
Understanding Latency Variations of Black Box Services

Darja Krushevskaja
∗

Dept of Computer Science
Rutgers University

Piscataway, NJ
darja@cs.rutgers.edu

Mark Sandler
Google Inc

1600 Amphitheatre Parkway
Mountain View, CA

sandler@google.com

ABSTRACT
Data centers run many services that impact millions of users
daily. In reality, the latency of each service varies from one
request to another. Existing tools allow to monitor services
for performance glitches or service disruptions, but typically
they do not help understanding the variations in latency.

We propose a general framework for understanding per-
formance of arbitrary black box services. We consider a
stream of requests to a given service with their monitored
attributes, as well as latencies of serving each request. We
propose what we call the multi-dimensional f-measure, that
helps for a given interval to identify the subset of monitored
attributes that explains it. We design algorithms that use
this measure not only for a fixed latency interval, but also
to explain the entire range of latencies of the service by seg-
menting it into smaller intervals.

We perform a detailed experimental study with synthetic
data, as well as real data from a large search engine. Our
experiments show that our methods automatically identify
significant latency intervals together with request attributes
that explain them, and are robust.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: [Performance
Attributes, Measurement Techniques]; D.2.8 [Software En-
gineering]: Metrics—Complexity Measures, Performance
Measures; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Algorithms, Performance Analysis, Latency Characteriza-
tion

1. INTRODUCTION
Millions of people rely on cloud services in their daily ac-

tivities: people search for information, work on documents,
listen to music, watch videos, manage their picture libraries,
chat with friends and buy goods. The quintessential require-
ment of these services is to provide hyper low latency. Imag-
ine the expectations of a user who simultaneously accesses
a service to search for information, publishes a blog entry,

∗Work was done while the author was visiting Google

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

edits her video or updates a document real time while being
on a video call. These users expect near-instant response
in both up and down link interactions between them and
services. Even slight delays frustrate users and encourage
them to seek out alternatives. For example, [14] indicates
that optimal wait time is 0.1 seconds, and users start aban-
doning web page, if it is not presented within that window.
In her interview to CNET, Marissa Mayer mentioned, that
any increase in the latency causes search queries to be aban-
doned. Amazon found that 100 ms increase in load time of
Amazon.com decreases sales by 1%.1 Engineers make it their
mission to improve service running time even by a few mil-
liseconds. As millions of people use these services each day,
lower latency translates into significant savings for the so-
ciety as a whole. Thus, latency is a critical factor for the
success of any cloud service and the key to user experience.

Cloud services operate in warehouse-sized data centers
and run on clusters of machines to handle user requests.
These systems, in turn, distribute work to ever larger num-
ber of machines and sub-systems for data procession and ma-
chine learning. These systems handle failures, heavy loads,
spam and attacks by dynamically managing resources, some-
times sharing resources across services. As a result the over-
all systems that handle cloud services tend to be fairly com-
plex. Even for a single service one can observes significant
variations of the latency. In Figure 1 we plot distribution of
latencies for 2 back end services, we also refer to observed
latency distribution as latency profile. Notice, that for the
service on the left latency can be anywhere between 0 and
500 ms. For the second service observe that while major-
ity of requests take around 50-60 ms, significant fraction of
requests takes longer than 100 ms.

Cloud service providers address latency in a variety of
ways. They typically have dashboards that track multiple
measurements, including latency. This gives some visibility
into how latency varies over time, number of failures or fatal
symptoms. Our focus is however on normal operation of
the cloud services. Engineers routinely develop, test, and
launch new code. Often newly launched or modifed services,
disrupt the performance of shared services they depend on.
Given that such changes are often coordinated by different
teams, engineers need fine grained visibility into latency. In
particular they need to find what explains the changes in
the latency profile, so they can tweak and fix if needed.

Motivated by this, we address the problem of explaining
the latency profile of any service. In general, there has been

1http://www.speedawarenessmonth.com/
does-latency-really-matter/

703

Amazon.com
http://www.speedawarenessmonth.com/does-latency-really-matter/
http://www.speedawarenessmonth.com/does-latency-really-matter/

10-1 100 101 102 103 104

latency,ms

0

200

400

600

800

1000

1200
nu

m
be

r
of

 in
st

an
ce

s
Latency Profile of a Service

10-1 100 101 102 103 104

latency,ms

0

100

200

300

400

500

600

nu
m

be
r

of
 in

st
an

ce
s

Latency Profile of a Service

Figure 1: Latency distributions for two backend services (real data)

very little research on latency performance of cloud services.
Some of the recent work focuses on modeling the call tree
of complex services and trying to predict latency [18, 13,
19, 3]. We are not aware of any prior work on understand-
ing latency profile in a way that is useful to engineers and
network monitors. We study this problem and make the
following contributions:

• We develop a general approach to understanding the
latency profile of services. In particular, we model ser-
vices as black boxes, so our framework is applicable to
any service, notwithstanding its semantics or subsys-
tems called. Also, we focus on analyzing the latency
profile directly in terms of the measurable attributes,
e.g., origin of request, machine that service was run-
ning on, CPU rate. This turns out to be what engi-
neers need, as we explain in Section 2.

• We propose what we call the multidimensional f-mea-
sure, and use it, given latency interval, to find a subset
of monitored attributes that explains it. This measure
is combinatorial and generalizes the well known (one-
dimensional) f -measure used in information retrieval
area to our problem. We propose algorithms to use
this measure not only to explain any given interval of
latency, but also to explain the entire range of latencies
of the service by segmenting it into smaller intervals.
Our overall algorithm uses dynamic programming to
select small subset of intervals that provide insight into
reasons for latency variations.

