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ABSTRACT

Digg is a social news website that lets people submit articles
to share their favorite web pages (e.g. blog postings or news
articles) and vote the articles posted by others. Digg service
currently lists the articles in the front page by popularity
without considering each user’s preference to the topics in
the articles. Helping users to find the most interesting Digg
articles tailored to each user’s own interests will be very use-
ful, but it is not an easy task to classify the articles according
to their topics in order to recommend the articles differently
to each user.
In this paper, we propose DIGTOBI, a personalized rec-

ommendation system for Digg articles using a novel proba-
bilistic modeling. Our model considers the relevant articles
with low Digg scores important as well. We show that our
model can handle both warm-start and cold-start scenar-
ios seamlessly through a single model. We next propose an
EM algorithm to learn the parameters of our probabilistic
model. Our performance study with Digg data confirms the
effectiveness of DIGTOBI compared to the traditional rec-
ommendations algorithms.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; H.3.5 [Online
Information Service]: Web-based services

General Terms

Algorithm

Keywords

Digg article recommendation; Topic modeling; Collabora-
tive filtering; Expectation-Maximization; Probabilistic la-
tent semantic indexing

1. INTRODUCTION
Digg [10] is a social news website that allows people to sub-

mit articles for sharing their favorite web pages (e.g. blogs
or news articles) and to vote the articles posted by others.
When a Digg user finds an interesting web page with which
he wants to share, he can submit an article to Digg so that
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Figure 1: Components in a Digg submission

other users can read his article and vote either thumbs up
(also called digging) or thumbs down (also called burying)
for the article. Each article in Digg consists of a user id,
its submission title, a brief description and the link to the
interesting web page as shown in Figure 1.

Digg service displays not only the submitted articles with
a lot of “diggings” but also new submissions with their Digg
scores where the Digg score of a submission is defined as
the number of diggings subtracted by the number of bury-
ings. Digg service currently lists the Digg articles in its front
page without considering each user’s topic preference. Help-
ing users to find the most interesting Digg articles tailored
to each user’s own interests is very useful, but it is not an
easy task to classify the submissions according to their topics
so that the submitted articles are recommended differently
to each user based on his own topic preference. Another
challenge in Digg service is the problem of cold-start recom-
mendations [21, 25] which occurs when the voting histories
and submitted articles of users are not sufficient.

Other popular websites such as Facebook [11] and CiteU-
Like [6] not only allow users to vote for the messages and
the papers posted by other users respectively, but also post
the voting scores which can be utilized to infer the topic
preferences of users. Thus, our work in this paper can also
be used to enhance the quality of recommendation systems
for Facebook and CiteULike as well.

In our paper, we propose DIGTOBI which is a personal-
ized recommendation system for DIGg arTicles using prOb-
aBIlistic modeling. Our probabilistic model is a generaliza-
tion of the probabilistic latent semantic indexing (PLSI) in
[12] which assumes that the description in each submission
has its own topic relevance model and each word in the de-
scription is selected by following the word distributions of
its related topics. Since recommendation algorithms can be
naturally derived in a principled manner by utilizing proba-
bilistic modeling, it is another reason why we decide to apply
the probabilistic modeling approach to the Digg article rec-
ommendation.

We develop a generative model from a unifying viewpoint
such that the description in each submission is produced by
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a topic mixture model and each user votes thumbs up for
each submission based on his topic preference. Since Digg
service provides us only the dug articles and does not provide
the buried articles by users, we could not utilize the votes
of thumbs down in our model. If we blindly apply the PLSI
model to Digg, we cannot fully utilize each user’s digging
history and submitted articles together. Thus, we introduce
not only a topic mixture model of generating the descriptions
in the submitted articles, as the PLSI model does, but also
another topic model of producing the histories of digging and
writing by each user, and apply both topic models into our
probabilistic model. In our probabilistic model, we assume
that every user writes the descriptions in his submissions
according to his topic preference. Furthermore, we assume
that when a user votes for submissions, the submissions with
the similar topic relevances to his own topic preference have
high chances of being voted for.
The traditional recommendation algorithms tend to offer

users the articles with high scores which are probably pre-
ferred by most of users. However, users are interested in
the relevant articles with low scores to their topic prefer-
ences as well. Thus, our model also considers the relevant
articles with low Digg scores to be important. It is possi-
ble that the articles with high Digg scores may be dug by
many users simply because they have more chances to be
displayed in Digg service, and the others have no chance of
being voted for at all. In our model, when an article with
a small Digg score is dug by a user, we assume that the
article has more similar topic relevance to the user’s topic
preference. This assumption enables our model to capture
the topic preference of each user precisely and discover the
interesting articles to each different user, even if the articles
have low Digg scores.
The contributions of this paper are as follows:

• We develop the personalized recommendation system
called DIGTOBI which utilizes our novel probabilistic
generative model. The model is suitable for represent-
ing the activities in Digg service as well as the other
websites which allow users to vote the contents posted
by other users.

• We improve the quality of recommendations by reduc-
ing the bias of the collaborative filtering which mainly
recommends the popular articles with high Digg scores.

• We present the EM algorithm which estimates the model
parameters maximizing the likelihood of our proba-
bilistic model used by DIGTOBI.

• We also introduce the recommendation algorithms for
both warm-start and cold-start naturally derived from
our probabilistic model of DIGTOBI in a principled
manner.

• Our performance study with Digg data confirms the
effectiveness of DIGTOBI compared to the traditional
recommendation algorithms.

The rest of this paper is organized as follows. After dis-
cussing related work in Section 2, we provide the definitions
to define our problem and present the problem formulation
in Section 3. We next propose a generative probabilistic
model and its EM algorithm in Section 4. Then, we present
our recommendation algorithms in Section 5. Finally, the
performance study is provided in Section 6 and we summa-
rize our paper in Section 7.

2. RELATED WORK
Model-based algorithms build their models based on the

behaviors of users and utilize the models to predict the users’
preferences on unseen items. In [22], it was shown that
recommendations using probabilistic modeling outperform
other approaches in terms of precision. The probabilistic
matrix factorization technique in [23] was also developed for
movie recommendations in Netflix [20] to predict user rat-
ings on movies. However, these algorithms utilize only the
history of ratings or votings for the items generated by users
and do not consider additional hints such as the textual con-
tent of the items for recommendations.

More complex probabilistic models were later proposed in
various recommendation applications. In [13, 17, 26], rec-
ommendations utilizing the PLSI in [12] were investigated.
The LDA model, introduced in [4], is generalized to model
both latent topics and hidden communities between users
in [1, 2]. However, these algorithms make recommendations
by utilizing either the user’s past ratings on items or the
textual content of items, but not both.

