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ABSTRACT

Recent trends in public-key infrastructure research explore the trade-

off between decreased trust in Certificate Authorities (CAs), re-

silience against attacks, communication overhead (bandwidth and

latency) for setting up an SSL/TLS connection, and availability

with respect to verifiability of public key information. In this pa-

per, we propose AKI as a new public-key validation infrastructure,

to reduce the level of trust in CAs. AKI integrates an architec-

ture for key revocation of all entities (e.g., CAs, domains) with an

architecture for accountability of all infrastructure parties through

checks-and-balances. AKI efficiently handles common certifica-

tion operations, and gracefully handles catastrophic events such as

domain key loss or compromise. We propose AKI to make progress

towards a public-key validation infrastructure with key revocation

that reduces trust in any single entity.

Categories and Subject Descriptors

K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-

TION SYSTEMS]: Security and Protection—Authentication; C.2.0

[COMPUTER-COMMUNICATION NETWORKS]: General—

Security and protection

Keywords

Public-Key Infrastructure, SSL, TLS, certificate validation, public

log servers, accountability.

1. INTRODUCTION
Secure connection establishment on the Internet through SSL

and TLS has been a tremendous success, as it is globally used for

practically all secure web-based communication. Given that the

security of the majority of network-based financial or commercial

transactions relies on SSL/TLS, one would hope that its security is

commensurate with its proliferation and importance.

Unfortunately, numerous attack vectors against SSL/TLS exist

and recently several high-profile attacks have demonstrated its vul-

nerability in practice. The main weakness lies in the fact that cur-

rent browsers trust hundreds of root Certificate Authority (CA) cer-

tificates, and a security breach of a single CA can compromise the

security of sites protected by any one of the other CAs, powerfully
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illustrating the concept of weakest-link security. In fact, a mali-

ciously issued certificate for a site can be used by an adversary to

mount Man-in-the-Middle (MitM) attacks on connections to that

site. To demonstrate the large extent of the SSL universe in which

the weakest link could occur, EFF’s SSL Observatory reports that

Microsoft IE and Mozilla Firefox trust 1482 different CA public

keys [13].

Since CAs are in the business of managing cryptographic keys,

they are expected to have secure processes in place to protect their

keys. Regrettably, recent events have highlighted the inability of

several CAs to keep their keys and certificate issuance processes

secure. We list a few high-profile cases that were recently dis-

covered. In March 2011, in an attack on a Comodo reseller, fake

certificates were issued for mail.google.com, www.google.com,

login.yahoo.com, login.skype.com, login.live.com, and

addons.mozilla.org [11, 27]. Comodo suggested that the at-

tack originated from an Iranian IP address. In August 2011, news

broke that DigiNotar, a Dutch CA, improperly issued a certificate

for all Google domains to an external party [30]. It was claimed

that as many as 250 false certificates for an unknown number of

domains were released. It was reported that these certificates were

used by the Iranian government to spy on Iranian citizens’ com-

munications with Google email during the month of August 2011.

For the Stuxnet malware, two Taiwanese CAs’ private keys were

compromised, which the Stuxnet developers used to sign their mal-

ware [14]. Since not all CA vulnerabilities become public, we ex-

pect that an even larger number of CA-breaches may have occurred.

These examples demonstrate that CA breaches can result in real-

world attacks. Besides CA-based attacks, SSL/TLS has other vul-

nerabilities, for example the fact that users click through browser

warnings in case of self-signed certificates [12]. In Syria, such an

attack was used to mount a MitM attack against Facebook [10],

supposedly by the Syrian Telecom Ministry.

Addressing these problems is very challenging, as several seem-

ingly conflicting requirements need to be satisfied. On one hand,

adversarial events such as CA private key compromise or domain

private key compromise need to be addressed. On the other hand,

legitimate events such as switching to different CAs or key re-

creation after private key loss need to be supported. For example,

legitimate re-creation of a key pair and certificate after private-key

loss may appear to be an impersonation attempt. Also, legitimately

switching to a new CA to cease using a compromised CA that signs

fraudulent certificates may also appear as a malicious event. Hence,

we aim to create a certificate infrastructure that can prevent adver-

sarial attacks yet gracefully handle legitimate key and certificate

management events.

We design a new certificate validation infrastructure to address

these challenges. Our proposal is called Accountable Key Infras-
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tructure (AKI), integrating an architecture for key revocation of all

entities (e.g., CAs, domains) with an architecture for accountability

of all infrastructure parties through checks-and-balances.

AKI efficiently handles common certification operations and gra-

cefully handles catastrophic events such as domain key loss or com-

promise. We propose AKI to make progress towards a public-key

validation infrastructure with key revocation that reduces trust in

any single entity. To accomplish these goals, we leverage glob-

ally visible directories (i.e., public log servers) that enable public

integrity validation for certificate information. Such public vali-

dation provides accountability for CA’s actions, and thus creates

deterrence against fraudulent CA activities. To reduce the number

of trusted CAs, a domain can define which and how many CAs are

required to update the certificate. To enable recovery from unan-

ticipated events, certificates can be updated through another set

of CAs; however, the certificates become active after a domain-

specified hold time. In case of fraudulent updates, legitimate do-

mains can react during the hold time to have the fraudulent certifi-

cate removed.

To evaluate the security, availability, and efficiency of our public-

key validation infrastructure and to enable comparison between dif-

ferent systems, we propose a new set of metrics. Specifically, we

propose Duration of Compromise (DoC), Duration of Unavailabil-

ity (DoU), and several efficiency metrics. The DoC metrics pro-

vide insight into the security of a system, measuring the impact of

a compromise or loss of various credentials, such as the private key

of CAs or domains. The DoU metrics measure availability, again

depending on various events such as key compromise or loss. Fi-

nally, the efficiency metrics measure the overhead of operating the

public-key validation infrastructure and the overhead of secure ses-

sion establishment. We present these metrics in detail in Section 9.

2. PROBLEM DEFINITION
The core problem we aim to address is the design of a new

public-key validation infrastructure that reduces the amount of trust

placed in any one infrastructure component (e.g., CA), yet reduces

the system’s attack surface and single points of failure. Additional

goals are efficiency and incentives for deployment for all associated

parties. In this section, we first describe a list of desired properties,

followed by assumptions and the adversary model. Detailed met-

rics for evaluation are described in Section 9.

2.1 Desired Properties

• Checks and balances: The infrastructure should limit trust in

any single party, and limited trust should be distributed over mul-

tiple parties to prevent a single point of failure. Furthermore,

parties can monitor each other to detect misbehavior.

• Brief compromise period: Given the compromise of a private

key of any trusted party, the time during which an attacker can

successfully attack a legitimate client should be brief. This in-

cludes the compromise of CAs, public log servers, or domains.

• Brief unavailability period: After various events (benign or ad-

versarial), the time during which a legitimate client (who is not

under an attack) cannot verify a domain’s certificate should be

brief. This includes when a domain’s certificate is newly regis-

tered or updated, and when the CAs’, log servers’, and domains’

private keys are compromised.

• Trust agility: Users can decide which entities they trust to form

their root of trust, and they can modify their trust decisions at any

time [24]. Furthermore, such changes should be made without

undue delay. We extend this notion of trust agility to domains,

enabling domains to select their roots of trust and to modify their

trust decisions at any time.