• We use real data from 2 large internet services, as well
as several synthetic data sets for experimental study.
We use synthetic data to study robustness and per-
formance of our algorithms. Application of the frame-
work to real data sets showed that analysis discovers
interesting patterns.

In what follows, in Section 2 we introduce our approach
to understanding latency variations for a fixed service and
define multi-dimensional f -measure. In Section 3 we for-
mally define problems. We present our algorithms for single
interval analysis in Section 4.In Section 5 we present algo-
rithm that helps to understand the whole range of latency
variation for the fixed service. Section 6 contains detailed
experimental study.

2. OUR APPROACH
There are many web sites, for instance Amazon, Ebay or

Google, each offering multiple services each supported by
umpteen number of backends. Each service receives hun-
dreds of millions of requests a day. Conceptually, each such
service invocation can be represented by a call tree [18]; in
order to fulfill the request, each service typically calls other
services which in turn can call others. Dependent services
can be executed in parallel or sequentially, synchronously
or asynchronously. The main observation is that even for
a fixed service, latency varies significantly over the many
times it is invoked. Figure 1 illustrates latency variation of
real world services.

There are many reasons for these variations: the size of
the request svaries from small to large; sometimes the answer
to user query is in the cache, other times on the disk; each
instance of the service may call a variable number of sub ser-
vices; systems use a combination of techniques to deal with
load, from moving slower operations to asynchronous mode
to dynamically adjusting computing and other resources;
there are outright resource failures; etc. Furthermore, there
are implicit dependencies across services as they share com-
puting, storage or network resources.

Our goal is to develop methods to understand latency vari-
ations. We start with two requirements.

• The service has to be treated as a black box. First,
even for a fixed service for which we have the source
code, the precise call tree is an unknown and might de-
pend on the request. Even using detailed monitoring
system, call trees are difficult to reconstruct [18]. In
our case, we wish to be able to understand the latency
variations even if we can not reconstruct trees. Second,
we would like to avoid assumptions required, e.g., la-
tencies of dependent services are independent random
variables. Finally, we wish to be agnostic of the service
internals. Cloud services run hundreds of services and
these evolve over time. By viewing services as black
boxes and being agnostic to their internal semantics,
our approach will be general.

• The reasons for the variations in latency need to be un-
derstandable to humans, for example e.g., in terms of
few of the monitored attributes. Imagine an engineer
building services. She is trying to foresee potential
bottlenecks and faults, and designs, implements and

704

tests carefully. Nevertheless, due to the complexity of
the system, the latency of the service will vary from
request to request. In order to verify or improve the
latency of the service, the engineer has to verify im-
pact of multiple factors. Verification of impact of a
single factor (including the impact of her code on the
latencies of other services) needs a significant amount
of work and time, including connecting with other de-
velopment teams. Verifying many factors or combina-
tions of factors is even more time consuming. So, in
practice, it would be of a great help to provide a small
number of potential factors to verify. Further, engi-
neers prefer these factors to be monitored attributes
that they can understand and reason about directly.
This in particular means that regression based mod-
els are not very useful. For example, linear regression
outputs a linear combination of attributes as potential
explanation of latency variation. These vectors are no-
toriously difficult to interpret in terms of the data and
underlying patterns, even if they contain only few ar-
guments, e.g., “search requests are slow if and only if
2× requestSize− 0.5× searchersAge > 50”.

Our approach is as follows. Consider some fixed service.
The service is called millions of times, and for each call, we
rely on monitoring systems in place (e.g., X-Trace [7, 6],
Dapper [20]) to gather data about executions of the service.
With each execution we associate a set of possibly related
attributes, derived from the service invocation itself, or in-
vocation of any of dependent services. We lose the structure
and precedence constraints, and focus on the set of attribute
values. For example, instead of reconstructing call tree as
in [18], we concentrate our attention on values of attributes
associated with the service itself (e.g., request size, response
size, service name, custom annotations) and values for at-
tributes that are relevant to the execution (e.g., CPU load,
disk load), as well as the latency for that request. The out-
put of our analysis will be a small set of attributes.

Multi-dimensional f-measure.
For now assume that each request is a set of binary at-

tributes (we will later see how to reduce the problem to this
case). Let us focus on a specific latency interval I and say
set F of attributes is the reason the latency is in interval I.
For example, if request originates from USA and has request
size of 15 bytes it is processed in 50-75 msec.

Let ri = (f i1, . . . , f
i
m, λi) be request to the service, where

f ij is the value of feature fj observed for the request ri, and
λi = 1 if latency Li ∈ I, and 0 otherwise.

A principled approach is as follows:

• Since the attributes F need to explain the latency
interval, learn the best prediction algorithm A on
F = (f1, f2, . . . , fk) that maps each request ri to 1
or 0 depending on whether latency for request ri is in
I or not, respectively.

• Any such A will not predict precisely the latency in-
terval I. That is, along with true positives tp:

tp = {ri : A(f i1, f
i
2, . . . , f

i
k) = 1 & λi = 1},

there will be false negatives fn:

fn = {ri : A(f i1, f
i
2, . . . , f

i
k) = 0 & λi = 1},

and there will be false positives fp, defined as

fp = {ri : A(f i1, f
i
2, . . . , f

i
k) = 1 & λi = 0}.