In [28], a system called CTR was proposed to recommend
scientific papers to each user in CiteULike [6]. CiteULike is a
specialized search engine for searching the technical papers
and allows people to share their favorite papers by voting
thumbs up for the papers. To make recommendations by
utilizing both of user’s votes and the content of papers, they
combine the matrix factorization [23] and the LDA model [4]
together, and show that CTR outperforms the recommenda-
tions based on either matrix factorization or the LDA model
only [28].

While both CiteULike and Digg service allow the users to
post their votes for each document, CiteULike does not allow
the users to post the descriptions of why they like. Digg
service not only allows the users to submit the descriptions
of web documents, but also posts the Digg scores. Thus,
our probabilistic model is more general in that we consider
both Digg scores and user descriptions, while CTR in [28]
does not considered both of them. If we want to use the
CTR model for recommending Digg articles, we can extend
it by ignoring the Digg scores and the descriptions posted
by users.

In [5], recommending URLs in Twitter messages was stud-
ied by exploiting the social network of users and the popu-
larity of the URLs in Twitter. They simply represent Twit-
ter messages of a user as a bag-of-word for content-based
recommendations without considering any sophisticate user
modeling, while our work utilizes probabilistic modeling.

To recommend the articles with hot topics in Digg service,
HotDigg which is a probabilistic model based recommenda-
tion system was proposed recently in [14]. However, Hot-
Digg aimed to recommend the articles on recent hot topics
to general users using the Digg scores and the descriptions
of submissions only, while we aims to provide personalized
recommendations in this paper.

3. PRELIMINARIES
We first provide the definitions used for defining our rec-

ommendation problem and next present the problem formu-
lation.

3.1 Problem Formulation
Let D = {d1, ..., dn} be a collection of the Digg article ids

submitted to Digg service. Let U = {u1, ..., um} be a set of
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User L(u) D(u) W (di) si
u1 d5 d1 Sherlock, Holmes, 221B, Baker 3

d2 iPhone, Apple, Samsung 246
u2 d3 iPhone, AppStore, Samsung 324

d4 Samsung, iPhone, AppStore, Baker 2
d5 Sherlock, 221B, Apple, Baker 3

u3 d3,d4 d6 Apple, iPhone, Sherlock 2
u4 d1,d2,d3 d7 Sherlock, Holmes, iPhone 2

(a) Warm-start data set

User L(u) D(u) W (di) si U(di)
u5 d2,d3,d4

u6 d8 iPhone, AppStore, Samsung 1
d9 Baker, Apple 1 u2,u3

(b) Cold-start data set

Figure 2: An example of users and articles

Digg user ids. A user can submit an article which consists
of the user id as well as the title, a brief description and the
link to the interesting web page of the submitted article. Let
D(ua) denote the set of Digg article ids which are submitted
by the user ua ∈ U and let W (di) denote the bag-of-words
appearing in either the title or the description of the article
di ∈ D. The number of words in W (di) is denoted by Ni and
we use wij (1≤j≤Ni) to represent the j-th word appearing
in the article di ∈ D. For each article di ∈ D, we generate
the bag-of-words W (di) by deleting the stop-words from its
original title and description. Let W = {w1, ..., wℓ} be the
vocabulary which is the set of distinct words occurring in
at least an article di ∈ D. We define n(di, w) to denote the
number of occurrences of the word w ∈ W in W (di).
Digg users can vote thumbs up or thumbs down, called

digging or burying respectively, for each Digg article. Every
article di ∈ D has a Digg score si of an integer which is the
number of diggings subtracted by the number of buryings
voted for di. Let L(ua) denote the set of article ids in D for
which the user ua ∈ U votes thumbs up. For burying, we
cannot obtain the list of articles for which users vote thumbs
down and thus we utilize the history of diggings only. Let
U(di) denote the set of users in U who dug the article di ∈ D.
Finally, we refer to a user ua ∈ U to whom Digg articles are
recommended as an active user.

Problem definition: Assume that we are given a collection
D of Digg articles with Digg scores and a set of users U with
the history of diggings for each user in U . The top-K Digg
article recommendation problem is defined as follows:

Problem 1. For an active user ua ∈ D and a set of can-
didate articles C which are not submitted nor dug by the user
ua yet, the problem is to find the top-K Digg articles which
the user ua would like the most among the candidate articles
in C.

Example 3.1.: Consider a set of users U={u1,...,u4} and
a set of Digg articles D={d1,...,d7} in Figure 2(a). The
articles dug by each user are presented in the column of
L(u). We can see that there exist two topics of ‘smart-
phone’ and ‘Sherlock Holmes’. The topic of ‘smartphone’
is much more popular than that of ‘Sherlock Holmes’ in the
Digg articles. Thus, the articles on ‘smartphone’ usually ob-
tain higher scores and have more chances to be listed in the
front page of Digg service.
Suppose that we recommend the top-1 article for the user

u3 who posted the article d6 and voted thumbs up for d3 and
d4 both of which are submitted by u2. Considering the arti-
cles he dug and submitted, we can see that he obviously wants

Seen article         Unseen article

Seen user

Unseen user

Warm-start Cold-start type 2

Cold-start type 1 Cold-start type 3

Figure 3: Four types of recommendations

to read the articles about ‘smartphone’. If we simply con-
sider only the other articles submitted (or voted) by the user
u2, who submitted the articles that u3 mainly dug, we would
recommend the article d5 which is posted by u2. However,
the user u3 prefers the topic of ‘smartphone’ and it is better
to recommend the article d2 on ‘smartphone’ rather than the
article d5 which is about the topic of ‘Shelock Holmes’.

Now, suppose that we want to recommend the top-1 arti-
cle for the user u4 who submitted an article d7 which con-
tains more words referring to ‘Sherlock Holmes’ than ‘smart-
phone’. From the history of his diggings, we may think that
he is interested in the articles on ‘smartphone’ since he dug
d2 and d3. Due to their high scores, the articles on ‘smart-
phone’ generally have more chances to be displayed in the
front page of Digg service and thus the reason why u4 dug
them is probably because he has actually seen the articles d2
and d3 in the front page. However, considering the contents
of d7 submitted by the user u4, recommending the article
d5, which is related to the topic ‘Sherlock Holmes’, is also
important to the user u4.

3.2 Warm and Cold-start Recommendations
The top-K recommendation problem is classified into four

categories based on whether the active users, the candidate
articles to be recommended, or both of them are included in
the training data, which is used to learn the parameters of
models, as illustrated in Figure 3.

• Warm-start recommendation: This is the case when
both of the active users and the candidate articles are seen
(i.e., the active users and candidate articles were included
in the training data used for learning the model).

• Cold-start recommendation of type 1: It is the rec-
ommendation of seen candidate articles to an unseen ac-
tive user (i.e., the active user was not included in the train-
ing data).

