as a separate targeting task. 66% of the
data is used for training, while the remaining 34% is used
for scoring. The train/test split is performed in a random
fashion as described in [3]. As our user profiles span 56 days
of user history, each training/scoring example is preceded
by at least 4 weeks of user events. This benchmark data
set enables us to do rigorous offline experiments. We count
users based on the unique number of browser cookies.

We study the performance of our techniques compared to
the baseline system developed in [3] 2. We mainly com-
pare modeling performance in terms of the area under the
ROC curve (AUC). Unless otherwise specified, all metrics
are measured as conversion-weighted average of AUC across
all campaigns in the benchmark set. For simplicity, we de-
note the conversion-weighted average of AUC as Weighted
AUC.

3.1.2 Behavioral Activity Types
We now describe the main types of user activities in the

user profiles we use. When collecting the user’s historical
online behavior, we consider both active and passive activi-
ties. Passive activities include viewing ads and visiting pages
in which an action is not specifically required upon seeing
the page. Active activities include issuing search queries and
clicking ads in which users actually perform an action on the
page. Browsing activity is somewhat active because the user

2This system has shown to be outperforming traditional be-
havioral targeting techniques in terms of both scale and tar-
geting accuracy
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took action to visit the page, but we argue that the activity
is less important than specifically typing a search query or
clicking on an ad. Previously, the authors of [19, 24] showed
that the collection of active and passive user activities is
stronger in predicting the user’s propensity to convert on a
set of advertisements than any type separately.

The activities of the users are a sequence of events col-
lected from server logs. Events are associated with both a
timestamp and metadata. For example, an event could be
a visit to a finance web page and the metadata associated
with the event is the content of the page, which is logged
separately and then joined with the event along with the
anonymized identifier of the user and the time. We consider
several different events, each with a corresponding feature
extraction method. Our event types are namely pages vis-
ited, search queries (including the actual issued queries and
the clicks on the query results), and interactions with graphi-
cal advertisements (including views, clicks, and conversions).
All possible events belonging to a given type (across all
users) are clustered using an existing type-specific hierar-
chical categorizer. When building the targeting profile of
each user, the cluster ids, rather than the raw events, are
used to represent the different user activities.

We define the Profile Density to be the total number of
days of history spanned by a user profile. Figure 2 presents
the profile density distribution of the user profiles used for
generating our data set. The figure clearly shows that a
large percentage of our user profiles have very short history
lengths. Given the rarity of conversions for our campaigns,
this consequently results in a relatively large number of ex-
amples with short history sizes. This further complicates the
classification problem and highly increase the importance of
strong feature engineering techniques in only keeping dis-
criminative features and hence, improving the targeting ac-
curacy.

3.1.3 Comparing Feature Weighting Techniques
We now describe the comparison technique we follow to

compare between the different feature weighting techniques
presented in this study (Sections 2.4, 2.5 and 2.6). For a
given user behavioral feature, e.g., a page visit p, we gen-
erate a new independent feature pT for every new feature
engineering technique T applied. For example, in case we
apply both Baseline and Decayed Intensity in a given ex-
periment, we create two separate features, pBaseline and
pDecayedIntensity. Each of the two features are treated in
a completely independent fashion by the later steps of our
pipeline, e.g., the feature selection step and the training step.
This feature engineering technique allows us to model the
performance of applying our feature generation techniques
individually or collectively, and hence understanding the ex-
act effect of each of the feature generation techniques on the
targeting performance for the different campaigns.

3.1.4 Classification Hyper-Parameters
Our system consists of the application of the linear SVM

classifier on a per-campaign basis with '1 regularization.
Given all user profiles, the system builds positive/negative
training instances separately for each of the campaigns, then
the classifier is run to produce the per-campaign models.
Based on some simple experiments, we arrived at the fol-
lowing classification parameters. Because we have a large
number of mostly irrelevant features, we choose a strong

regularization parameter of C ∈ [0.05, 0.7] (throughout this
paper, we separately tune the C parameter for each of our
experiments and show the best performing results in terms
of the ROC measure). Next, since we have an highly im-
balanced class distribution, we choose for the positive and
negative classes for a given campaign a weighting parameter
equal to the reverse of the number of examples from that
class for that campaign.