Frequently in machine learning and data mining,
the quality of prediction is measured by the f -
measure [21], FM(A) is defined as follows:

FM(A) = 2
precision× recall
precision+ recall

. (1)

where precision = |tp|
|tp|+|fp| and recall = |tp|

|tp|+|fn| .

Intuitively, A(F) is a binary predictor, and f -measure is
a proxy of how well the binary “feature”A(F) is correlated
with the interval. If every request in the interval I has
A(F) = 1 and no request outside of I gets A(F) = 1, then
F provides the best explanation for the interval existing in
the data.

In our case, as we argued earlier, engineers wish output set
F to directly determine the interval of interest I, and not via
some sophisticated function A that may be difficult to inter-
pret. Hence, we rephrase the problem directly in terms of the
attribute values. We modify the one-dimensional f -measure
that applies to A(F) to a multidimensional f -measure that
applies to many binary features.

Definition 1. For fixed interval I and a set of features
F we define the multidimensional f -measure as follows:

Q (I, F) = 2
mprecision(I, F)×mrecall(I, F)

mprecision(I, F) +mrecall(I, F)
(2)

We define true positives mtp, false negatives mfn and false
positives mfp as follows:

mtp = {ri : f i1
∧
f i2

∧
, . . . , f ik = 1 & λi = 1}

mfn = {ri : f i1
∧
f i2

∧
, . . . , f ik = 0 & λi = 1}

mfp = {ri : f i1
∧
f i2

∧
, . . . , f ik = 1 & λi = 0}

Then mprecision = |mtp|
|mtp|+|mfp| and mrecall =

|mtp|
|ntp|+|mfn| .

Multidimensional f -measure has many desirable proper-
ties. For example, 0 ≤ Q (I, F) ≤ 1. Adding feature fa
which correlates perfectly with one of the features in F does
not change the function, that is, Q (I, F) = Q (I, F ′) where
F ′ = {F, fa}. On the other hand, Q (., .) does not capture
certain inverse relationships. For example, if fa is the com-
plement of fb, that is, any tuple with fa = 1 (= 0) means
fb = 0 (= 1, respectively), then Q (I, {fa, fb}) is same as
Q (I, fa). In our application, in order to overcome such sit-
uations we add inverts for binary features.

Similarly to f -measure, multidimensional f -measure is
not convex and hard to optimize. In particular, consider
example described in Table 2. Here we are interested in
interval I = {1}. The score Q (., .) of single feature f1 is
greater than score of any other single feature available, i.e.,
Q (Li = 1, f1) > Q (Li = 1, f2), however features f2 and f3
taken together are perfect predictor for I: Q (Li = 1, f1) <
Q (Li = 1, {f2, f3}).

705

f1 f2 f3 L

0 0 1 0
0 0 1 0
1 1 1 1
1 1 1 1
1 1 1 1
0 1 1 1
0 1 0 0
0 1 0 0

Table 1: Non-monotonicity of Q (., .)

Reduction to the Binary Case.
In our analysis, we will use the multidimensional f -

measure applied to binary features, however attributes of
requests are often not binary. Attribute values can be trans-
lated to binary format in many different ways, e.g., binary
or unary encoding, split into folds of equal length or mass.
Different binary feature formation will result in different ca-
pabilities of the analysis. We use the following encoding
process: for categorical attributes, we create separate fea-
ture for each attribute value. For continuous attributes, the
attribute value range is split between several features, each
feature corresponding to an interval of value. For a binary
feature we include feature itself and its complement, to be
able to detect situations when absence of some factor is de-
cisive. For example, requests of size 15 kb and not from
USA are processed within 50-75 msec. Observe that since
the range of values of attribute are split into non-overlapping
features we have:

Lemma 1. Let f1 and f2 be features that correspond to
the same attribute, then if Q (I, f1) > 0 and Q (I, f2) > 0,
then Q (I, {f1, f2}) = 0.

Hence, no two features f1 and f2 that correspond to the
same attribute will be in the multidimensional f -measure
based output we generate.

3. FORMAL PROBLEM DEFINITION
We model the workload of a service as a sequence

of requests R. Each request ri has m features F =
(f1, f2, . . . , fm) and observed latency Li. W.l.o.g, we as-
sume that each feature is binary, because of the reduction.
Given the largest observed L = arg maxi{Li} that is seen in
practice, each latency Li falls in the range [0, L].

Definition 2. We say the subset of features F ∗ ⊆ F ex-
plains latency interval I if F ∗ maximizes Q (., .) on I:
F ∗ = arg maxA⊆F Q (I, A). We refer to F ∗ as explanation.

The entire range [0, L] is not likely to be explained by the
same set of features. Hence, we approach it in two steps:
(1) for fixed latency interval and scoring function find set
of features that form explanation of the interval; (2) given
large set of intervals with explanations, select (small) subset
of intervals that provides concise summary for interesting
patterns found in the data. We formalize these problems as
follows.

Problem 1. [Single Interval Analysis] For fixed in-
terval I and scoring function Q (., .) find the explanation F ∗,
s.t., F ∗ = arg maxA⊆F Q (I, A).

Problem 2. [Latency Range Analysis] Split the
entire latency domain into non-overlapping intervals
{I1, I2, . . . , Il}, s.t., total score

∑l
i=0 maxA⊆F Q (Ii, A) is

maximized over all possible splits of latency domain.