• Privacy: Clients should not reveal which entity/server they es-

tablish an SSL/TLS connection with.

• Efficiency: One of the most important efficiency requirements is

to avoid increasing the latency of an SSL/TLS connection estab-

lishment — in particular, avoiding any additional round-trips to

external servers. Moreover, no additional infrastructure servers

should be needed.

2.2 Assumptions
In our approach of checks and balances, we assume a set of en-

tities that do not collude: CAs, public log servers, and validators.

We assume that these entities audit each others’ accountable oper-

ations and disseminate detected misbehavior. In the context of the

current Internet, the Electronic Frontier Foundation (EFF) may be

one entity that would play the role of a validator entity, for example.

We assume that browsers store the authentic public keys of CAs,

public log servers, and validators. We also assume that all parties

are loosely time synchronized (up to a few minutes).

2.3 Adversary Model
We consider an adversary whose main goal is to impersonate a

victim web site that is using HTTPS. To achieve this goal, the ad-

versary may compromise some infrastructure servers that the vic-

tim trusts. An adversary may be able to temporarily gain control

of some infrastructure servers that the victim trusts, but can gain

long-term control of infrastructure servers that the victim does not

trust. Gaining control means access to private signing keys.

3. BACKGROUND
Two main families of proposals to reduce trust in CAs exist that

are related to our design: (1) certificate observatories and (2) time-

line servers that provide public visibility into all certificate opera-

tions. We briefly provide an overview of these approaches.

3.1 Certificate Observatories
The first type to reduce the trust in CAs and prevent many of

the attacks discussed in Section 1 is to create a public repository

of SSL/TLS server certificates and enable browsers to compare the

key they have received (presumably from the server) with the ob-

servation of the observatory which is received over an integrity-

protected connection. This integrity-protected connection is set up

by embedding a root public key of the observatory system into the

client, creating a PKI just to authenticate the relatively small num-

ber of observatory nodes.

Perspectives. The Perspectives system [2, 33] has globally dis-

tributed notary servers that contact known SSL / TLS servers once

a day to fetch the current server’s certificate. These notary servers

then store the history of observed certificates and support queries

into their database. Perspectives offers a Firefox plugin, which

contacts a random subset of notary servers after an HTTPS con-

nection is opened, to compare the notary certificate observations

with the received certificate. A configurable policy decides if the

received certificate is presumed valid.

Convergence. Convergence [1] enhances Perspectives in several

dimensions, most notably providing privacy for certificate lookups

by including a two-step onion routing approach, where the first

Convergence server redirects the query to a second server, and the

second server responds (the first server knows the identity of the

querier, but not the web site queried, and the second server only

knows the query but not the querier).

SSL Observatory. EFF’s SSL Observatory [13] also collects global

certificate information. However, it does not frequently update the

information nor support any online queries.
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Discussion. The main advantage of these certificate observatories

is that server operators need not be aware of this approach. Hence,

no additional steps are necessary on their part. The approach even

works to validate self-signed certificates. These systems are also

effective to prevent numerous CA-based attacks, for example, all

the attacks in Iran [11, 27] and Syria [10] would have been pre-

vented, as the illegitimate certificates would have been detected as

different from the legitimate server certificates.

The main disadvantage of these systems is that they require ad-

ditional connections to query the observatories, resulting in higher

latency for establishing an HTTPS connection. Another disadvan-

tage is a period of unavailability for new and updated certificates.

However, this can be remedied with a scheme where a new cer-

tificate is offered ahead of time to the observation servers, but this

approach negates one of the main advantages of these systems in

that they do not require assistance from the server operators.

3.2 Certificate Log Servers
Certificate Transparency [20–22] and Sovereign Keys [9] are two

recent proposals that suggest a public log to record all certificate

transactions.

Certificate Transparency (CT). In CT [20–22], the authors con-

struct an append-only log by using an append-only Merkle hash

tree structure, enabling efficient validation of each certificate that

was added to the log. More specifically, domains register their cer-

tificates and obtain a non-repudiable statement (audit proof) that

their certificate has been added to the append-only log. Domain

owners provide the audit proof along with the certificate such that

clients can validate whether the certificate was included in the log.

Sovereign Keys (SK). In the SK model, timeline servers act sim-

ilar to timestamping servers [15]. In SK, the first registration of a

certificate binds the key to the domain name, preventing any sub-

sequent registrations for the same name. Only the legitimate owner

of the certificate has the private key, enabling revocation and re-

registration of the name with a new public key.

The browser can contact the timeline server to inspect if the

received server certificate is indeed the correct certificate regis-

tered in the timeline server’s log. To reduce the load on time-

line servers, distributed mirror servers store a copy of the timeline

server database to efficiently disseminate information.

Discussion. The public log proposed by CT and SK creates ac-

countability for a CA’s actions, an idea which we build on in this

paper. The main advantage of the log is that it prevents the at-

tacks mentioned in the introduction. For example, compelled cer-

tificates [28] are simply invalid in this framework, as the legitimate

owner did not approve the newly generated key.

Unfortunately, CT and SK have some shortcomings. CT and SK

do not specify any revocation mechanism for audit proofs, which

indicates that audit proofs are valid indefinitely. Instead, CT re-

lies on other approaches such as Certificate Revocation Lists, On-

line Certificate Status Protocol, Revocation Transparency [19], etc.

Thus, these approaches currently do not handle events such as pri-

vate key loss or compromise of a domain. For SK, the browser

needs to query a mirror server to download the server’s certificate

history, increasing latency, decreasing availability, and sacrificing

privacy. In Section 9, we discuss these systems in more detail.

4. AKI: Accountable Key Infrastructure
Before we describe the details of AKI, we first provide a high-

level overview. The main entities in our system are as follows.

• A Domain (server) represents a named entity with which clients

desire to establish secure connections.
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Figure 1: AKI certificate registration process. This figure de-

picts A.com registering a certificate (signed by two CAs) to a

single ILS, but the domain can acquire multiple certificates

from multiple CAs and register to multiple ILSs. Dashed ar-

rows represent occasional communications.

• A Client (browser) is an entity establishing TLS connections

with domains (servers).

• A Certification Agency (CA) is similar to a current certificate

authority that certifies domains’ public keys, but “agency” in-

stead of “authority” indicates that CAs are not absolute authori-

ties any more in AKI.

• In addition to current systems, Integrity Log Server (ILS) Op-

erators (ILSO) are Internet services that operate ILSs that log

domains’ certificates and make them publicly available. Each

ILS maintains an Integrity Tree, which is a hash tree of all the

registered certificates in lexicographic order. All ILS operations

(i.e., log data entries such as registration, updates, and revoca-

tion) are digitally signed. We envision that large ISPs or widely

available Internet-based corporations such as Amazon or Google

will operate ILSs.

• Validators are entities that monitor ILS operations, by down-

loading the entire ILS data structure and performing consistency

checks. Consistency checks include validation that certificate

updates follow the certificate policy or that certificates do not

suddenly disappear from the log. Non-governmental Internet

governance organizations, such as the EFF, could serve as val-

idators. In the case of ILSO misbehavior, validators disseminate

incriminating information without requiring their own authenti-

cation information.