3.1.5 Feature Selection
To reduce the dimensionality of our classification prob-

lems, we introduce a feature selection step on the feature
vectors of all training examples before feeding them to the
classifier. This step can be looked at as a pre-processing
feature selection step given that we already use '1 regular-
ization. Our feature selection is carried through considering
the mutual information between features and labels and in-
cluding discriminative features with a large mutual informa-
tion with labels. We use the following score to evaluate the
importance of a feature:

I(y, [x]i) = H(y)−H(y|[x]i) (14)

= H(y) +
∑

[x]i

[
∑

y

p(y|[x]i) log p(y|[x]i)
]

Whenever y, [x]i have finite (small) joint support, this can
be approximated efficiently by using empirical probability
estimates. We use the latter as a criterion to order fea-
tures, on a per campaign basis, then take the top k features
in the ordered list to be included in the feature white list.
The final feature white list represents the union of the top-k
lists for all campaigns modeled by the platform. It is worth
mentioning that, in addition to feature selection, we use the
mutual information score of the different features to assess
and study the ability of the different feature engineering
techniques (both the baseline and the ones developed in this
paper) to improve the correlation between user activities and
conversions.

3.2 Targeting Accuracy Results
We now describe our experimental results. We start by

studying the overall targeting performance of each of our
feature generation techniques across the different advertis-
ing campaigns. Then, we move on to a more thorough anal-
ysis of the results to understand the effect of collectively
applying the different techniques, whether the different tech-
niques are complementary or contradicting, and whether the
techniques make an improvement for campaigns with sparse
conversions.

3.2.1 Comparative Analysis of Temporal Features
We start by comparing the performance of the different

feature engineering techniques when applied individually on
our system. Table 2 presents the percentage AUC improve-
ment over the baseline of the different techniques. Aside
from Decayed Intensity, all the other features types are ap-
plied on top of the Baseline (as all these types are not
intended to capture feature intensities, thus should not con-
tradict with Baseline). Results show that Decayed Inten-
sity, with (d = 1.1), is able to beat the Baseline by 1.58%.
With that decay factor, a feature drops to around 50% of
its intensity every week (i.e., the feature would completely
fade in around 4 weeks). This shows the high importance
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Figure 2: Profile Density Distribution

of shorter term user history when it comes to targeting ac-
curacy. Along the same lines of features favoring recent be-
havioral actions, the introduction of Recency features to
the current Baseline (i.e., to frequency features) further im-
proves the performance with 1.86%. This also shows how
the recency features act as complementary to the frequency
features as the former favor recent user interests while the
latter concentrate more on overall user interests.

Technique ∆AUC

Baseline 0%
Decayed Intensity(d=1.1) 1.58%
Frequency + Recency 1.86%
Baseline+ Long Term Absolute Interest Change 2.14%
Baseline+ Short Term Absolute Interest Change 3%
Baseline+ Short Term Relative Interest Change 3.43%
Baseline+ Long Term Relative Interest Change 4.44%

Table 2: Modeling performance comparison for the
different temporal feature engineering techniques.
For all interest change techniques, P = 28 days.

Moving to the interest change features, we find that in
general, the addition of these features on top of Baseline fea-
tures score even larger performance improvements. This
shows how modeling change in user interests can give a sig-
nal with relatively high importance, that again complements
that given by our current Baseline. In general, absolute in-
terest change features are less performing than relative ones.
This can be explained by the high expected variance of these
variables, for any given feature type, which relatively limits
the classifier ability to draw strong correlations among these
features. This problem is mostly solved with the relative
features due to the addition of both the Laplace smooth-
ing and the normalization. Among all the interest change
features, the Long Term Relative Interest Change is the
one that scores the most improvement on top of the cur-
rent Baseline (namely 4.44% weighted AUC improvement).
This can be explained by two reasons. The first is that this
technique mainly compares the feature intensities in the last
period with the total intensity of the feature. This makes
this feature type less prone to fluctuations in behavior, and
hence more stable than the Short Term Relative Interest

Change that models two consecutive periods of user history.
The second reason is that this feature is the one expected to
have the lesser number of times where the Laplace smooth-
ing is the actual significant term in the denominator of the
negative interest change features. This would result in a
smaller overall variance in the values of the negative inter-
est change of any feature, which would increase the ability
of the classifier to benefit from such features.