• Cold-start recommendation of type 2: This refers to
the recommendation of unseen candidate articles (i.e., the
candidate articles were not included in the training data)
to a seen active user.

• Cold-start recommendation of type 3: It is the case
of recommending unseen candidate articles to an unseen
active user.

4. OUR GENERATIVE MODEL FOR DIGG

4.1 Our Generative Model
Previous works have shown the effectiveness of topic mix-

ture models in clustering text collections by representing
hidden topics with conditional probability distributions[4,
12, 15, 18]. However, the traditional topic mixture models
do not consider the ratings of text documents provided by
users in order to get a clue for the topic preferences of users.
To model both writing and digging behaviors of users, we
use a model structure with the mixtures of conditional prob-
ability distributions by generalizing the PLSI model in [12]
to consider the digging behaviors of users in Digg service.
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Figure 4: A graphical model

Observed data: We assume that our generative model
produces the following observed data: (1) the bag-of-words
W (di) for every Digg article di∈D, (2) the list D(ua) of Digg
article ids submitted by every user ua∈U , (3) the list L(ua)
of Digg article ids dug by every user ua∈U .

Hidden topics: We assume that there exist t number of
major topics denoted by the integers from Z={1, 2, ..., t} in
a collection of Digg articles D. We let wij be the j-th word
appearing in the article di ∈ D and let a random variable
zij be the hidden variable to represent one of the t number
of topics according to which the word wij is chosen. Note
that we do not know in advance the actual label with which
we can identify the topic zij .

Conditional probability distribution functions (PDFs):
We introduce the following three conditional PDFs to repre-
sent the topic relevance models of articles, topic preference
models of users as well as word selection models of topics:

(1) The topic relevance models of articles: We in-
troduce θ(z|d=di) which is the conditional PDF with
which we select the topic z ∈ Z for a given Digg article
di ∈ D. It is a multinomial distribution over the topics
in Z satisfying

∑

zk∈Z

θ(z=zk|d = di) = 1 for every di ∈ D, (1)

(2) The topic preference models of users: We define
γ(z|u=ua) that is the conditional PDF with which a
user ua ∈ U chooses the topic z ∈ Z. It follows a
multinomial distribution over the topics in Z and thus
we have

∑

zk∈Z

γ(z=zk|u = ua) = 1 for every ua ∈ U, (2)

(3) The word selection models in topics: We use
φ(w|z=zk) to represent the conditional PDF from which
the word w ∈ W is drawn, given the topic zk ∈ Z. It
is also a multinomial distribution over the words in W
which satisfies

∑

wj∈W

φ(w=wj |z = zk) = 1 for every zk ∈ Z (3)

As long as it is clear from the context, we denote θ(z|d=di),
γ(z|u=ua) and φ(w|z=zk) by θ(z|di), γ(z|ua) and φ(w|zk)
respectively for the sake of simple representation.

Figure 4 illustrates the graphical representation of our
proposed mixture model. Note that pa and pv, both of which
will be dicussed in Section 4.2, denote the probabilities of
submitting an article and digging an article by a user respec-
tively. Our generative model includes two independent gen-
erative processes. The first process considers the behavior

of writing Digg articles by users. The second one represents
how Digg users dig the articles written by other users. Both
processes are illustrated below:

Writing Digg articles: Each Digg article di ∈ D(ua) is
produced by the user ua ∈ U with repeating the following
steps while choosing the words stochastically:

• The user ua decides to write the Digg article di ∈ D(ua)
by following the Bernoulli distribution with the success
probability computed by the function EXP-KL(θ(z|di);
α, γ(z|ua)) where α is a constant in our model. As the
multinomial distributions θ(z|di) and γ(z|ua) become sim-
ilar, the EXP-KL function generates high probability val-
ues. Similarly, as they become dissimilar, it produces low
values closer to 0. We will discuss the EXP-KL function
in the next section.

• Each word in W (di) is selected by repeating the following
two steps Ni times.

1. To select the j-th word wij in di, we first choose a
topic zij∈Z by following the conditional PDF θ(z|di).

2. With the topic zij selected in the above, the word wij

is chosen according to the conditional PDF φ(w|zij).

Digging Digg articles: A user ua determines whether
he digs each Digg article di∈D(ua) or not by following the
Bernoulli distribution with the success probability of EXP-
KL( θ(z|di);β/si, γ(z|ua)) where si is the Digg score of di
and β is a constant in our model. Since the Digg articles
with high scores have more chances to be shown to each
user, if the article di has a high Digg score si, the user
ua tends to dig di with a higher probability than the Digg
articles with small Digg scores in the formulation of EXP-
KL(θ(z|di);β/si, γ(z|ua)).

We will next introduce the EXP-KL function used in our
model and discuss its property.

4.2 The Exponential-KL Function
Given two multinomial distributions, we propose to utilize

the exponential KL-divergence (EXP-KL) function in our
probabilistic model in order to obtain higher success prob-
abilities for Bernoulli distributions [30] as the two multi-
nomial distributions become similar to each other. Given
a scalar value λ and a t-dimensional multinomial distri-
bution µ, the exponential KL-divergence function EXP -
KL(θ;λ, µ) over the t-dimensional multinomial distribution
θ is defined as

EXP -KL(θ;λ, µ) = λe−λ·KL[µ||θ], (4)

where KL[µ||θ] is the Kullback-Leibler (KL) divergence be-
tween µ and θ, which is presented in [7] as

KL[µ||θ] =

t
∑

i=1

µi · log(µi/θi), (5)

and λ is the parameter which determines the steepness of
the EXP-KL function.

The EXP-KL function generates the probability density of
λ when θ=µ. The probability densities calculated by using
EXP-KL decrease with increasing the distance between θ
and µ. Furthermore, with a large λ, the probability densities
decrease faster when the distance between θ and µ grows.
We next show how the EXP-KL function is utilized in our
model in details.

694



The probability of submitting an article by a user: A
user ua∈U , whose topic preference is γ(z|uz), submits the
article di∈D, of which topic relevance is θ(z|di), with the
probability of

EXP -KL(θ(z|di);α, γ(z|ua)) = αe−α·KL[γ(z|ua)||θ(z|di)], (6)

where α is a constant in our model. With a small α, it
becomes more probable that an article with a quite different
topic relevance of θ(z|di) from its author’s topic preference
is submitted. Thus, by setting a small value to α, we can
allow Digg users to submit the articles with diverse topic
relevances.