Figure 1 depicts an overview of our AKI architecture. Alice

owns domain A.com and wants to obtain an AKI-protected certifi-

cate, as she wants to protect herself against compromise of the CAs

that signed her certificate and other rogue CAs, and protect her

clients against compelled certificates. To define the security prop-

erties that she intends to achieve for her domain, Alice defines CAs

and ILSOs that she trusts, the minimum number of CA signatures

that she recommends her clients for validation, and rules for cer-

tificate revocation, replacement, and updates. Alice includes these

parameters with her public key and contacts more than the mini-

mum number of trusted CAs (according to her security policy) to

sign her certificate. She then registers the certificate with one or

multiple ILSs. Each ILS adds A.com to its database, by placing it

in the Integrity Tree. The ILS then re-computes hash values over

all stored certificates for updated verification information.

Alice now supplements her certificate with the verification infor-

mation that she downloads from every ILS, and sends it to browsers

that connect to her web site via HTTPS. For certificate validation,

the browser uses the trusted root-CA certificates as in current prac-

tice, and uses the pre-installed ILS public key(s) on her browser to

validate ILS information.
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Before trusting the ILS information received from Alice, the

client browser occasionally checks with validators to confirm that

the ILSs’ current root hash values are valid. To reduce latency, we

also describe later how the the web server can staple validator in-

formation during the HTTPS connection setup.

4.1 AKI Details
We discuss the details of AKI based on the following stages: cer-

tificate creation, CA signature acquisition, ILS registration, browser-

based validation, ILS tree update, certificate update, and certificate

revocation and recovery.

Certificate creation. AKI certificates contain several extensions

over standard X.509 certificates and feature the following addi-

tional fields:

• Trusted CAs (CA_LIST): This field contains a list of trusted

CAs for creating a new certificate.

• Trusted ILSs (ILS_LIST):This field contains a list of trusted

ILSs where the certificate is registered.

• ILS validation proof timeout (ILS_TIMEOUT): This fi-

eld indicates how long an ILS proof is acceptable to the browser

after the proof creation time. The tradeoff is among efficiency,

availability, and robustness to compromise. A long timeout re-

quires fewer queries to the ILS for an updated proof, but in-

creases the amount of time until a certificate can be revoked.

This parameter typically varies from one hour to one day.

• Minimum number of CAs to generate an AKI certifi-

cate (CA_MIN): This field indicates the number of CA signa-

tures required to initially register a certificate to ILS and to up-

date a certificate. This parameter is typically set to 1 or 2.

• Threshold number of CAs for certificate re-estab-

lishment (CA_TH): This field indicates the minimum number

of CA signatures needed to re-establish a certificate in case of

a lost private key. In other words, this parameter indicates the

number of different CA signatures that can activate the new key

for the domain that lost its key. An attacker can register a certifi-

cate to an ILS for a domain who is unaware of AKI, and select

CA_TH to be high such that the domain can never revoke the ad-

versary’s certificate. To prevent such an attack, we set CA_TH =

CA_MIN + 1.

• Cool-off period for an unlinked certificate (COP_

UNLINKED): This field indicates the minimum cool-off period

for a new certificate that is not linked to the old certificate (i.e.,

the new public key is not signed by the previous private key of

the domain). In AKI, registering a new certificate does not auto-

matically validate it:. Instead, AKI enforces a “cool-off” period

until a new certificate becomes valid which will replace the pre-

vious certificate. This enables protection against an adversary

who quickly registers a new key following a CA compromise,

as the legitimate owner can revoke the new certificate during the

cool-off period. An attacker can register a new key for a do-

main that is unaware of AKI and set COP_UNLINKED to be high

to prevent the domain owner from re-acquiring the ILS entry. To

prevent such an attack, an upper bound exists for COP_UNLINKED

(e.g., 7 days).

• Cool-off period for a certificate from an untrus-

ted CA (COP_UNTRUSTED): This field indicates the minimum

cool-off period for a new certificate that is signed by a CA that

is not in CA_LIST. In case of a lost or compromised private key,

an attacker can acquire a certificate signed by some CA (that the

domain owner does not trust), and this parameter provides time

to enable the legitimate owner to revoke the bogus certificate.

We recommend that COP_UNTRUSTED is defined to be longer
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Figure 2: AKI Integrity Tree structure.

than COP_UNLINKED. For similar reasons as for COP_UNLINKED,

COP_UNTRUSTED has an upper bound (e.g., 10 days).

CA signature acquisition. After creating a certificate with AKI

extensions, the domain contacts the CA_MIN number of CAs from

CA_LIST to acquire CA signatures. In AKI, the combination of all

the CAs’ and ILS signatures validates the domain’s AKI certificate.

Hence, care must be taken to include all the CAs’ serial numbers

and timestamps, and the X.509 standard will need to be amended

to enable such multi-signatures (discussed in Appendix A).

ILS registration. The domain then contacts one or more of the

trusted ILSs (from ILS_LIST) to register the AKI certificate.

The ILS data structure to store AKI certificates is based on a bi-

nary hash tree, called Integrity Tree, as depicted in Figure 2. All

AKI certificates are placed at the leaf nodes of the binary hash tree,

sorted in lexicographic order. AKI uses a sorted hash tree as op-

posed to a linear list as in previous work [9, 22] for the following

reasons:

1) The hash tree efficiently represents the current state of all dis-

tinct names, and its height only depends on the number of dif-

ferent entries but not on time (i.e., it does not grow taller with

revocations/re-establishments, thus removing a source of DoS).

2) The height is logarithmic in the number of entries. Hence, a

validation of any leaf node can be efficiently represented based

on an authenticated root node and a logarithmic number of nodes

to re-compute the root node from the leaf node.

3) The sorting enables quick verification of the absence of an entry,

whereas in a linear list, the entire list needs to be searched.

As depicted in Figure 2, the Integrity Tree enables independent

validators to check the integrity of the entire data structure. The

hash chaining of the trees enables temporal re-construction of all

operations, similar to a timestamping service or the timeline server

data structure [9, 22].

When adding a new AKI certificate, the ILS first verifies whether

an entry already exists in its Integrity Tree for the same domain

name. (In Section 6 we discuss how an ILS checks other ILSs

to ensure name uniqueness.) If the name is indeed new, the ILS

schedules the AKI certificate to be added to the Integrity Tree. The

ILS creates a registration confirmation of the successful addition

through a digital signature with its private key, and returns it to the

domain. The ILS registration confirmation contains a proof of ab-

sence that the name is not present in the Integrity Tree, preventing

a malicious ILS from minting forged registration confirmations if

the name is already registered. The domain also obtains a signed

statement from validators that they have seen the registration con-

firmation, and the domain can use this ILS registration confirma-

tion and validator statement to start using the new certificate for a

limited time, until the ILS generates the next Integrity Tree which

will include the new certificate as a leaf node. Figure 3 depicts the

certificate registration process.

The ILS update period (ILS_UP) is the interval between two

tree updates; at every ILS_UP, an ILS finalizes and commits the
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Is A.com a new entry

in ILS?
|Σ| ≥ CA_MIN?

Y Y All CAs from

CA_LIST?

Y

N(A.com exists in ILS)

Is new key signed by

old key?

Y

N
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N

Registration fails

N

Registration fails
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CA_LIST?