Both problems have interesting variations. For instance,
in Problem 1 we are considering the case in which only one
explanation is found for the interval, however one can easily
extend this formulation to the case, in which single interval
can have up to k explanations. For Problem 2, one can con-
sider choosing overlapping intervals. However, in practice we
observed that even without overlaps one can detect feature
sets that have overlapping latency intervals. In this paper
we consider only versions of problems as defined above. kur

4. SINGLE INTERVAL ANALYSIS
In this section, to solve Problem 1, we adopt and evalu-

ate two classical algorithms: branch-and-bound [11, 17] and
forward feature selection [5, 15].

Branch-and-Bound Algorithm. This algorithm is ef-
fectively a backtracking algorithm that uses branch-and-
bound approach to reduce the search space. The pruning
for exhaustive search relies on two observations. First, re-
call of a set of features F is always lower or equal to the
recall of any subset of features F ′ ⊂ F . Thus, if we have a
lower-bound γ on acceptable Q (., .) for an interval, then we
can use that to lower bound acceptable recall r, and prune
candidate sets: r ≥ γ

2−γ . Notice, that similar observation
does not hold for precision: combination of features can, and
often does have higher precision than any individual feature
of that set.

Nevertheless we can avoid selecting subsets of nearly iden-
tical features, by following the branch if support of the cor-
responding explanation reduces significantly, while still pre-
serving recall. More formally, let SI be the support of the
interval I and R(f1, f2, . . . , fi) ⊆ R be a subset of all re-
quests that have features f1, . . . , fi satisfied, Suppose, that
explanation with precision ρ exists. Thus such explanation
would have support of at most µ = |SI |/ρ. Indeed, any ex-
planation which has support more than µ, can not possibly
have precision of ρ. We use this observation to obtain a
bound on how much each added feature should reduce the
support of requests in order to achieve aimed precision ρ.
We show that the set can be populated in such a way that
adding feature fi+1 to first i features, reduces the support
|R(f1, . . . , fi)| by at least

µ− |R(f1, . . . , fi)|
k − i

We formalize and prove this in the following lemma.

Lemma 2. Suppose explanation contains a set of features
(f1, f2, . . . , fk) and precision of an explanation is at least ρ.
Then there exists an ordering l1, . . . , lk, s.t., for all i ≥ 0

|R(l1, . . . , li)| − |R(l1, . . . , li+1)| ≥ R(l1, . . . , li)− |SI |/ρ
k − i

Proof. Fix t ≥ 0 and suppose sequence l1, . . . , li satisfying
the lemma has been built for all i ≤ t. Obviously when
t = 0, such condition is trivially true. Let l1, . . . , lt be one
such order, and without loss of generality assume lj = j for
j ≤ t. Let Ti = SI(f1, . . . , fi). We have Ti ⊆ Ti−1 for all
i > 0. Therefore since Tk ≤ µ, there exists j ≥ t such that

|Tj | − |Tj+1| ≥ (Tt − µ)/(k − t) (3)

706

But |Tt| = |Tj |+ |Tt \ Tj | and

|Tt ∩R(fj+1)| = |Tj+1|+ |(Tt ∩R(fj+1) \ Tj |.

Now subtracting former from later we have:

|Tt|−|Tt∩R(Fj+1)| = |Tj |−|Tj+1|+|Tt\Tj |−|(Tt∩R(fj+1)\Tj |

Using the fact that

|Tt \ Tj | ≥ |(Tt ∩R(fj+1) \ Tj |

we have

|Tt| − |Tt ∩R(Fj+1)| ≥ (Tt − µ)/(k − t)

Hence feature lt+1 = fj+1, satisfies the conditions of the
lemma.

Forward Feature Selection Algorithm. We have pre-
sented an efficient branch and bound approach which guar-
antees global optimality. However, if we allow suboptimal
solutions, it is possible to improve running time even further.
We present intuitive greedy algorithm based on forward fea-
ture selection: start with empty set of features F ∗ = {} and
expand it by adding a feature fi s.t.,

fi = arg max
fi∈F

Q (I, {F ∗fi})

We keep growing F ∗ while Q (I, F ∗) is strictly growing.
The intuition for this method rests on two properties of

multidimensional f -measure. First, as we have observed be-
fore, recall of single feature is always greater or equal to the
recall of any super set. Secondly, given subset of requests
R′, set of features F ′ and the number of requests in the
interval I we can calculate global recall.

5. LATENCY RANGE ANALYSIS
Let split point ri ∈ [0, L] be a point that separates latency

range into smaller intervals. Assume we have s potential
split points {ro = 0, r1, r2, . . . , rs = L}. Let Θ(ri, rj) =
maxA⊂F Q ([ri, rj), A) be the score of the interval [ri, rj).
The goal is to select subset of split points {r∗1 , r∗2 , . . . , r∗k}
to maximize total score

∑k−1
i=1 Θ(r∗i , r

∗
i+1). Notice, we do

not make any assumptions about the shape of the function
Θ(·, ·).

This problem can be solved efficiently using the following
dynamic programming formulation. Let D(i) denote the
best score for a solution that covers interval [0, ri), with
initial state D(0) = 0. The update step is:

D(i) = max
1≤j<i

(Θ(rj , ri) +D(j)) (4)

In other words, to construct solution for [0, rj) we search
for such a pair i, j, s.t., Θ(rj , ri) +D(j) is maximized. We
repeat iterative step s times. This dynamic programming
gives O(|s|2) running time solution.

Proof that D(i) indeed finds the best score at each step
i is a simple application of induction argument. Consider
smallest i such that there exists a solution D′(i) > D(i)
then we consider the last interval that spans j and i in D′(i).
By induction hypotheses D(j) is optimal and thus D(i) ≥
D(j) + Θ(j, i), which contradicts with our assumption.