The probability of digging an article by a user: A
user ua∈U , whose topic preference is γ(z|ua), digs the article
di∈D with Digg score si, whose topic relevance is θ(z|di),
with the probability of

EXP -KL(θ(z|di);β/si, γ(z|ua))

=
β

si
e−(β/si)·KL[γ(z|ua)||θ(z|di)], (7)

where β is a constant such that with a small value of β, it
becomes more probable that a user ua with the topic pref-
erence of γ(z|ua) votes thumbs up for the article di with a
quite different topic relevance of θ(z|di) from his topic pref-
erence γ(z|ua). Furthermore, since the articles with high
Digg scores not only are interesting to many users but also
have more chances to be displayed in the front page of Digg,
such articles will be dug by many users with higher proba-
bilities. For the article di with the Digg score si, by using
the steepness parameter (β/si) in the EXP-KL function, the
users tend to dig the articles with larger Digg scores in our
model.

4.3 The Likelihood of Digg Data
Let D and U be a set of Digg articles and a set of Digg

users respectively. For each Digg article di ∈ D, we have
a bag-of-words W (di) and a Digg score si. For each Digg
user ua ∈ U , let D(ua) and L(ua) be the set of articles
that the user ua submitted and the set of articles that ua

dug respectively. Let ppost(di|ua) and pdigg(di|ua) repre-
sent the probability that ua summits the Digg article di and
the probability that ua votes thumbs up for di respectively.
Since each user ua ∈ U posts the Digg articles in D(ua)
and digs those in L(ua) independently in our model, the
likelihood L of the Digg data becomes

L =
∏

ua∈U











∏

di∈Du

ppost(di|ua)



 ·





∏

di∈Lu

pdigg(di|ua)











.

Since each word in W (di) is sampled independently after the
user ua decides to submit the article di, we have

ppost(di|ua) =

EXP -KL(θ(z|di);α, γ(z|ua)) ·
∏

wij∈W (di)

p(wij |di).

Furthermore, if we marginalize p(wij |di) with the random
variable zij , p(wij |di) becomes

∑
zk∈Z φ(w=wij |zk) θ(z=zk|di).

Finally, since each article in L(ua) is dug by ua indepen-
dently by following the distribution EXP-KL(θ(z|di);β/si,
γ(z|ua)), we obtain the likelihood as follows

L =
∏

ua∈U

∏

di∈D(ua)

αe−α·KL[γ(z|ua)||θ(z|di)]

·
∏

ua∈U

∏

di∈D(ua)

∏

wj∈W





∑

zk∈Z

φ(wj |zk)θ(zk|di)





n(di,wj)

·
∏

ua∈U

∏

di∈L(ua)

(β/si)e
−(β/si)·KL[γ(z|ua)||θ(z|di)], (8)

where n(di, wj) denotes the number of appearances of the
word wj ∈ W in the article di.

4.4 The Maximum Likelihood Estimate
Assume that the observed data is generated from our gen-

erative model. Let Θ denote our initially-unknown model
parameters, which consist of the distributions φ(w|zk) for
every zk ∈ Z, θ(z|di) for every di ∈ D and γ(z|ua) for ev-
ery ua ∈ U . We wish to find the model parameters Θ such
that the likelihood L in Equation (8) is maximized. This is
known as the Maximum Likelihood (ML) estimation [19] for
computing Θ. In order to estimate Θ, we generally introduce
the log-likelihood function defined as

logL =
∑

ua∈U

∑

di∈D(ua)

∑

wj∈W

n(di, wj) log
∑

zk∈Z

φ(wj |zk)θ(zk|di)

− α
∑

ua∈U

∑

di∈D(ua)

KL[γ(z|ua)||θ(z|di)]

− β
∑

ua∈U

∑

di∈L(ua)

(1/si) ·KL[γ(z|ua)||θ(z|di)]

+
∑

ua∈U

∑

di∈D(ua)

logα+
∑

ua∈U

∑

di∈L(ua)

log(β/si). (9)

The likelihood function is considered to be a function of
the parameters Θ for the Digg data. Since logL is a strictly
increasing function, the parameters of Θ which maximize
log-likelihood of logL also maximize the likelihood L [31].
Note that the parameters θ(z|d), γ(z|u) and φ(w|z) are prob-
ability values and thus we have the constraints of Equations
(1)–(3). Using these constraints, we calculate the model
parameters Θ with maximizing the log-likelihood logL in
Equation (9).

The effect of α and β: Note that KL-EXP(γ(z|uz)||θ(z|di))
in the log-likelihood of Equation (9) can be represented as
−H[γ(z|ua)] −

∑
z log θ(z|di) where H[γ(z|ua)] is the en-

tropy of γ(z|ua). It is known that the entropy of multino-
mial distribution is maximized when the distribution is uni-
form [7]. Since KL-EXP(γ(z|uz)||θ(z|di)) is multiplied by
−α and −β in Equation (9), with large α and β, maximiz-
ing the entropy terms increases the log-likelihood of Equa-
tion (9) more than maximizing the other terms in Equation
(9) does. Thus, when α and β are large, the distribution of
γ(z|ua) becomes closer to the uniform distribution. Further-
more, when both of α and β are zeros, our model becomes
the original PLSI model in [12] which is a special case of our
model.

4.5 Estimation of Model Parameters
Without any prior knowledge to the model parameters,

we can apply the maximum likelihood estimator to compute
all the parameters by applying the EM algorithm [8]. An
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E-step:

p
(k+1)

(zij=zk|di, wij) =
φ(k)(w=wj |zk)θ

(k)(z=zk|di)
∑

z′∈Z φ(k)(w=wj |z′)θ(k)(z=z′|di)
(10)

M-step:

φ
(k+1)

(w=wj |zk) =

∑

di∈D n(di, wj) · p
(k+1)(z=zk|di, wj)

∑

w′∈W

∑

di∈D n(di, w′) · p(k+1)(z=zk|di, w′)
(11)

θ
(k+1)

(z=zk|di) =

∑

wj∈W n(di, wj) · p
(k+1)(z=zk|di, wj) + αγ(k)(z=zk|ua) + (β/si)

∑

u′∈U(di)
γ(k)(z=zk|u

′)
∑

z′∈Z{
∑

wj∈W n(di, wj) · p(k+1)(z=z′|di, wj) + αγ(k)(z=z′|ua) + (β/si)
∑

u′∈U(di)
γ(k)(z=z′|u′)}

(12)

γ
(k+1)

(z=zk|ua) =

[

∏

di∈D(ua) θ
(k+1)(z=zk|di)

α ∏

dj∈L(ua) θ
(k+1)(z=zk|dj)

β/sj
]1/(α|Du|+

∑

dj∈L(ua) β/sj)

∑

z′∈Z

[

∏

di∈D(ua) θ
(k+1)(z=z′|di)α

∏

dj∈L(ua) θ
(k+1)(z=z′|dj)

β/sj
]1/(α|Du|+

∑

dj∈L(ua) β/sj)
(13)

Figure 5: The formulas for E-step and M-step

EM algorithm performs the iterations with the two steps of
an expectation step (E-step) and a maximization step (M-
step). In the E-step, the probability distributions of the hid-
den variables are computed by using the current estimate of
parameters, and in the M-step, the parameters maximizing
the log-likelihood are calculated by utilizing the expectation
computed in the E-step. The parameters estimated in the
M-step are then used in the E-step of the next iteration.