Y

N

Wait for cool-off period

(COP_UNTRUSTED)

N

Wait for cool-off period

(COP_UNLINKED)

Register at next update time

and send ILS confirmation

A.com requests to register its AKI certificate  

Figure 3: Flowchart of ILS certificate registration, update, re-

vocation and recovery. Upon receiving a certificate registration

request from A.com, the ILS follows this flowchart and plans to

add the certificates. Σ stands for the CA signatures that A.com

obtained.

next Integrity Tree. At this point, the domain contacts the ILS to

request the signed root node ({Root}K−1
ILS

) and the hash tree verifica-

tion nodes (h) that are needed to validate its certificate as depicted

in Figure 2, where ILS_UP is set to one hour. In practice, ILS_UP

is set to one or two hours, to enable quick certificate revocation.

ILS verification information is combined with the AKI certificate

to enable client browsers to validate the ILS information without

the need to contact an ILS during the TLS connection setup.

Browser-based validation. The browser receives the validator and

ILS information together with the server/domain’s AKI certificate

during the second phase of the TLS protocol.1 The CA signatures

are validated using the browser’s CA root certificates, and the ILS

and validator information is validated using the ILS and validator

public keys stored in the browser. The ILS_TIMEOUT field in the

AKI certificate is validated to ensure that the ILS information is

sufficiently recent depending on the domain’s preferences specified

in the certificate. In Section 6, we discuss incremental deployment

issues, considering the actions an AKI-enabled browser should per-

form when presented with a legacy TLS certificate.

ILS tree update. Periodically at a well-specified time, the ILS up-

dates its Integrity Tree by purging AKI certificates that have been

revoked or expired without renewal. The ILS also activates certifi-

cates that have passed their cool-off periods.

We envision update intervals of an hour up to a day. Hourly up-

dates enable more fine-grained certificate revocation but increase

overhead, as servers/domains need to frequently query the new

signed root value to ensure that their certificates remain unchanged.

Certificate update. Before an AKI certificate expires, the domain

creates a new private key, and requests the trusted CAs in CA_LIST

to sign the new key. The domain also signs the new key with its

previous private key. After gathering CA_MIN number of CA sig-

natures, the domain combines all signatures and other relevant in-

formation into an AKI certificate. The domain then sends the AKI

1To avoid additional latency and privacy leakage by the browser,
the domain directly contacts relevant ILSs and validators, and
passes the ILS and validator information to the browser. The
browser would specify as part of the TLS handshake which
CA/ILS/validator information it already has and which information
it still seeks to receive. Note that the domain only needs to con-
tact the ILS once every ILS_TIMEOUT time period and when the
ILS switches to a new Integrity Tree (i.e., every ILS_UP). Then the
domain can give that ILS information to the client browser. The
validator needs to be contacted every ILS_UP time period to au-
thenticate the ILS Integrity Tree root value.

certificate with an update request to the ILS, which will readily ac-

cept the new AKI certificate since it is signed with the domain’s

old key and the update request is signed by both new and old keys.

(Requiring a signature with the new key confirms possession of the

new private key.) There is no cool-off period in this case, and the

new AKI certificate is added when the ILS creates the next Integrity

Tree. Hence, the new key can be readily used.

Certificate revocation and recovery. In case a key needs to be

prematurely removed, a certificate revocation message needs to be

sent to the ILS. Either the private key corresponding to the certifi-

cate’s public key is used to sign the revocation message, or a special

revocation key can be used, for which the public key is included in

the certificate. The point of using a different revocation key could

speed up recovery for the case where the main private key is com-

promised, as a shorter cool-off period can be used if the new public

key would be signed by the revocation key.

The cool-off periods (COP_UNLINKED, COP_UNTRUSTED) in the

AKI certificate specify the amount of time that needs to elapse be-

fore the new certificate becomes active. In case of private key com-

promise (and potentially private revocation key compromise), the

COP_UNLINKED and COP_UNTRUSTED values enable the legitimate

owner to react and revoke a fraudulent certificate that was poten-

tially registered by the adversary.2

Since some domains may not have the best key secrecy and avail-

ability practices in place, we need to consider the case of catas-

trophic key compromise and loss when only the adversary is in

possession of all secrets. In that case, we need recovery mecha-

nisms where the legitimate owner can re-gain control of its domain.

By contacting CA_TH number of CAs and obtaining signatures on

a fresh key, the legitimate owner can eventually re-gain control.

However, the adversary will be able to use the key until a valid

revocation message arrives.

4.2 Checks and Balances among Parties
In this section, we describe how AKI achieves checks and bal-

ances among CAs, ILSs, validators, domain owners, and clients to

reduce trust and prevent misbehavior by any party. Figure 4 illus-

trates what each party monitors and how each party reports.

An important aspect of AKI is that all actions are digitally signed,

such that any misbehavior can be demonstrated based on the enti-

ties’ signatures. Consequently, an accusation for misbehavior can

be checked without trusting the accuser, ruling out slander attacks.

Equivocation is an example for a misbehavior, where one party pro-

vides different answers to the same query – for example an ILS

server who would create two different Integrity Trees in a given

time period and uses either tree to respond to different entities.

Since only a single Integrity Tree can exist per ILS per time period,

the demonstration of the two ILS-signed Integrity Trees demon-

strates ILS misbehavior.

Validation by CAs. Once the domain owner acquires signatures

from trusted CAs for the certificate, the CAs monitor the ILS for

any malicious changes in the domain’s ILS entry. If the ILS makes

a potentially invalid update (e.g., updated certificate without any

of the trusted CAs’ signatures), the CAs immediately inform the

domain owner.

Validation by validators. Validators maintain a list of revoked

ILSs that are detected for misbehavior. Validators disseminate the

revoked ILSs, especially to the domain owners who are registered

to those revoked ILSs, in which case the domain owners attempt to

register with other valid ILSs. Thanks to the fact that all ILS oper-

ations are signed, the validator can easily demonstrate misbehavior

2We envision that trusted CAs would sign these revocation mes-
sages.
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Figure 4: Checks and balances among AKI entities. In AKI,

each entity monitors other entity for misbehavior detection and

reports to other entities.

in case the signed records are inconsistent with the ILS’s state. In

the absence of a compromised ILS private key, a validator cannot

perform a slander attack, as it cannot forge signatures that would

incriminate the ILS for malicious behavior.

Validation by domain owners. Prior to initial registration of a cer-

tificate to an ILS, the domain first ensures that a CA has not created

a bogus certificate for that domain by checking the ILS as follows:

the domain owner queries the ILS for entries that are lexicograph-

ically adjacent to its entry in the Integrity Tree. After confirming

that no entry exists for the domain, the domain owner registers its

certificate with the ILS.

Validation by clients. A client browser obtains ILS and validator

information from the domain’s web server. The browser may also

check ILSs and validators directly. In case of any inconsistent in-

formation, the client will report such misbehavior to validators for

further dissemination.

5. SECURITY ANALYSIS
In this paper, we provide an informal analysis of the AKI ar-

chitecture. We are working on a formal analysis, which we will

publish in a paper currently under preparation.