3.2.2 Mixing Effect of Feature Engineering Techniques
We now move on to study the effect of applying combina-

tions of our feature engineering techniques. Table 3 shows
the collective performance of different mixes of our features.
We first try to mix the Decayed Intensity features with
the Baseline. Then, we model the mix of the recency fea-
ture types, mainly Decayed Intensity and Recency, with the
Baseline. For the first mix, targeting accuracy improves by
2.72%, while it improves by 3.43% for the second mix. This
result shows the relative importance of each of these fea-
ture types. Though one could think that two feature types
are redundant, each of the feature types is actually giving a
different signal, and thus mixing them together achieves su-
perior performance than applying each of them separately.
We then try to mix interest change features with recency
features. We first try the mix of absolute interest change
features (both short term and long term) together with re-
cency features (in addition to the regular frequency features
of the Baseline). Finally, we apply the mix of relative in-
terest change features with both recency and frequency fea-
tures. The upper hand of relative interest change features
shown earlier does not change much when applied with the
other feature types and the final mix is the one that shows
the superior performance over Baseline by scoring 4.72%
improvement in weighted AUC. Note that we did not try
further combinations of both absolute and relative interest
change feature types to avoid any explosion in dimensional-
ity in the different classification problems.

3.2.3 Performance on Campaigns with Sparse Con-
versions

As mentioned in Section 1, conversion sparsity is an im-
portant problem facing any behavioral targeting platform

77



Technique(s) ∆AUC

Baseline+ Decayed Intensity 2.72%
Frequency + Recency+ Decayed Intensity 3.43%
Frequency + Recency+ Decayed Intensity+ Long Term Absolute Interest Change+ Short Term
Absolute Interest Change

4.44%

Frequency + Recency+ Decayed Intensity+ Long Term Relative Interest Change+ Short Term
Relative Interest Change

4.72%

Table 3: Modeling performance comparison (in terms of ∆AUC) for the different temporal feature engineering
techniques. For Decayed Intensity, d = 1.1. For all interest change techniques, P = 28 days.

Technique C<100 C ∈ [100, 1000)

Baseline 0% 0%
Baseline+ Long Term
Relative Interest Change

2.58% 4.55%

Table 4: Modeling performance comparison (in
terms of ∆AUC) for the different temporal feature
engineering techniques on campaigns with the total
number of conversions less than 100 and between
100 and 1000, respectively. For all interest change
techniques, P = 28 days. All ∆AUC values are rela-
tive to Baseline

optimizing for conversions. It is interesting to assess the
effect of our interest change features on the targeting accu-
racy when optimizing for campaigns with rare conversions.
Table 4 shows a comparison of the performance of Base-
line to that of the best performing interest change tech-
nique, namely Long Term Relative Interest Change, when
applied together with Baseline features, on campaigns with
total conversions less than 100 and in the range [100, 1000),
respectively. Results show the upper hand of the latter tech-
nique over the former by 2.58% and 4.55% for the two sets of
campaigns, respectively. The improvements are considered
significant, especially for the first set of campaigns, given
the high complexity of the classification problems for these
campaigns as a result of their extreme conversion sparsity.
Additionally, this result has the important consequence of
increasing the ability of the underlying behavioral targeting
platform in leveraging our new interest change features to
efficiently optimize for any advertising campaign, regardless
of its conversion count, which highly increases the mone-
tization ability of the platform. Note that applying more
exhaustive combinations of temporal feature types did not
score additional improvements over the mix of Baseline and
Long Term Relative Interest Change, especially for cam-
paigns with less than 100 conversions. This is mainly ex-
pected in light of the extremely low conversion counts of
these campaigns, which does not allow the underlying clas-
sifier in efficiently handling high-dimensionality problems.