Problem variations. This problem has several varia-
tions. For instance, we implicitly assume that every inter-
val of [0, L] that was not included into final solution has
Θ(·, ·) = 0. However, one can penalize for gaps in the fi-
nal solution by making implicit score negative. Considering

formulation in which intervals in final solution are allowed
to overlap is particularly interesting. It can be solved by
considering slightly different dynamic programming formu-
lation: let D(i, j, k) denote the best solution with k inter-
vals, that covers interval [0, ri), and the latest point which
has overlap is j. We do not explore this modification further
in this paper.

6. EXPERIMENTS
We test our framework on two types of input: (1) syn-

thetic and (2) real data. For the absence of labeled data,
we use synthetic data to evaluate performance, robustness
and running time of our algorithms. We run our algorithms
on real data to learn more about abilities, perspectives and
utility.

6.1 Synthetic Data

Generation.
There are multiple ways one can obtain synthetic data for

experiments. For instance, one can modify data collected
from real services: fix service, obtain data set, then take
one feature, modify it’s values, and “translate” changes to
the latency value for each request instance in the data set.
This approach requires extensive knowledge of structure of
the service together with relations between different param-
eters: does change of single attribute value affects only la-
tency value? does it affect any other attributes? Another
approach is to modify running service in order to obtain
data, this approach cannot be carried out in practice for
majority of services. Therefore, we generate synthetic data
to model situations in which irregular latency values occur
when several factors occur simultaneously. For the data set
we generate 2 types of requests: Base requests correspond to
normal state of the system, i.e., system behaves as expected.
We assume that their latencies follow some normal distribu-
tion2 with fixed parameters. The other type of requests
contains a pattern or co-appearance of particular values for
some set of features. Further, we assume that for each pat-
tern latency is coming from a particular normal distribution,
e.g., if request i originates from USA and has request size
of 100KB or more, then Li ∼ N(µj , δ

2
j). It is only natu-

ral to expect that system behaves differently under different
conditions. Potentially, synthetic data set can contain mul-
tiple patterns, patterns can be overlapping or not in terms
of features or latency intervals.

To generate data, we fix distribution for base requests
N , number of patterns p, each with predefined distribu-
tion {Nj}, and the size of the data set (number of re-
quests n and number of binary features m). Data gener-
ation is straightforward and on the higher level is as follows.
First, m features are generated: we generate attributes, each
consisting of 3 to 6 binary features, together with multi-
nomial distributions, according to which values of the at-
tributes (and features) will be sampled. Second, we gener-
ate patterns, where pattern is essentially the bag of features
Pk = {fa, fb, . . . , fc}. Finally, we sample requests by sam-
pling values of the attributes. If sampled request i contains
the pattern, then we sample it’s latency from corresponding

2More realistic assumption would be to use log-normal dis-
tribution, however it does not change the results aside from
changing the latency scale to normal.

707

Latency intervals of planted patterns are far apart

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Ground Truth

1
0
1000000

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Branch-and-Bound Algorithm

1
0
None

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Forward Feature Selection Algorithm

1
0
None

Latency intervals of planted patterns are close together

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Ground Truth

0
1
1000000

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Branch-and-Bound Algorithm

1
0
None

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Forward Feature Selection Algorithm

0
1
None

Latency intervals of planted patterns nearly match

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Ground Truth

0
1
1000000

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Branch-and-Bound Algorithm

0
None

0 10 20 30 40 50 60
latency,ms

0

50

100

150

200

250

n
u
m

b
e
r

o
f

in
st

a
n
ce

s

Latency Profile: Forward Feature Selection Algorithm

0
None

Figure 2: Tests on synthetic data: quality of analysis as latency associated with patterns “1” and “2” are
brought closer and closer together. Requests with no pattern found in them are labeled with “None”. Each
row represents independent experiment. The left column shows ground truth, middle column contains output
for branch-and-bound algorithm while the right most column shows results forward feature selection. The
branch-and-bound algorithm successfully solves first and second inputs. Forward feature selection, solves
the first input perfectly, finds almost perfect solution for the second one. Both methods fail to detect both
patterns when latency associated with patters is virtually identical.

708

0 5 10 15 20
Distance between centers of distributions of planted patterns, sec

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

q
u
a
li
ty

 m
e
a
s
u
re

Performance test

Feature Forward Selection
Branch-and-Bound

0 20 40 60 80 100
number of noisy features

0.88

0.90

0.92

0.94

0.96

0.98

1.00

q
u
a
li
ty

 m
e
a
s
u
re

Robustness test

Feature Forward Selection
Branch-and-Bound

Figure 3: Left graph shows average quality measure as function of the distance between two planted patterns.
The right graphs shows average quality measure as function of the number of noisy features.

0 50 100 150 200 250 300 350 400 450
number of binary features

0.90

0.92

0.94

0.96

0.98

1.00

q
u
a
li
ty

 m
e
a
s
u
re

Performance test

Feature Forward Selection
Branch-and-Bound

0 50 100 150 200 250 300 350 400 450
number of binary features

100

101

102

103

104

105

ru
n
n
in

g
 t

im
e
,
s
e
c

Running time

Feature Forward Selection
Branch-and-Bound

Figure 4: The left graph shows average quality measure as the number of features grows. The right plot
shows running time of two algorithms as the number of features grows.

709

pattern latency distribution Nj , otherwise we sample the la-
tency from N . The description of the process can be found
in Algorithm 1. We further extend our generation process
in order to be able to test robustness of our algorithms.
We generate number of noisy features, each associated with
some particular pattern: it co-occurs (has value 1) with the
pattern with probability p, if pattern is absent it occurs with
probability 1− p.