The E-step: This step calculates the expectation of the
hidden variables. Each hidden variable is the topic zij which
is chosen for selecting the word wij (i.e., the j-th word oc-
curring at di). Let p(zij=zk|di, wij) be the probability that
a word wij is generated from the topic zk in the Digg article
di. The formula to compute p(k+1)(zij=zk|di, wij) in the E-
step of the (k+1)-th iteration using the model parameters

Θ(k) computed in the k-th iteration is presented in Figure 5.

The M-step: In order to find the parameters Θ(k+1) maxi-
mizing Equation (9), we apply the method of Lagrange mul-
tipliers [3]. The obtained formulas for the M-Step to update
the model parameters Θ at the (k+1)-th step are listed in
Figure 5. Note that the topic preference γ(z=zk|ua) of the
user ua is calculated in the form of geometric mean, which
is commonly used to compute the average of ratio values
[29], with the topic relevances θ(z=zk|dj) of the Digg arti-
cles written and dug by the user ua.

We iterate the E-Step and M-Step until we obtain the
convergence of the log-likelihood in Equation (9). Since our
EM algorithm only guarantees to find a local maximum of
the likelihood, we perform multiple trials and choose the
best one among the local optima found.

5. RECOMMENDATIONS USING MODEL

PARAMETERS
Once the parameters Θ in our model are estimated, recom-

mendations can be made by utilizing the model parameters.

Top-K warm-start recommendation: To recommend
the top-K Digg articles, for a user ua and an article di, we
predict the preference of the user ua for an article di using
the KL divergence between γ(z|ua) and θ(z|di) as

Score(ua, di) = 1/KL[γ(z|ua)||θ(z|di)] (14)

and recommend the top-K scored articles among the can-
didates. It is because the KL divergence between γ(z|ua)
and θ(z|di) increases as both of γ(z|ua) and θ(z|di) become
more different. Note that since we should recommend the

articles with similar topic preferences to the user’s prefer-
ence regardless of the articles’ Digg scores, we simply utilize
KL[γ(z|ua)||θ(z|di)] only for warm-start recommendations.

Top-K cold-start recommendations: We make cold-
start recommendations of the three types mentioned in Sec-
tion 3.2 as follows.

• For the type 1, we estimate the topic preference γ̂(z|ua)
of the active user ua unseen in the training data and com-
pute Score(ua, di) in Equation (14) by using θ(z|di) of the
candidate article di seen in the training data and the esti-
mated γ̂(z|ua) for top-k recommendation.

• For the type 2, if an article di in the candidate set is un-
seen in the training data, we first estimate θ̂(z|di), and

compute Score(ua, di) using the estimated θ̂(z|di) and the
topic preference γ(z|ua) of the active user ua seen in the
training data.

• For the type 3, we estimate both of γ̂(z|ua) and θ̂(z|di) to
compute Score(ua, di) in Equation (14).

We next present how to estimate γ(z|ua) for an unseen user
ua and θ(z|di) for an unseen Digg article di.

Computing γ̂(z|ua) for an unseen user ua:When an un-
seen user ua is not included in the training data but the ar-
ticles submitted or dug by ua participate in the data, given
the model parameters θ(z|di) of those articles di, the proba-
bility that ua posts the articles in D(ua) and diggs those in
L(ua) for the unknown distribution γ(z|ui) can be computed
by using Equation (8) as

∏

di∈D(ua)

e−αKD[γ(z|ua)||θ(z|di)]

·
∏

di∈L(ua)

e−(β/si)KD[γ(z|ua)||θ(z|di)], (15)

where θ(z|di) is the topic preference of the article di which
exists in the data. By Lagrangian method, we can derive
the optimal distribution of γ̂(z|ua), which maximizes the
probability in Equation (15), as follows

γ̂(z|ua) =
1

Z(ua)





∏

di∈D(ua)

θ(z|di)
α

·
∏

di∈L(ua)

θ(z|di)
β/si





1
α|D(ua)|+

∑

di∈L(ua) β/si

, (16)
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            Topic

User    z1    z2

 u1   0.47 0.52

 u2   0.87 0.13

 u3   0.81 0.19

 u4   0.25 0.75

            Topic                  Topic

Doc    z1     z2   Doc   z1     z2

 d1  0.11 0.89  d5  0.43 0.57

 d2  0.87 0.13  d6  0.70 0.30

 d3  0.96 0.04  d7  0.31 0.69

 d4  0.93 0.06

               Topic                  Topic                      Topic

  Word     z1   z2    Word     z1     z2     Word       z1   z2

Sherlock  0  0.41   Baker  0.08  0.18  Samsung 0.21 0

Holmes    0  0.20  iPhone 0.35  0       AppStore 0.14 0

221B       0  0.20   Apple  0.21  0    

(a) γ(z|u)                     (b) θ(z|d)

(c) Φ(w|z)

u5   0.94 0.06 d8  0.99 0.01 d9  0.65 0.35 

            Seen        Unseen

             user          user

Doc   u3    

 d1  0.76 

 d2  90.7

 d3    -

 d4    -

 d5  3.17

 d6    -

 d7  1.86

 u4

  -

  -

  -

0.66

15.1

2.31

  -

  u5

0.56

  -

  -

  -

1.68

5.91

1.14

 d8  2.60  0.34

 d9     -    2.98

 15.2

 4.38

(d) scores

Figure 6: The resulting model parameters and
scores

where Z(ua) is the normalization factor to make
∑t

k=1 γ̂(z=k|ua)
= 1. Since the articles written by ua are not generally con-
tained in the training data when the author ua is not in the
training data, the set D(ua) of the articles submitted by ua

is usually empty.

Computing θ̂(z|di) for an unseen article di: For an
unseen Digg article di in the training data, which was sub-
mitted by a seen user uj and dug by seen users U(di), we
can formulate, by using Equation (8), the probability that
di is generated to include the words in W (di), posted by uj

and dug by the users in U(di) as follows:

αe−αKD[γ(z|ua)||θ(z|di)]

·
∏

w∈W (di)

∑

z′∈Z

φ(w|z′)θ(z′|di)

·
∏

u∈U(di)

(β/si)e
−(β/si)KD[γ(z|u)||θ(z|di)]. (17)

To compute θ̂(z|di) maximizing the above probability, we
should develop another EM algorithm requiring heavy com-
putation. Thus, we approximate θ̂(z|di) by performing only

the first iteration of the EM algorithm with initializing θ̂(z|di)
uniformly and calculate it as

1

Z(di)





∑

w∈W (di)

φ(w|z)
∑

z′∈Z φ(w|z′)
+ αγ(z|uj) +

β

si

∑

u∈U(di)

γ(z|u)



 ,

(18)

where Z(di) is the normalization factor to make
∑t

k=1 θ̂(z=k|di)
= 1. Our experiments show that executing only a single it-
eration of the EM algorithm estimates good θ̂(z|di)s enough
for cold start recommendations of both type 1 and type 3.