3.3 Analysis and Discussion of Results
We now move on to present a more thorough analysis of

the performance results of the different feature types pro-
posed in this paper. Our goal here is twofold. The first is
to better understand the dynamics of our features and how
they interact together when applied for different campaigns.
The second is to deduce interesting observations that may
improve our understanding of the relationship between the
different aspects of user interests and the behavioral target-
ing classification problem.

Figure 3: Effect of decay factor on performance of
Decayed Intensitytechnique. All ∆AUC are relative
to Baseline

3.3.1 Sweet Spot in User History
We start by addressing the question of the sweet spot in

user history, which can be considered as the hottest and
most important period in the user history when it comes
to behavioral targeting. To achieve this goal, we run two
studies. The first is an analysis of the effect of the decay
factor on the performance of the Decayed Intensity features
(Figure 3), while the second is the effect of the period length
on the performance of the interest change features (Table 5).

In Figure 3, we ran our system only with Decayed Inten-
sity features, while trying different values for the decay fac-
tor, d. It is worth mentioning that a value d = 1 simply rep-
resent our Baseline features. We explored the range of val-
ues [1.02, 2] (but only present results for the range [1.05, 1.25]
due to its sufficiency as a synopsis of the results). As the
Figure shows, performance starts to improve with increasing
the value of d till reaching a peak at d = 1.1, then it starts
to drop till reaching a value of 1% and 0% improvements at
d = 1.25 and d = 1.5, respectively. As pointed earlier, for
d = 1.1, a feature looses around half of its intensity every
week. That is, a feature reaches its half-life after the second
week as after two weeks, the feature intensity drops down
to 1/4 of its original intensity, which in practice results in
highly reducing the discriminative effect of the feature. In
general, this result preaches for giving an extremely high
importance to the most recent two weeks of the user history
when it comes to feature intensities. The question is, how
about the sweet spot for interest change?

Table 5 compares the performance of our relative interest
change techniques, both short term and long term, for differ-
ent period sizes. The result show a relatively large improve-
ment when comparing P = 7 to P = 14, especially for the
Short Term Relative Interest Change technique. However,
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Technique P = 7 P = 14 P = 28

Long Term Relative In-
terest Change

4% 4.29% 4.44%

Short Term Relative In-
terest Change

3% 3.72% 3.43%

Table 5: Effect of period size on performance of in-
terest change technique. Values represent ∆AUC
for the different techniques proportional to Baseline

improvements start to decrease with additional increase in
the period size. Additionally, we note that an important rea-
son for which the results continue to improve for P = 28 is
that the increase in the period size results in a lesser effect
of the Laplace smoothing, as a larger portion of the user
history will actually have both short term and long term
components. Again, this result shows the relatively high
importance interest changes in the last two weeks of user
history (just before the conversion date).

One important significance for these results is related to
the web-scale user history to be processed by any behav-
ioral targeting system. As mentioned in Section 1, the large
amounts of user history to be continuously maintained and
processed is a major challenge for a behavioral targeting sys-
tem. As noted in [3], maintaining long periods of user his-
tory is extremely complicated and costly. This result calls
for the need for full maintenance of the recent two weeks of
user history. For the rest of the user activities, maintain-
ing sketches representing different functions about the data
would be much less costly and as beneficial in terms of tar-
geting accuracy. This is considered as a highly important
achievement from the behavioral targeting point of view.

3.3.2 Performance Variance based on Campaign Type
We analyzed the performance of our various temporal fea-

ture engineering techniques on different campaigns. As we
have explained before in Section 2, we expect different ap-
proach to perform well for different types of products being
advertised. We observe these in the results (Table 6) as well.
As we can see, campaigns related to Travel tend to improve
steadily as we add in additional temporal features into our
models. This makes sense since travel needs manifest them-
selves at some specific points in time, and hence exploiting
time as features should be useful. Our experiments show
that Autos related campaigns exhibit a very large increase
in performance when change in behavior is modeled. This
makes sense as well since auto purchases are typically long
terms affairs with a lot of nascent search/browsing accom-
panied by a burst in activity just before the purchase times.
Finally, we observe that campaigns for fast moving consumer
goods like Cosmetics exhibit negative correlation with our
recency features. These are items that a user is ready to buy
anytime and, as we observe, using recency based features to
discard older data actually reduces the performance.