Algorithm 1 Synthetic Data Generation

1: procedure FindExplanation(n,m, {N1, . . . , Ni}, N)
2: F ← generateFeatures(m)
3: P ← generatePatterns({N1, . . . , Ni})
4: for i ∈ {1, . . . , n} do
5: ri ← instantiateRequest(F)
6: if pk ← findPattern(ri,P) then
7: Li ← sampleLatency(Nk)
8: else
9: Li ← sampleLatency(N)

10: end if
11: end for
12: return {R, F,P}
13: end procedure

Synthetic Data Set.
Each synthetic data set consists of 1000 generated re-

quests, each described by m attributes and g noisy features
as defined in Section 6.1. Default number of (binary) fea-
tures is 70, except for experiment in which we vary number
of features in order to compare running times of two ap-
proaches. Default number of noisy features is g = 15, ex-
cept for experiment in which we vary g in order to see its
influence on the algorithms’ performance. Level of noise p is
constant and is set to 0.9 in all experiments. Each attribute
consists of [3..5] features, number of features per attribute is
selected uniformly at random. Each data set has 2 planted
patterns: “0” and “1”. Each pattern consists of [2..4] fea-
tures. Base requests or requests in which analysis did not
detect any patterns are labeled as “None”. We find that this
setup closely mimics the type of request data observed in
real world. All figures describing performance of the algo-
rithms contain averaged out quality scores defined below.
To obtain a data point on the quality of analysis, we run
each of our algorithms 5 times, and take the average. For
each point on the diagrams we also plot standard deviation
as confidence interval.

Figure 2 shows generated latency profiles and analysis out-
puts produced by the framework. Each row, of three, repre-
sents analysis result for a distinct data set. The first column
corresponds to the ground truth, the second column corre-
sponds to the branch and bound based analysis results, and
the third column shows forward feature selection based anal-
ysis results. In a series of experiments below we investigate
how well our algorithms work when we vary one parameter
at a time: number of noisy features, number of features, or
separation of patterns.

Quality score. Result of our analysis is essentially clus-
tering, where requests are assigned to groups. To measure
success rate of the analysis we match each of the ground
truth planted patterns pi with the best matching cluster Cj
from the algorithm output. We then compute f -measure for
clustering results. For that we, first compute total number

of requests G that are true positive (e.g., request contains
planted pattern and analysis placed it to the correspond-
ing cluster). Then we compute overall precision and recall
p = G/| ∪ C| and r = G/| ∪ P |, respectively. We compute
f -measure as in Eq. 1.

Experiment 1. Pattern separation.
In this experiment we want to explore when our algo-

rithms will be able to discover planted patterns, e.g., do
latency interval and its specific pattern must be well sepa-
rated from any other requests or will our analysis be able to
detect pattern when it is mixed with others? To test this
we run series of trials: in each data set we plant 2 patterns.
In the first trial latency intervals corresponding to patterns
are well separated (see Figure 2, row 1), we proceed exper-
iments by bringing them closer and closer together to the
point when they are almost equal (see Figure 2, row 3).

The results of experiment are highlighted in Figure 2 and
effect to the quality of analyses is shown in Figure 3. In
most cases branch-and-bound algorithm produces slightly
better results, that is to be expected given that it effectively
searches the whole hypothesis space. It is also interesting
that in a few points greedy algorithm provided better re-
sults. We explain this by the fact that our target metric
(comparison with ground truth) is different from the met-
ric we seek to maximize — total f -measure based on the
interval selection.

Experiment 2. Noisy features effect.
It is intuitive to think that as the number of features in-

creases, it might get harder for algorithms to discover pat-
terns. Even more so for noisy features, as they are designed
to confuse our methods. In this experiment we vary number
of noisy features, in order to see how robust our algorithms
are, and results are shown on Figure 3. Performance of two
algorithms is comparable, and the quality of results does not
degrade or depends on the number of noisy features.

Experiment 3. Running time.
From the previous experiment we can see that branch-and-

bound algorithm in general performs slightly better than
forward feature selection. However, it is significantly slower
as the number of features grows (see Figure 4). In practice,
both methods are very easy to implement using map-reduce
framework: on the map step separate the search space by
features, on the reduce step choose the combination of fea-
tures that scored the best.

Running time analysis. In the worst case scenario
branch-and-bound algorithm can run exponential time,
whereas forward feature selection algorithm running time is
bounded by O(m2|R|), where m is the number of attributes
and |R| is number of requests. In Figure 4 we show the run-
ning time as the number of features increases. In practice
we found that the running time of branch-and-bound highly
varies: in some cases it terminated quicker than forward
feature selection, however tests that we performed indicate
exponential running time trend.