The main security property we aim to achieve is the prevention

of successful impersonation of a victim server. More concretely,

given a domain S with a certificate CS, an adversary M attempts

to impersonate S to a client C during the TLS connection estab-

lishment. The attack succeeds if C has a connection with M while

believing that the connection is with S.

We assume that S uses an AKI certificate, and that C uses an

AKI-enabled browser. We argue that AKI is resilient against at-

tackers that compromise different entities’ private keys.

M compromises S’s private key. Assuming S detects the compro-

mise, it can immediately revoke the key. However, M can use the

key until time t0 + ILS_TIMEOUT period, where t0 is the time when

the certificate had been revoked at the ILS. The domain’s selection

of ILS_TIMEOUT depends on its choice of tradeoff between avail-

ability, overhead, and duration of impersonation after compromise.

To re-instantiate a key after compromise, there is an unavailabil-

ity period (COP_UNLINKED as specified in the certificate) in case

the domain lost access to its private key. However, if the domain

owner still has access to the private key, it can obtain trusted CA

signatures for its new key, sign it with its old key, and immediately

obtain an ILS confirmation that will enable use of the new key.

M compromises CAs’ private keys. As long as fewer than CA_TH

keys of trusted CAs in CA_LIST are compromised, there is no im-

pact on browsers who contact the trusted ILSs. The CA_LIST evicts

untrusted CAs from the set of potential weak links. Given a small

well-selected list of trusted CAs, it is highly unlikely that more than

a threshold number are compromised.

Even in case more than the CA_TH number of CAs are compro-

mised, a newly registered key will have to cool off during the pro-

longed period (CA_UNLINKED) as the fraudulent certificate is not

linked to the previous one (as we assume that S’s private key was

not compromised in this case). Such an extended time should leave

sufficient time for S to detect and react to the impersonation at-

tempt, without suffering any compromise (thanks to trusted CAs

who watch out for ILS entry changes). If S’s private key was

compromised in addition, M can impersonate S during the entire

CA_UNLINKED period. However, this case is exceedingly unlikely,

as several well-selected CAs and the domain’s private key all need

to be compromised at the same time.

An adversary can also contact a different ILS to register an AKI

certificate for a victim domain whose AKI certificate is already reg-

istered at a legitimate ILS. If ILSs coordinate their name spaces, as

we discuss in Section 6, this attack is prevented.

M compromises ILSs’ private keys. We consider three attacks:

equivocation with multiple Integrity Trees, fake entries for S.com

in same Integrity Tree, and forged ILS confirmations. As we argue

in the following analysis, a compromised ILS is not sufficient to

perform a MitM attack on a server with an existing AKI certificate.

If M attempts to perform equivocation (i.e., create a shadow In-

tegrity Tree with malicious entries and then answer queries from

either tree depending on the querier), validators can readily detect

this since they need to sign off the Integrity Tree root value in each

time period for clients to accept the ILS information. If an ILS

provides different information to different validators, then domains

can detect this as they contact different validators and disseminate

the information amongst validators. Since ILSs need to sign off

the Integrity Tree root value, all the operations performed since the

previous Integrity Tree need to be correct, thus, the ILS has very

limited opportunity to manipulate the tree, e.g., removal and intro-

duction of a fake certificate would not be possible unless it follows

the correct policy of the certificate.

The fact that the Integrity Tree root value prevents equivocation

even helps in the case when M compromises CAs’ private keys in

addition to the ILS’s. If M attempts to re-register a new key, S

can detect this behavior (as we discuss in Section 4.1) and raise an

alarm. If M attempts to provide different answers to S’s queries, it

would need to create different Integrity Trees within one time pe-

riod, which can be detected as described in the previous paragraph.

Another attack for M would be to attempt to create two different

entries for S.com at different places in the Integrity Tree, one for

the legitimate S.com and the other for a fraudulent S.com. In this

scenario, M would provide the legitimate response to S’s queries,

and a fraudulent certificate for other queries. Fortunately, this case

is easily detectable by the validators, as the leaf nodes would not

be in sorted order. Placing the two leaf nodes next to each other

will be detected by S, when it also queries for the leaf nodes that

are adjacent to its certificate in the Integrity Tree.

Another case is where M misuses the ILS’s compromised pri-

vate key to sign fake ILS registration confirmations, which would

enable a freshly generated and initially registered AKI certificate

to be immediately used and trusted by AKI-enabled browsers. The

proof of absence that is part of the registration confirmation though

prevents the ILS from creating such confirmations for names that

are already registered. Since domains register the ILS registration

confirmation with validators, the absence of the name in the next

Integrity Tree can be detected.
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6. DISCUSSION
Censorship resilience. Corporations/governments may want to

eavesdrop on all employees’/citizens’ communication. More specif-

ically, corporations/governments can set up their own CA and ILS

that create fake certificates. In such a case, users can opt out by

installing legitimate CAs and ILSs as roots of trust. Moreover, ma-

licious behavior can be easily collected and demonstrated to the

world.

Absence of ILS information during incremental deployment.

Similar to Extended Validation (EV) certificates, absence of ILS

information may not raise any suspicions. To prevent an attack

where a non-AKI certificate is used to attack a domain that is using

an AKI-certificate, we require browsers to contact ILSs trusted by

the browser to validate the absence of AKI information.3 In the

absence of an ILS response, the browser needs to abort the connec-

tion. Note that no additional latency is required for deploying sites,

since they provide the ILS information during the SSL handshake;

only legacy domains and attackers have additional latency. Hence,

this additional latency provides a positive incentive for adoption at

domains.

In some legitimate environments, ILSs may not be reachable, for

example paywalls at airports or hotels do not permit any external

connections until the user has authenticated, paid, or accepted the

terms of service. A challenge then is: how can the browser verify

the non-AKI certificate of the paywall service without access to the

ILSs? In this case, geographically-linked certificates [17] can be

used, or the paywall obtains an AKI-certificate.

In case of legacy certificates, a browser would need to contact

several ILSs and could only proceed when receiving a negative re-

sponse from all ILSs, which would increase latency considerably,

deterring initial AKI adopters. To speed up this process, ILSs could

sign a Bloom Filter representing the set of entities in its Integrity

Tree. Browsers would then only contact an ILS if the entity is in

the ILS’s Bloom Filter. Since Bloom Filters have a tunable false-

positive rate, the browser may unnecessarily contact the ILS for

a small fraction of legacy domains. Unfortunately, freshly regis-

tered certificates are not yet part of the Integrity Tree, thus they

would not be part of the Bloom Filter either (unless the Bloom Fil-

ter is generated and distributed frequently), so a malicious legacy

certificate could be used to impersonate a site until it is properly

added to the Integrity Tree. Since such Bloom Filters would only

be needed during initial phases of AKI adoption, we feel that the

efficiency-security tradeoff is worthwhile, especially for short ILS

update periods.

Globally consistent registration. Ideally, all global ILSs coordi-

nate registration and provide one global name space, preventing the

same name to be registered at different ILSs with different certifi-

cates. However, global coordination is challenging to implement in

practice, as different global entities mutually distrust each other.