3.3.3 Short Term vs. Long Term Interest Change
One important question consists of understanding the rel-

ative value of our different feature types and how they inter-
act with each other, especially for campaigns where the mix
of all feature types performs the best. Hence, we present
in Table 7 a break-down of the percentages of the differ-

Technique Travel Autos Cosmetics

Baseline 0% 0% 0%
Decayed Intensity(d =
1.1)

0.5% 0.47% -1.9%

Long Term Relative In-
terest Change

3.79% 14.1% -1.9%

Frequency + Recency+
Decayed Intensity+
Long Term Relative
Interest Change+ Short
Term Relative Interest
Change

4.09% 14.1% -4.67

Table 6: Modeling performance comparison for the
different temporal feature engineering techniques on
3 advertising campaigns with different types.

Technique Travel Autos Cameras

Baseline 7.33% 5.03% 7.33%
Recency 25.58% 27.3% 26.81%
Decayed Intensity(d =
1.1)

11.67% 7.44% 9.23%

Positive Long Term Rel-
ative Interest Change

21.48% 23.05% 21.28%

Negative Long Term Rel-
ative Interest Change

13.65% 14.4% 11.95%

Positive Short Term Rel-
ative Interest Change

9.8%% 10.46% 9.78%

Negative Short Term
Relative Interest Change

10.4% 12.5% 13.58

Table 7: Feature type distribution in resulting SVM
models for campaigns of different types.

ent feature types for three advertising campaigns, mainly
travel, autos, and cameras. One could see that change of
interest is a key for each of the three campaigns, but the
question is, what type of change of interest, short term or
long term? positive or negative? The results shown in the
Table show that the positive change in long term relative
interest is, by far, the most important and discriminant fea-
ture type among all the interest change feature type. This
in fact makes perfect sense, as for each of the three actions,
whether searching for a camera, trying to book a travel, or
searching for an auto, the user would be starting to do new
behavioral actions that she was not used to before. The rel-
ative importance of the rest of interest change features is
somehow similar for the three campaigns. The important
observation for the three campaigns is that, in addition to
Positive Long Term Relative Interest Change, Recency fea-
tures are very important (in fact with a little bit of a higher
value). This is clear in the fact that, a recent keyword search
for the term“camera”or a recent visit for“orbitz.com”would
give clear indication that the user is developing an interest in
cameras and travel, respectively. Aside from these two ob-
servations, results show a low importance for the frequency
features and a moderate to low importance for the Decayed
Intensity features.

4. RELATED WORK
The work presented in this paper is related to recent re-

search in the areas of user profile generation, audience se-
lection and response prediction for display advertising. The
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emergence of the web has allowed for collection and process-
ing of user data magnitudes larger than previously possible.
Thus has resulted in spike of interest in user data analysis
and profile generation as reported in [8, 10, 14, 18]. Profile
generation has been reported for a few different applications.
In [23] the authors describe profiles for search personaliza-
tion. Here, the authors build profiles based on the query
stream of the user and users similar to it. The authors also
report an alternative that is based on the relevance feedback
approaches in information retrieval over the documents that
the user have perceived as relevant. Both techniques are or-
thogonal to the work presented in this paper and could be
used to produce a potentially richer set of features that will
serve as an input to the topical analysis.

User profile generation is also studied in other online set-
tings and also for content recommendation (e.g., [13, 16,
17]). Most of these focus on detecting the user’s short term
vs long term interest and using these in the proposed ap-
plication. In our case, we blend the short term and long
term interests into a single profile. A survey of user profile
generation can be found in [10].