Example 5.1.: Consider the Digg articles and the users
shown in Figure 2. We assume that the number of topics t is
2 and α = β = 1. Figure 6(a) presents the model parameters
γ(z|u), θ(z|d) and φ(w|z) after our EM algorithm finishes.
Note that the hidden topics z1 and z2 represent the topics of
‘smartphone’ and ‘Sherlock Holmes’ respectively.

Warm-start recommendations: Let us find the top-1
article to recommend to the user u3 among the candidate
set C={d1,d2, d5,d7} which are not submitted nor dug by
u3. The scores of the articles in C according to Equation
(14) are provided in Figure 6(d). As we discussed in Ex-
ample 3.1, the user u3 showed his interest in the topic of
‘smartphone’. Since the article d2 is on the topic ‘smart-
phone’ and obtained the highest score among the articles in
C, we recommend d2 to u3 as the top-1 article.

Cold-start recommendations of type 1: The values
of γ̂(z|u5) for an unseen user u5 according to Equation (16)

                                                             Recommendation 

                                                                          Cold-start

                                                          Type 1            Type 2          Type 3

DIGTOBI DIGTOBI-EM   DIGTOBI-W  DIGTOBI-C1   DIGTOBI-C2   DIGTOBI-C3

   CTR         CTR-TR         CTR-W          CTR-C1          CTR-C2          CTR-C3

HotDigg  HOTDIGG-EM HOTDIGG-W          -                   -                    -

  MEM             -               MEM-W     

  COS             -                COS-W        COS-C1          COS-C2         COS-C3

 Baseline        -              BASE-W         BASE-C1        BASE-C2        BASE-C3

TrainingAlg.
Warm-start

 Figure 7: The implemented algorithms

are presented in Figure 6(a). Since u5 dug the articles d2,d3
and d4 on the topic ‘smartphone’ that is represented by z1,
γ̂(z1|u5) has the highest score as expected. Thus, among the
candidate articles C={d1,d2,d5,d7} which are seen and not
dug by u5, d6 has the highest score and is thus recommended
as the top-1 article to u5.

Cold-start recommendations of type 2: Let C={d8,d9}
be the candidate articles which are unseen in the training
data. The values of θ̂(z|d8) and θ̂(z|d9) are shown in Fig-

ure 6(b). As expected from the content of d8, θ̂(z1|d8) has
the highest probability representing that d8 is related the most
to the topic ‘smartphone’. Thus, the article d8 obtains the
highest score among the articles in C for the user u3 and u5.
Furthermore, since d9 is mainly dug by the users interested
in the topic of ‘smartphone’ which is represented by z1, we
can see that θ̂(z1|d9) > θ̂(z2|d9).

Cold-start recommendations of type 3: The recom-
mendation scores Score(ua, di) between the unseen user u5

and the unseen articles {d8, d9} are shown in Figure 6(d).
Among the unseen articles, d8 on the topic ‘smartphone’ is
recommended to u5 as the top-1 article since u5 is interested
in the same topic but d9 is related to another topic.

6. EXPERIMENTS
We empirically evaluated the performance of our proposed

algorithms. All experiments reported in this section were
performed on the machine with Intel(R) Core(TM)2 Duo
2.66GHz and 2GB of main memory running Linux. The
following algorithms were implemented using GCC Compiler
of version 4.1.3.

• DIGTOBI:We implemented our proposed EM algorithm
in Section 4.5 and the top-K recommendation algorithms
in Section 5.

• CTR: Since CTR [28] combines the matrix factoriza-
tion and the LDA model, and is shown to outperform
the recommendations based on either matrix factoriza-
tion or the LDA model only [28], we selected CTR as
the state-of-the-art for this application. We downloaded
the implementation of CTR in C language available at
http://www.cs.princeton.edu/∼chongw/citeulike/. In [28],
they proposed the recommendation algorithms for warm-
start and cold-start of type 2 only. To deal with cold-start
of type 1 and type 3, we estimated the latent vector ui

of the i-th user to maximize the likelihood of the CTR
model (Equation (7) in [28]) as follows:

ui = (λ · I + B)−1 A (19)

where B is a matrix such that Bxy =
∑

j cijvjxvjy and A

is a vector such that Ax =
∑

j cijrijvjx. Note that vj is
the latent vector of the j-th item estimated by the CTR
model and the other parameters (i.e., cij , rij and λu) are
the given values.
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• COS: We implemented the recommendation algorithm in
[5] as well. It was proposed to recommend Twitter mes-
sages using only the text messages and cosine similarity
without any domain specific knowledge. They do not ap-
ply any user modeling method but simply represent Twit-
ter messages of a user as a bag-of-word for content-based
recommendations. Thus, this recommendation algorithm
does not need the training phase.

• HOTDIGG: It is the implementation of HotDigg recom-
mendation algorithm in [14]. It recommends Digg articles
without considering each user’s preference.

• MEM: We also implemented the simple memory-based
recommendation algorithm in [24] which works for warm-
start recommendations only.

• BASE: This is the implementation of the baseline algo-
rithm which is capable of both warm and cold start rec-
ommendations by selecting K articles randomly among
the candidate articles.

All algorithms for warm and cold start recommendations
are categorized in Figure 7 where each empty entry denotes
that its corresponding algorithm cannot handle the case rep-
resented by its column. In our experiments, the train phases
of all algorithms were performs 10 times for finding local
maxima with the termination condition used by CTR in [28]
and we chose the best one as the model parameter values.

6.1 Data Sets
We downloaded 120,896 Digg articles submitted or dug by

239,847 users in two months from Dec. 2011 to Jan. 2012 us-
ing Digg API available at http://developers.digg.com/. The
number of diggings, which are represented by the pairs be-
tween those downloaded users and articles, is 680,971. We
removed the stop words appearing in more than 80% of all
articles. Furthermore, we also deleted the words occurring
in less than 3 articles since such words do not provide any
clue for topical clustering. All words in Digg articles were
stemmed by using the stemmer library in Lucene [16]. We
refer to this data as ORG-DATA. We selected a subset of
diggings from ORG-DATA to generate the test data sets
and the rest of the other data is used as the training data to
estimate the model parameters. We generated the test data
sets as follows.