An example is where a rogue CA issues a bogus certificate for

A.com, presumably the CA and the requester of A.com are in a

different legal region from the legitimate owner of A.com prevent-

ing the conflict to be locally resolved through legal means. In such

cases of inconsistent registrations, the CAs local to the registered

name of A.com obtain precedence in determining the correct cer-

tificate. If the foreign ILS does not unregister the conflicting entry,

it loses its credibility and will be subsequently ignored. It is the

3In AKI, ILSs can provide proofs of non-existence by providing the
authenticated Integrity Tree leaf nodes before and after the point
where the domain in question would be located at (since all the
nodes are sorted in lexicographic order).

task of the validators to document, store, and disseminate such in-

criminating ILS information.

The SCION architecture [34] offers isolation among Trust Do-

mains with uniform legal environments. By defining trusted CAs,

ILSs, and validators within each Trust Domain, and by binding

DNS name spaces to Trust Domains, SCION greatly simplifies con-

sistency issues, as it is clear which CAs, ILSs, and validators are

responsible for the certificate validation. Within a Trust Domain,

these entities can coordinate to prevent registration of rogue certifi-

cates.

Usability. Prior work has shown that users ignore and click through

certificate warnings [31]. However, AKI can identify real attacks

and completely block users from proceeding without an option to

click through.

Interaction with HSTS. AKI does not address SSL stripping [23]

attacks where an adversary actively rewrites HTTPS links to HTTP

links while eavesdropping HTTP traffic. Against such attacks, web-

sites can force clients to always use HTTPS by declaring the HTTP

Strict Transport Security (HSTS) header [16]. Furthermore, HSTS

treats certificate warnings as fatal errors as does AKI. AKI extends

HSTS by requiring valid ILS information for AKI certificates.

7. REALIZATION IN PRACTICE
To demonstrate the feasibility of AKI in a real-world setting, we

built a prototype as a proof-of-concept system. For testing, we cre-

ated a CA with OpenSSL. We pre-installed the CA and ILS root

certificates on our servers and clients. We implemented an ILS

server in Python that maintains an AKI Integrity Tree. The Integrity

Tree node hashes were computed with SHA-256, and the root node

was signed with RSA-2048. We used Coordinated Universal Time

(UTC) to define precedence for domain to key mappings and to au-

dit timeline integrity. We configured a stock Nginx HTTP server to

serve our AKI-certificates, which are basically X.509 certificates

with custom AKI extension fields (described in Section 4.1). We

implemented our AKI client in the Chromium web browser.

ILS proof stapling. To deliver fresh ILS proofs for AKI-certificates

to clients, we explored the following options. One option is to let

CAs embed the ILS proof in the certificate itself, by inserting it into

a certificate extension. However, once the certificate file is updated

with a time-bounded ILS proof, the hash of the updated certifi-

cate would not match the original certificate recorded in the ILS

Integrity Tree. To avoid this issue, another option is to let servers

send the ILS proofs over the TLS handshake, utilizing a TLS ex-

tension. An alternative is to provide the ILS proof in a separate

dummy certificate, appended to the leaf of the server’s certificate

chain. In our prototype, we sent ILS proofs via TLS extensions,

given that Nginx currently supports the TLS Certificate Sta-

tus Request extension (primarily used for OCSP stapling). This

allows our server to deliver ILS proofs as a stapled response over

the TLS handshake to clients without modifying Nginx. The server

could use a side-loaded script to periodically fetch fresh ILS proofs

and load them into Nginx. We modified the Chromium browser to

extract the embedded ILS proofs via the TLS Certificate Sta-

tus Request extension, and validate the ILS proofs.

Performance cost. AKI induces no round trip latencies (no ex-

tra network requests) to the TLS handshake. However, AKI in-

creases the TLS handshake message size by roughly a kilobyte due

to ILS proof stapling (assuming millions of domain names reg-

istered to the ILS). The ILS proof is composed from the follow-

ing constituents: a list of authentication node hashes (32 bytes per

node), a timestamp (4 bytes), and a root node signature (256 bytes).

Further, the server’s certificate size is slightly increased (by roughly

40 bytes) due to the additional custom X.509 extension.
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We measured the client validation processing time in Chromium

on a machine with 2.26 GHz dual-core CPU and 4 GB RAM, tested

with a million domains registered at the ILS. The overall AKI pro-

cessing time averaged 990 µs (median = 936 µs). Specifically,

the RSA verification step averaged 880 µs (median = 831 µs),

while the Merkle verification step only averaged 95 µs (median

= 87 µs). The overall AKI processing time is relatively small, es-

pecially compared to other approaches, such as Perspectives and

Sovereign Keys that require several network round-trips to commu-

nicate with servers.4 Another advantage of using Integrity Trees

that are relatively infrequently updated means that RSA verifica-

tions on the client side are amortized, as we envision that many do-

mains will use the same set of ILSs, hence the root of the Integrity

Tree will remain the same for numerous sites. Consequently, clients

mostly only perform efficient hash tree verifications and only rarely

perform signature verifications.

8. RELATED WORK
Several proposals to detect malicious key changes have been pro-

posed, such as Monkeysphere Web-of-Trust for SSL [3], the EFF’s

SSL observatory [13], and Certificate Patrol [4]. These proposals

make it easy to detect key changes, but it is difficult to distinguish

legitimate key changes from attacks.

Langley et al. [5] implemented a public key pinning mechanism

in Google Chrome. The browser vendor maintains a list of trust-

worthy public key(s) associated with each site. Public key pinning

provides similar security benefits to AKI by preventing certificates

signed by rogue CA from being accepted by the browser. Typi-

cally the keys of trusted CAs are pinned, allowing for an orderly

transition from one certificate to the next. To address the scalabil-

ity challenges of a browser vendor maintained database, the Public

Key Pinning Extension for HTTP [6] generalizes this mechanism

to an HTTP header that allows a server to declare the keys that can

be used in the future for that domain name. Choosing a pin dura-

tion that is too long risks a lengthy period of unavailability for the

site. Furthermore, if the user is visiting the site for the first time

on a device or the pin has expired, no protection is provided. By

contrast, AKI provides protection on the first visit to the site.

Marlinspike and Perrin propose Trust Assertions for Certificate

Keys (TACK) which pins public keys generated by the domain

owners themselves [25]. More specifically, a server generates a

TACK key pair, and use the TACK private key to sign the TLS pub-

lic key. The TACK public key and the signature form the TACK,

which clients can see in the TLS extension field, and clients “pin”

the domain’s TACK public key after observing the consistent TACK

multiple times. Although TACK aims at removing complete trust

in CAs, TACK relies on frequent visit patterns by clients to pin the

domain’s public key, resulting in a long initial unavailability period

for every site. Furthermore, if a certificate becomes compromised

and the pin is still inactive, the client must delete the observed

TACK information. In contrast, AKI provides no initial unavail-

ability period for any site, providing protection on the first visit to

the site.

Short-lived certificates [32] in conjunction with browser vendor

maintained Certificate Revocation Lists (CRLs) can reduce the im-

pact of key compromise. This requires servers to provide certifi-

cates with a short validity lifetime and update them from the CA

on a daily basis. Short-lived certificates provide similar security

benefits to OCSP while eliminating the need for an online check

4A previous study indicates that round-trip latencies for OCSP
lookups cost a mean of 497 ms with a median of 291 ms in real-
world deployments [29].

during the HTTPS handshake. However, unlike AKI, they rely on

browser vendors to somehow detect certificates that are issued by

compromised CAs and block them using a browser vendor main-

tained blacklist.