In [11], the authors propose generating user profiles for
online services where the user data comes from a variety of
heterogeneous sources. Such profiles are sparse for individ-
ual service, but the authors show that using the data from
multiple services allows for overcoming the sparseness.

In the area of audience selection, Provost et al. [21] have
recently shown that user profiles can be built based on co-
visitation patterns of social network pages. These profiles
are used to predict the performance of brad display adver-
tisements over 15 campaigns.

In [7] the authors discuss prediction of clicks and impres-
sions of events (queries, page views) within a set of prede-
fined categories. Supervised linear poisson regression is used
to model these counts based on a labeled set of user-class
pairs of data instances. Here, exponential decay is suggested
as a way to down-weight the past events.

Conversion predicting is a difficult problem where the task
is usually combined with click prediction, e.g. predicting
first clicks and then predicting the converters in the clickers
population [12, 4, 22]. The advantage of this division relates
to business logic: the publisher (such as Yahoo! or Google)
has data about how likely users are to follow various paths
towards clicks on advertisements on their site. On the other
hand, advertisers have more information about the paths of
users on their website. Therefore, there is a certain cleanli-
ness with regards to data ownership.

On the other hand, paying for conversions has two effects.
First of all, there is the maximum level of quality control
of the traffic. Problems such as click fraud [9, 20, 26] do
not arise. Second, when creating a conversion model, one
is aware of the abundance of users who did not click. This
plethora of negative data can really help: intuitively, know-
ing that someone was unlikely to click makes it quite possible
that they are unlikely to convert.

In this paper, we focused on building such conversion
models. We compared our approach with existing behav-
ioral targeting methods (such as [8, 25]) which optimize for
click-through rates and showed how optimizing directly for
conversions can lead to improved performance. Compared
to previous work on conversion optimization [4, 5, 6, 12, 22,
19, 2, 24, 3, 1], our work focuses on feature definition and
weighting that were not explored in the previous approaches.

5. CONCLUSIONS AND FUTURE WORK
Display advertising impacts virtually every Web user and

provides the financial backing that allows for the Web’s di-
versity. Audience selection is one of the key technical chal-
lenges of display advertising and requires effective and ef-
ficient user profiles. In this paper we examined how to
compose such profiles from the raw events, by examining
different ways to detect patterns of behavior. The work
confirms that recent user behavior (especially the most re-
cent two weeks) is more indicative of future ad interaction.
We explored a set of interest decay techniques and showed
that there is a needed balance between “forgetting” the past
completely and diluting the recent activity. The best per-
formance was achieved by balancing both the long term and
the short term history. Next, we showed that change in be-
havior, such as sudden spikes of interest in a particular topic,
highly improves the prediction power. Such features cannot
be achieved with the simple frequency and decay models.
The improvement in performance using these features over
a real world dataset is around 5%, which is very significant
improvement in this domain, where usually major produc-
tion improvements measure in 1-2% range.

It is worth mentioning that variations of the techniques
presented in this paper were deployed to production as part
of the platform presented in [3] and achieved a substantial
boost in the platform’s targeting accuracy, as computed by
online metrics such as eCPA, compared to the old system (we
don’t share these results for privacy reasons). Furthermore,
the addition of the newly-presented temporal feature engi-
neering techniques to the system actually running in pro-
duction did impose a relatively neligible overhead in terms
of overall platform running time. Achieving a boost in the
platform’s targeting performance without affecting its scal-
ability represents a huge success for a platform intended to
effectively mine histories of billions of Internet users on a
daily basis.

The behavioral models exploited in this paper expand the
state-of-the art in the targeting domain. However, they are
far from the final step in this exploration. One can think
of many more complex versions of the decayed-intensity fea-
tures, the recency features and the interest change features.
For instance, one may think of modeling the user interest
change for more than two time windows and/or for time
window of variable sizes. Additionally, more complicated
patterns that use temporal and sequencing information can
be crafted as a continuation of the work presented in this
paper. Such increasingly complex models might bring the
display advertising closer to the often quoted goal of the
industry to achieve the level of relevance of the search ad-
vertising without having explicitly stated intent as a user
query.
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