• TEST-W1: For warm-start recommendations, we se-
lected 10,000 diggings of 100 users from ORG-DATA by
the following steps: We first chose a seed user from ORG-
DATA randomly and selected another 99 test users from
ORG-DATA by choosing each user, who has the least
common diggings with the users selected already, one by
one greedily. Then, we extract 100 diggings of each se-
lected user randomly. We found 7,479 number of distinct
dug articles in the extracted diggings for all test users and
used them as the candidate articles for recommendations.

• TEST-W2: For warm-start recommendations, we se-
lected another set of 10,000 diggings randomly. We first
choose 100 users randomly from ORG-DATA and next
extracted 100 diggings for each selected user randomly.
We also used distinct dug articles in the extracted dig-
gings as the candidate articles for recommendations. The
number of candidate articles was 4,887.

• TEST-C1: For cold-start recommendation of type 1, we
chose 40 new users who are not included in ORG-DATA
but have dug at least 10 articles in ORG-DATA. We used
the articles dug by the 40 new users as the candidate
articles for recommendations. Note that we could not
select more test data for cold-start recommendations be-
cause there are a small number of new users who have
dug enough articles.

• TEST-C2: For cold-start recommendations of type 2, we
chose 40 users from ORG-DATA randomly and for each
user, we downloaded 10 more Digg articles which are dug
by the user but not included in ORG-DATA. Then, the
newly downloaded 400 articles were used as the candidate
articles for recommendations.

• TEST-C3: For cold-start recommendations of type 3,
we downloaded 40 new users with 10 diggings for each
user such that both of the users and their dug articles are
not included in ORG-DATA. The downloaded 400 new
articles are used as the candidate articles for recommen-
dations.

6.2 Quality of Recommendations
We conducted our experiments with varying the number

of recommendations K, the number of hidden topics t, the
parameters α and β which are the constants used in the
exponential KL divergence distributions in Section 4. The
default values of these parameters are: K=30, t=100, α=106

and β=106.

Quality measures: We computed three basic quality mea-
sures called recall-at-K, precision-at-K [27] and average hit-
rank [9]. (The recall-at-K is also known as hit-rate [9].) With
the top-K recommendations for a test user u, let h be the
number of correctly matched articles among the top-K rec-
ommended articles and nT (u) be the number of articles dug
by the user u in the test data. Assume that d1, ..., dh are
the h number of correctly matched articles by recommenda-
tions. Let si and pi denote the Digg score of di and the rank
of di among the top-K recommended articles respectively.
Then, the recall-at-K and precision-at-K for u are h/nT (u)
and h/K respectively. The average hit-rank is calculated

as 1/nT (u) ·
∑h

i=1 1/pi which measures the effectiveness of
ranking for each test user. As the dug articles by a test user
appear with higher ranks in the top-K recommended arti-
cles, this measure becomes larger. Thus, the high values of
average hit-rank are more desirable.

Digg articles with high scores tend to be exposed in the
front pages of Digg service and thus get more chances of
being dug. However, it is also desirable to recommend the
relevant articles with low Digg scores to user’s preference.
Thus, we revised the above three goodness measures and
also calculated those new measures to show that DIGTOBI
does not simply select popular articles but finds each user’s
favorite articles among the low scored articles as well. To
have better scores for the correctly recommended articles
with small Digg scores, when si denotes the Digg score
of the correctly matched article di, the weighted recall-at-
K is calculated as 1/nT (u) ·

∑h
i=1 1/si which is the sum

of the inverse of the Digg score for every correctly recom-
mended article. Similarly, the weighted precision-at-K and
weighted average hit-rank are calculated as 1/K ·

∑h
i=1 1/si

and 1/nT (u) ·
∑h

i=1 1/(pi·si) respectively.
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Figure 8: Top-K Digg article recommendations with varying K (TEST-W1)
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Figure 9: Top-K Digg article recommendations with varying K (TEST-W2)

Warm-start recommendations: We first evaluate the
quality of warm-start recommendations using TEST-W1.
Figures 8(a)–(c) show precision-at-K, average hit-rank and
recall-at-K of the six warm-start recommendation algorithms
listed in Figure 7 respectively with varying K from 1 to 120.
The graphs illustrate that DIGTOBI-W for every K out-

performs the other recommendation algorithms in terms of
every quality measure. As expected, HOTDIGG and BASE
are the worst performers since both of them are not person-
alized recommendation algorithms.
As we increase K, since we have more chances to answer

the right articles correctly, both recall-at-K and average hit-
rank of all algorithms grow gradually. The precision-at-K of
DIGTOBI-W is the largest when K=1 and decreases grad-
ually as K is increased. However, the precision-at-K of the
other algorithms increases with growing K. This is because
DIGTOBI-W has good characteristics of making the correct
answers to have higher ranks while the other algorithms do
not. For the same reason, the performance improvement
of our algorithm DIGTOBI-W to the other algorithms be-
comes better with respect to the average hit-rank rather
than the recall-at-K for a fixed K. For instance, when
K=10, DIGTOBI-W shows better performance than CTR-
W by 2.32 times with the recall-at-K, but with the average
hit-rank, DIGTOBI-W outperforms CTR-W by 3.07 times.
With the same experiments, we also plotted the three new

weighed quality measures in Figure 8(d)–(f). The log scale
was used in the y-axis. The graphs show that the recommen-
dations by DIGTOBI-W show better qualities than those
by the other algorithms for every K. COS-W and CTR-W
are the second and the third best performers respectively.

For example, when K=10, the modified precision-at-K of
DIGTOBI-W is 1.92 times higher than that of COS-W and
the modified average hit-rank of DIGTOBI-W is 1.89 times
better than that of COS-W. Furthermore, when K=10, the
modified precision-at-K of DIGTOBI-W is 23.9 times higher
than that of CTR-W and the modified average hit-rank of
DIGTOBI-W is 40.5 times better than that of CTR-W.
Thus, we conclude that DIGTOBI-W recommends the rele-
vant articles to each user’s preference effectively even though
they have low Digg scores.

We also tested with TEST-W2 and plotted the precision-
at-K, average hit-rank and recall-at-K in Figure 9(a)–(c).
The quality of recommendations shows similar trends with
the results of using TEST-W1. Since the graphs for the
weighted quality measures also show similar trends, we do
not present the graphs with TEST-W2 here. In general, the
values of all quality measures with TEST-W2 are smaller
than those with TEST-W1. The reason is as follows: For
TEST-W1, since we selected the users having a small num-
ber of common diggings as possible, it is more likely that
the candidate articles not dug by a test user ua is the one
in which ua is actually not interested. However, for TEST-
W2, since we selected the test data randomly, the candidate
articles probably include the articles which are not dug by
a test user ua but relevant to the preference of ua. Even
though such articles are recommended to the user ua, we
have to regard them as incorrect answers. Thus, the values
of all quality measures with TEST-W2 become smaller than
those with TEST-W1.