6.2 Experiments on Real Data
In order to obtain more intuition about usefulness, per-

spective of the framework we test it on several data sets that
are obtained from several backend services of a large search
engine. Algorithms do detect unusual and interesting pat-
terns in the data. Each data set contains requests sent to a
single service. Traces were collected by Dapper [20] tracing

710

100 101 102 103 104

latency,ms

0

20

40

60

80

100

120

140
nu

m
be

r
of

 in
st

an
ce

s

Latency Profile: Forward Feature Selection Algorithm

0
None

100 101 102 103 104

latency,ms

0

20

40

60

80

100

120

140

nu
m

be
r

of
 in

st
an

ce
s

Latency Profile: Branch-and-Bound Algorithm

0
1
None

10-1 100 101 102 103 104

latency,ms

0

100

200

300

400

500

600

700

800

nu
m

be
r

of
 in

st
an

ce
s

Latency Profile: Forward Feature Selection Algorithm

None
2
1
0

10-1 100 101 102 103 104

latency,ms

0

100

200

300

400

500

600

700

800

nu
m

be
r

of
 in

st
an

ce
s

Latency Profile: Branch-and-Bound Algorithm

None
1
0
2

Figure 5: Latency distributions for two backend services at a large search engine.

service, each trace describes invocation of one of the services
related to the request. To obtain requests, we take traces,
and group them by request. Attributes for the dataset are
also obtained from traces, e.g., request and response sizes,
service name, custom annotations, observed CPU and disk
loads, latency. Depending on the service, the number of at-
tributes is different, starting from 50. We translate values
of attributes to binary format as described in Section 2.

First data set contains 1850 requests, each having 640 fea-
tures. It’s latency profile can be found in top row of Figure 5.
One can see that requests form 2 groups: one group has la-
tency of around 100 ms or less, the second group of requests
is significantly slower. Both methods identified slower group
of requests. While we are not able to go into greater detail
regarding the service, we mention that the explanation pro-
duced for the slower requests indicated that the culprit for
low performance were particular type of operation occur-
ring several layers below in the execution stack. In addition
to that branch and bound identified slowest of requests can
be explained by the same operation but for requests with
session.

Second data set contains 1500 requests each having 140
features. It’s latency profile indicates 3 distinct peaks and
can be found in bottom row of Figure 5. While again we can-
not disclose lower level details, we mention here that analysis
results of two methods while being a little bit different have
the same bottom line: there is single event, occurrence of
which causes latency to fall into range of 2 peaks on the
right, while additional event allows to distinguish between
right and left peaks (its absence and presence, respectively).
Note, that in this particular case the quicker fraction of re-

quests is uniform and was described by single pattern (same
pattern for both methods).

6.3 Interval Generation
There are multiple ways to form intervals. One simple

approach is to greedily form all possible intervals. If every
request ri has distinct latency Li, then we end up with |R|2
of intervals. The other extreme would be to generate only
few good candidates. However, it is hard to know what is
a “good” interval, and how to detect it automatically. We
leave this direction open to further research. Instead, in our
experiments we use local minima approach that generates
potential split points by building latency histogram for the
service and adding all local minima into the set. Set of
intervals is formed by taking all pairs of split points. Set of
split points is also used by dynamic programming.

7. RELATED WORK
Cloud and web services abound, for instance Amazon Web

Services, Google and Bing. Nearly all providers of such ser-
vices have dashboards tracking vital statistics of the systems
for detecting anomalies, failures and also monitoring perfor-
mance measures (such as QPS, etc). Latency of services
is one of metric to track. There are several low-overhead
techniques that help to monitor large scale services. Tools,
such as X-trace [7, 6] and Dapper [20] allow RPC level data
collection. Traces or RPC calls capture time and path of
requests, and allow rich statistical analysis.

There is very little prior work on latency analysis in large
scale systems. Path profiling [2], modeling [3], or call tree
reconstruction [13] became a prominent directions in latency

711

analysis. Such systems are of great help in order to model
services, building prediction models. In [19] authors develop
approach to differentiate between anomalies and behavioral
changes. However, they do not help to explain which at-
tributes have played major role in some particular latency
range. In contrast, our focus here is on explaining the la-
tency variations and we take a combinatorial approach of
identifying subset of monitored attributes that engineers can
later troubleshoot.

There are many general statistical and data mining tools
that apply to the problem of explaining an observed feature
(e.g., latency). One is based on correlation of features [9].
However, in our case we want to be able to detect synergy
between different features, that is while separate features
might not appear to be correlated with performance met-
ric, together they can serve as a prefect explanation for the
interval. Moreover, single set of features can be explaining
only some interval of latencies, and not the whole range.
Another approach uses decision trees [17]. There are also
approaches that combine correlation and decision trees [4].

One can consider finding the explanation for a fixed in-
terval to be feature subset selection [10] problem: select a
subset of at most m features from set of features of size n,
s.t,. the score is maximized. Here is conceptual difference
between our problem, and feature selection problem. While
in feature selection the goal is to select a set of features, s.t.,
some family of algorithms works well on data sets of some
particular type. In our case we are interested in selecting set
of features that optimizes the score on a particular data set.
We are not concerned about over-fitting, or the fact that se-
lected set of features is useless for analysis of the other data
set.

Our approach is derived from f -measure. f -measure is
frequently employed in machine learning, also in feature se-
lection, to evaluate results [8]. f -measure is known to be
non-convex, and hard to optimize. There are number of
studies to optimize f -measure for family of methods, e.g.,
[16, 22] We proposed a multidimensional f -measure which is
even more challenging to compute. We believe this measure
is of inherent interest and other uses for this measure will
be found. Algorithms we adopted and evaluated for finding
explanation for the fixed interval are classical branch-and-
bound [11, 17], and greedy forward feature selection [5, 15].
For branch-and-bound we exploit properties of f -measure
in order to significantly reduce the search space. The latter
algorithm does not bound to find optimal solution, however
can be used in practice when running time is crucial.