DNS-based Authentication of Named Entities (DANE) securely

binds certificates with domain names using Domain Name System

Security Extensions (DNSSEC), enabling domain holders to assert

certificates without reference to CAs [8]. However, the security of

DANE heavily relies on the security of DNS operators.

In the following section, we perform an in-depth comparison of

all the closely related certificate validation infrastructures.

9. THEORETICAL COMPARISON
In this section, we compare AKI with other proposals with re-

spect to security, availability, and efficiency metrics. One of the

contributions of this paper is to establish a set of metrics for com-

parison, which we present in the following subsection.

9.1 Evaluation Metrics for Comparison
Security metrics. The main security metric is Duration of Com-

promise (DoC): given the compromise of a private key,5 for how

long can a domain be impersonated? This metric can be specified

with respect to the following cases:

• DoC after a trusted CA’s private key compromise: This case also

covers compelled certificates [28].

• DoC after untrusted CA’s private key compromise: This case is

important for AKI, where a domain defines trusted and untrusted

CAs.

• DoC after trusted public log server’s private key compromise: To

avoid a proliferation of cases, we do not consider untrusted log

server’s private key compromise, as it is a strictly weaker attack

scenario.

• DoC after domain’s private key compromise: This metric mea-

sures the DoC, for how long an adversary can misuse the cap-

tured private key. We define the DoC as the duration during

which a key is revoked or the domain bootstraps a new key which

invalidates the old key, whichever is earlier.

Security guarantees of new systems can sometimes be circum-

vented due to required compatibility issues with legacy systems.

For example, Extended Validation (EV) certificates or OCSP in-

formation in a certificate are both optional extensions, and their

absence does not raise any suspicions. Therefore, even if an entity

obtains an EV certificate and uses OCSP, an adversary can still ob-

tain a fraudulent non-EV certificate without OCSP extensions that

will enable MitM attacks. To measure the security of public key

validation infrastructures during incremental deployment, we pro-

pose the following metric:

• Protection during incremental deployment: This is a binary mea-

sure to characterize whether any security is offered while com-

patibility with legacy systems needs to be ensured.

Finally, we measure privacy of client requests.

• Connection privacy: information about a client is not leaked to

entities other than the contacted domain.

Availability Metrics. The main availability metric we use is Dura-

tion of Unavailability (DoU) of a domain’s certificate after various

5In a private key compromise, the key is disclosed to the adversary.
Depending on the attack, the legitimate owner may still possess the
key.

686



Table 1: Comparison of different public-key validation infrastructures based on the security, availability, and efficiency metrics.

Entries in bold red font indicate major disadvantages of the corresponding scheme. Server∗ stands for the ILS, DNS, Notary, or

OCSP responder server, depending on which scheme is used. ∆U corresponds to the public log servers’ update interval, which is in

practice on the order of one hour. Section 9.2 describes our methodology for filling in the entries.
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Security
Trusted CA compromise (compelled certificate) DoC days days days days N/A hours 0 0 0 0
Untrusted CA key compromise DoC days days days 0 N/A 0 0 0 0 0
Trusted Server∗ key compromise DoC N/A 0 N/A N/A N/A days days days days 0
Domain key compromise DoC hours min days days <month hours day min ∞ ILS_TIMEOUT

Protection during incremental deployment N/A N N Y N N Y Y Y Y
Connection privacy Y N Y Y Y Y N/Y N Y Y
Availability
Initial registration DoU 0 0 0 0 days hours days 0 0 0
Planned key update DoU 0 0 0 0 days hours 0 0 0 0
Unplanned key update DoU 0 0 0 0 days hours days 0 0 0
CA compromise DoU days days days days N/A days 0 0 0 0
Server∗ compromise DoU days days N/A N/A N/A days days days days up to 1 day
Domain compromise DoU min min min min <month hours days 0 ∆U COP_UNLINKED

Efficiency
Number of additional servers required 0 O(C) O(D) 0 0 0 O(C) O(C) O(D) O(D)
Additional latency for TLS connection setup 0 RTT 0 0 0 0 RTT RTT 0 0
Additional bandwidth for TLS connection setup 0 0.1KB 0 0 0.1KB 0.1KB 10KB 1KB 1KB 1KB

system events. The shorter the DoU, the more available the system.

We do not consider DDoS attacks in this paper; thus, we assume

the general availability of all servers and communication networks.

• DoU after initial registration: This metric measures the time du-

ration until the registered certificate becomes valid.

• DoU after planned key update: This metric measures the dura-

tion when an updated key becomes valid, which was planned to

replace the current key.

• DoU after unplanned key update: In case of unplanned events

such as losing a domain’s private and backup keys, this metric

measures the time duration when the updated key becomes valid.

• DoU after trusted CA’s private key compromise: After a trusted

CA’s key becomes compromised, a domain’s certificate may also

become invalid. This metric measures the time to acquire a new

certificate using the CA’s new key.

• DoU after a trusted log server’s private key compromise: A log

server’s public key compromise leads to invalid log entries. This

metric measures the time to recover a log server’s private key.

• DoU after domain’s private key compromise: This metric mea-

sures the time until the domain’s certificate becomes available

with a new private key.

Efficiency Metrics. Below is a list of metrics to measure the effi-

ciency of certificate infrastructures:

• Number of additional servers required: This metric measures

how many additional infrastructure servers are required, expressed

as an order in the number of new connections established. For

example, if C connections are established to D different domains,

would we require O(C)+O(D) additional servers, O(D), or even

O(1)?
• Additional latency to establish a secure connection: Compared

to standard TLS, what additional latency would be required for

a secure connection with the proposed scheme?

• Communication overhead: This metric measures the additional

network overhead incurred for establishing a secure connection.

In addition, we will evaluate schemes based on their ability for

domains to select their trust perimeter (with respect to CAs and

public log servers), as well as providing flexibility for certificate

policies, such as specification to achieve different tradeoffs between

availability and security metrics as defined above.

9.2 Comparison of Approaches
Based on our metrics, Table 1 compares AKI with the following

proposals: CA + CRL [7], CA + OCSP [26], Short-Lived Certifi-

cates (SLC) [32], Key Pinning [5], TACK [25], DANE [8], Per-

spectives (P) [33], Convergence (C) [1], Sovereign Keys (SK) [9],

and Certificate Transparency (CT) [21].

We now discuss the methodology we used to fill in the table. For

many of the catastrophic failures, such as compromise of a trusted

CA or ILS private key, we assume that a software update is required

to revoke the old key and setup a new key. We assume that such a

software update is secure, and can be completed within a few days

for most users.

Security. For the “Trusted CA compromise (compelled certifi-

cate) DoC” metric, we assume that it will take days to push out

a CA root certificate revocation message through a browser update,

which was the method used to revoke DigiNotar’s certificate after

the compromise [30]. While some browsers use CRLs to revoke

CA keys (e.g., Google Chrome), most browsers still require a soft-

ware update. OCSP unfortunately does not help in this case, since

CAs do not use OCSP to validate their root certificates. Similarly in

the case of SLC and DANE, a browser update is required to revoke

the CA key. Also in the case of Key Pinning, a browser update is

required to remove the pin. Since P/C/CC, and TACK do not rely

on CAs, the DoC is 0. Audit-log based schemes also protect from

this case, preventing even a trusted CA from registering a new bo-

gus certificate (the security analysis in Section 5 presents this case

in more detail for AKI).