Cold-start recommendations: Using TEST-C1, we show
the recall-at-K and precision-at-K of DIGTOBI-C1, CTR-
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Figure 10: Top-K cold-start recommendations with varying K
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Figure 13: Recall-at-K varying (α,β)

C1, COS-C1 and BASE-C1 with increasing K from 1 to 30
in Figure 10(a). Note that MEM cannot handle any type
of cold-start recommendation. We can see that DIGTOBI-
C1 makes the best recommendations to the test users in
TEST-C1, even though the test users are not considered in
the phase of learning model parameters. For every value of
K, CTR-C1 shows the second best performance in terms of
both recall-at-K and precision-at-K.
With TEST-C2, we evaluate the qualities of cold-start rec-

ommendations of type 2 by DIGTOBI-C2, CTR-C2, COS-
C1 and BASE-C2, and plot both quality measures in Fig-
ure 10(b). Remember that the type 2 recommends the Digg
articles, which are not seen in the training data, to the
seen users included in the training data. The graph shows
that DIGTOBI-C2 also outperforms the other algorithms
for cold-start recommendations of type 2.
Figure 10(c) shows the recall-at-K and precision-at-K of

DIGTOBI-C3, CTR-C3, COS-C3 and BASE-C3 using TEST-
C3 for cold-start recommendation of type 3. Here, we rec-
ommend Digg articles to the test users in TEST-C3 where
both articles and test users are not included in the train-
ing data. The graph shows that COS-C3 is better than
DIGTOBI-C3 with K≤5 but our algorithm DIGTOBI-C3
shows better performance with the other values of K.

Execution time for estimating model parameter: In
Figure 11, with varying the number of topics t from 2 to
200, we plotted the running times of the inference algo-
rithms DIGTOBI-EM and CTR-TR. The graph shows that
as the number of topics t is increased, the execution time of
our inference algorithm DIGTOBI-EM grows linearly with
t. However, the speed of CTR-TR slows down very fast as
t becomes larger. We conclude that DIGTOBI-EM outper-
forms the variational EM algorithm of the LDA model used
in CTR-TR in terms of speed for estimating model param-
eters.

Varying t: With varying K from 1 to 30 and the number
of topics t from 2 to 200 together, we measured the qual-
ity of recommendations by our recommendation algorithm
DIGTOBI-W in terms of the recall-at-K with the test data

TEST-W1 as shown in Figure 12. The graph shows that
DIGTOBI-W obtains the best quality of recommendations
when t≥100 and the quality of recommendations does not
improve any more with t>100. Thus, we use t=100 for the
default value in our experiments.

Varying α and β: To find the best values for the constants
α and β in our probabilistic model presented in Section 4.2,
we varied α and β together and plotted the recall-at-K with
our recommendation algorithm DIGTOBI-W in Figure 13.
The quality of recommendations by our algorithm was the
best when α=106 and β=106. Thus, we set the default val-
ues of both α and β to 106 in our experiments.

7. CONCLUSION
We presented DIGTOBI, a personalized recommendation

system for Digg articles using a novel probabilistic modeling.
Utilizing the observations that Digg users submit their Digg
articles and vote thumbs up for the Digg articles submitted
by others depending on their topic preferences, we designed
our generative model to describe the probabilistic processes
of submitting and digging articles by each user. Our model
improves the quality of recommendations by enabling the
relevant articles with low Digg scores as well as high Digg
scores to be considered important. We developed the EM al-
gorithm for learning the best model parameters in our prob-
abilistic model. We also provided effective warm-start and
cold-start recommendation algorithms utilizing our model
parameters. By performance study, we confirmed the effec-
tiveness of DIGTOBI by comparing the performance with
the traditional recommendation algorithms.

Acknowledgment

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. 2012-0000111). This was also supported
by Next-Generation Information Computing Development
Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Education, Science and
Technology (No. 2012-033342).

700



8. REFERENCES
[1] D. Agarwal and B.-C. Chen. Regression-based latent

factor models. In KDD, 2009.

[2] D. Agarwal and B.-C. Chen. fLDA: matrix
factorization through latent dirichlet allocation. In
WSDM, pages 91–100, 2010.

[3] D. P. Bertsekas. Nonlinear Programming (Second ed.).
Cambridge, 1999.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[5] J. Chen, R. Nairn, L. Nelson, M. S. Bernstein, and
E. H. Chi. Short and tweet: experiments on
recommending content from information streams. In
CHI, 2010.

[6] CiteULike. http://www.citeulike.org.

[7] T. M. Cover and J. A. Thomas. Elements of
information theory. Wiley-Interscience, 1991.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. Journal of Royal Statist. Soc., 39:1–38,
1977.

[9] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[10] Digg. http://digg.com, 2011.

[11] Facebook. http://www.facebook.com.

[12] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, 1999.

[13] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1), 2004.

[14] Y. Kim and K. Shim. HotDigg: Finding recent hot
topics from digg. In DASFAA, 2012.

[15] W. Li and A. McCallum. Pachinko allocation:
Dag-structured mixture models of topic correlations.
In ICML, pages 577–584, 2006.

[16] Lucene. http://lucene.apache.org.

[17] B. Mehta, T. Hofmann, and W. Nejdl. Robust
collaborative filtering. In RecSys, 2007.

[18] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai.
Topic sentiment mixture: modeling facets and
opinions in weblogs. In WWW, 2007.

[19] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[20] Netflix. http://www.netflix.com.

[21] S.-T. Park and W. Chu. Pairwise preference regression
for cold-start recommendation. In RecSys, 2009.

[22] M. J. Pazzani and D. Billsus. Learning and revising
user profiles: The identification of interesting web
sites. Machine Learning, 27(3):313–331, 1997.

[23] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, 2007.

[24] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Item-based collaborative filtering
recommendation algorithms. In WWW, 2001.

[25] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In SIGIR, 2002.

[26] L. Si and R. Jin. Flexible mixture model for
collaborative filtering. In ICML, pages 704–711, 2003.

[27] B.-Q. Vuong, E.-P. Lim, A. Sun, M.-T. Le, and H. W.
Lauw. On ranking controversies in wikipedia: models
and evaluation. In WSDM, 2008.

[28] C. Wang and D. M. Blei. Collaborative topic modeling
for recommending scientific articles. In KDD, 2011.

[29] Wikipedia. Geometric mean.
http://en.wikipedia.org/wiki/Geometric mean.

[30] Wikipedia. Bernoulli distribution.
http://en.wikipedia.org/wiki/Bernoulli distribution.

[31] C. F. J. Wu. On the convergence properties of the em
algorithm. The Annals of Statistics, 11(1):95–103,
1983.

701