Along with feature selection frequent itemset and associ-
ation rule mining are relevant. Their goal is to find subsets
of features that frequently co-occur together. Algorithms
such as a-priori [1] and it’s modifications relay of support
of generated sets and usually applied to complete data sets.
Association rules appear to be a natural solution, in which
we build one association rule for each interval of interest.
However, in our case, feature set found for the interval can
be also frequent outside of the interval. Or set of features
can be infrequent on the scale of the data set, but be a per-
fect predictor for the interval of latency. Most importantly,
association rules express causation relation, however in our
case we do not want to restrict ourselves to this kind of
relationship between features and latency attribute.

8. CONCLUSION
Cloud services are essential for modern online world, and

users perceive latency as critical.Latency varies a lot due to
variety of factors. There is very little prior work on latency
analysis in large scale systems. We addressed the problem of
understanding the latency profile and explaining it in terms
of few, monitored attributes. We proposed a combinato-
rial quantity that we call the multidimensional f-measure
and presented algorithms to use that to identify the suitable
subset of attributes that explain latency. Understanding the
latency profile of cloud services is a fundamentally important
problem, and much remains to be done.

There is a growing trend in data mining that the output
of analysis be meaningful to the end user. For example,
in rank based data mining, there has been recent focus on
picking rows and columns that explain the rank of the ma-
trix rather than looking at linear combinations, because the
rows and columns correspond to samples and features re-
spectively which are easier to reason for end users [12]. Our
work adds to this perspective. Also, the multidimensional
f -measure, like the standard one-dimensional version, is dif-
ficult to handle computationally. It will be interesting to
obtain approximations that are more efficient to compute.
We also believe this measure will find other applications.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc 20th Int Conf Very Large
Data Bases VLDB, volume 1215, pages 487–499.
Citeseer, 1994.

[2] T. Ball and J. Larus. Efficient path profiling. In
Proceedings of the 29th Annual International
Symposium on Microarchitecture, pages 46–57, 1996.

[3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan.
Magpie: Online modelling and performance-aware
systems. In Proceedings of the 9th conference on Hot
Topics in Operating Systems-Volume 9, pages 15–15.
USENIX Association, 2003.

[4] A. Destrero, S. Mosci, C. De Mol, A. Verri, and
F. Odone. Feature selection for high-dimensional data.
Computational management science, 6(1):25–40, 2009.

[5] P. Devijver and J. Kittler. Pattern recognition: A
statistical approach. Prentice/Hall International, 1982.

[6] R. Fonseca, M. Freedman, and G. Porter. Experiences
with tracing causality in networked services. In
Proceedings of the 2010 internet network management
conference on Research on enterprise networking,
pages 10–10. USENIX Association, 2010.

[7] R. Fonseca, G. Porter, R. Katz, S. Shenker, and
I. Stoica. X-trace: A pervasive network tracing
framework. In Proceedings of the 4th USENIX
conference on Networked systems design &
implementation, pages 20–20. USENIX Association,
2007.

[8] G. Forman. An extensive empirical study of feature
selection metrics for text classification. The Journal of
Machine Learning Research, 3:1289–1305, 2003.

[9] I. Guyon. Practical feature selection: from correlation
to causality. Mining Massive Data Sets for Security:
Advances in Data Mining, Search, Social Networks
and Text Mining, and their Applications to Security,
pages 27–43, 2008.

712

[10] R. Kohavi and G. John. Wrappers for feature subset
selection. Artificial intelligence, 97(1):273–324, 1997.

[11] A. Land and A. Doig. An automatic method of solving
discrete programming problems. Econometrica:
Journal of the Econometric Society, pages 497–520,
1960.

[12] M. Mahoney and P. Drineas. Cur matrix
decompositions for improved data analysis.
Proceedings of the National Academy of Sciences,
106(3):697–702, 2009.

[13] G. Mann, M. Sandler, D. Kruschevskaja, S. Guha, and
E. Even-dar. Modeling the parallel execution of
black-box services. USENIX/HotCloud, 2011.

[14] M. Marshak and H. Levy. Evaluating web user
perceived latency using server side measurements.
Computer Communications, 26:2003, 2003.

[15] A. Miller. Subset selection in regression. Chapman &
Hall/CRC, 2002.

[16] D. Musicant, V. Kumar, A. Ozgur, et al. Optimizing
f-measure with support vector machines. In
Proceedings of the Sixteenth International Florida
Artificial Intelligence Research Society Conference,
pages 356–360, 2003.

[17] P. Narendra and K. Fukunaga. A branch and bound
algorithm for feature subset selection. Computers,
IEEE Transactions on, 100(9):917–922, 1977.

[18] K. Ostrowski, G. Mann, and M. Sandler. Diagnosing
latency in multi-tier black-box services. 2011.

[19] R. R. Sambasivan, A. X. Zheng, M. De Rosa,
E. Krevat, S. Whitman, M. Stroucken, W. Wang,
L. Xu, and G. R. Ganger. Diagnosing performance
changes by comparing request flows. In Proceedings of
the 8th USENIX conference on Networked systems
design and implementation, NSDI’11, pages 4–4,
Berkeley, CA, USA, 2011. USENIX Association.

[20] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.
Dapper, a large-scale distributed systems tracing
infrastructure. Google Research, 2010.

[21] C. Van Rijsbergen. Information retrieval, 1979.

[22] N. Ye, K. Chai, W. Lee, and H. Chieu. Optimizing
f-measures: A tale of two approaches. 2012.

713

	Introduction
	Our Approach
	 Formal Problem Definition
	Single Interval Analysis
	Latency Range Analysis
	Experiments
	Synthetic Data
	Experiments on Real Data
	Interval Generation

	Related Work
	Conclusion
	References