For the following properties, we explain the metrics in a less

verbose manner. For the “Untrusted CA key compromise DoC”

metric, the impact is less than in the previous case. In particular for

DANE, the adversary cannot impersonate the domain which was

possible in the trusted case.

For the “Trusted Server key compromise DoC,” we consider that

the ILS/DNS/Notary/OCSP responder server’s private key is com-

promised, resulting in a severe disruption for several approaches.

Since no additional third parties exist in CA + CRL, SLC, and Key

Pinning, this case is N/A for those schemes. Since a compromised
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OCSP server’s private key does not enable creation of a fake key,

DoC is 0. On the other hand, if the TACK key is compromised, re-

covery can take up to 30 days, depending on the domain’s parame-

ter setting. In the case of a compromised notary key in P/C/CC, we

assume that a software update would require days to be fully de-

ployed, during which time attacks are feasible. SK and CT would

also require a software update, requiring days for full deployment.

In AKI, a malicious ILS or malicious validator alone is insufficient

to mount an attack, as we discuss in Section 5.

For the “Domain key compromise DoC” metric, we assume that

browsers download CRLs every few hours; thus, the DoC for CA +

CRL is on the order of hours. For SLC, it may take a few days for

the certificate to expire. In TACK, it may require up to a month to

have clients switch to a new key. For DANE, it may require hours

until DNS entries time out and get replaced by new entries with

the updated key information. In P/C/CC, depending on the client

configuration, it can take days for an updated key to be consistently

observed. Although the online validation of SK revocation is very

fast, CT will require more time since stale validation information

may be served by the adversary. For AKI, validation information is

valid during domain-selected time ILS_TIMEOUT, which is on the

order of several hours to one day, until the key is revoked.

For “Protection during incremental deployment,” OCSP, and SLC

offer no security, since an adversary can create a legacy certificate

without any of these extensions which clients would accept. In

TACK, a rollback to a compromised certificate attack is possible at

the onset, when the TACK pin is not yet set up. For DANE, DNS

responses may be rolled back to non-signed DNS replies. P/C/CC,

SK, CT, and AKI all perform an online lookup for the case of a

legacy certificate, which will reveal the legacy certificate.

“Connection privacy” is not provided by OCSP, Perspectives,

and SK, as the client performs an online lookup for each certifi-

cate. Convergence, however, uses a blinding step during lookup.

Availability. “Initial registration DoU” requires several days for

TACK and P/C/CC to confidently learn a new entry. In DANE, the

current DNS entry needs to time out for the updated DNS entry to

become available, which we estimate to take hours in the common

case.

For “Planned key update DoU,” we consider an optimization we

discuss in Section 3, where domains pre-register a key with the

notary servers, thus avoiding activation latency.

For “Unplanned key update DoU,” we assume that P/C/CC use

a configured policy where a key has to have been consistently ob-

served for several days for clients to trust the key.

For “CA compromise DoU” and “Server compromise DoU,” we

assume that several days are required to recover and roll out new

root keys. In key pinning, we assume that one day is required to

push out a new software version with a new key. “Domain compro-

mise DoU” indicates the delay required to register a new key.

Efficiency. For the metric “Number of additional servers required,”

we specify D for the number of domains and C for the number of

connections established per day. For example, O(D) indicates that

the number of additional servers needs to be proportional to the

number of domains.

For the metric “Additional latency for TLS connection setup,”

we denote a round-trip time to a server by RTT, which includes

server processing time. Since P/C/CC, SK, and OCSP also involve

additional external connections, they can have a significant time

overhead.

For “Additional bandwidth for TLS connection setup,” we list

the order of magnitude of additional bandwidth required to set up a

TLS connection. For the case of SK, CT, and AKI, we assume that

extra signatures are on the order of 256 Bytes, hash tree values are

on the order of 32 Bytes, and that a hash tree has about 30 levels,

resulting in about 2 KBytes of additional information, which is on

the order of 1KB as listed in the table.

9.3 Observations
As is evident from Table 1, all the newer Certificate Validation

Infrastructures handle the case of untrusted CAs or CA key com-

promise, dramatically increasing the security over the current cer-

tificate validation infrastructure.

For practical deployment, it is critical that the TLS connection

establishment does not incur any additional latency. Consequently,

the additional RTT incurred by OCSP, P/C/CC, and SK is prob-

lematic. Moreover, any system requiring O(C) additional server

infrastructure load is likely to incur excessive cost. Performing an

online per-connection lookup to an external server also challenges

privacy, as it may leak information about the connection to a third-

party server.

Another important factor is that certificates become immediately

usable after initial registration. However, TACK, and P/C/CC do

not support this feature.

Overall, CT and AKI emerge with many desirable features. Com-

pared to CT, the overhead of AKI is lower due to the different hash

tree structure, AKI can tolerate compromise of an ILS or validator

server, and AKI can rapidly validate the absence of an entry. More-

over, AKI supports key revocation and re-establishment, which is a

desirable feature for a public-key validation infrastructure.

10. CONCLUSION
Protecting current PKIs against CA root key compromises is be-

coming a topic of critical importance, as the weakest-link security

model of the current PKI system is clearly too weak to provide

meaningful security for critical web communication.

To improve the resilience of public-key validation infrastructures

to attacks, we design the Accountable Key Infrastructure (AKI),

which combines an accountability infrastructure (providing checks-

and-balances on server operations and misbehavior dissemination)

with key revocation mechanisms. Our AKI architecture offers flex-

ibility for entities to select a security policy for their certificates,

enabling a tradeoff between availability and security. AKI also pro-

vides tangible deployment incentives that we anticipate will help to

drive adoption.
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APPENDIX

A. MULTIPLE CA SIGNATURES
The X.509 certificate format was specified to contain exactly one

CA signature. We discuss below two approaches to support multi-

ple signatures for X.509 certificates.

Insert signatures into X.509 extensions. In X.509, the signature

is computed from all fields in the certificate, except the signature al-

gorithm identifier and the signature value itself. Therefore, we can-

not simply inject X.509 extensions into a signed certificate, since

the existing signature would not match.

Suppose that we want a total of N different CA signatures. A

workaround is to (1) get N −1 CAs to independently compute sig-

natures from the original certificate, (2) insert the N −1 signatures

along with the additional signer information into custom X.509 ex-

tensions (instead of the signature field) of the original certificate,

and then (3) get the last CA to sign the updated certificate (includ-

ing N − 1 signatures) and put the final signature into the signature

field.

Send a dummy certificate over the TLS handshake. Without

changing X.509 or existing CAs, the server can get signed certifi-

cates from each CA independently. However, sending multiple cer-

tificates for the same public key (signed by different CAs) is highly

redundant. This overhead can be reduced if we extract the signa-

tures along with the signer information, signature algorithm, etc.,

and store them into custom extension fields in an empty certifi-

cate at the end of an original certificate chain. An AKI-enabled

browser can parse this dummy certificate for multiple signatures,

while legacy SSL clients may ignore the dummy certificate and still

be able to validate the certificate chain with a single CA signature.
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