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ABSTRACT

Online social networks have become important for networking,

communication, sharing, and discovery. A considerable challenge

these networks face is the fact that an online social network is par-

tially observed because two individuals might know each other, but

may not have established a connection on the site. Therefore, link

prediction and recommendations are important tasks for any online

social network. In this paper, we address the problem of comput-

ing edge affinity between two users on a social network, based on

the users belonging to organizations such as companies, schools,

and online groups. We present experimental insights from so-

cial network data on organizational overlap, a novel mathematical

model to compute the probability of connection between two peo-

ple based on organizational overlap, and experimental validation

of this model based on real social network data. We also present

novel ways in which the organization overlap model can be applied

to link prediction and community detection, which in itself could

be useful for recommending entities to follow and generating per-

sonalized news feed.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Experimentation

Keywords

Social Networks, Organizational Overlap, Link Prediction, Com-

munity Detection

1. INTRODUCTION
The ability to model the organizational structure—that is, under-

stand the affinity between links within an organization in the social

graph—is an important problem for online social networks. For

example, a substantial challenge is that any online social network

is only partially observed: two individuals may know each other,
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but may not have established a connection on the site. Thus, most

online social network sites have a feature that recommends these

possible connections. LinkedIn, the largest online professional so-

cial network, exposes its link prediction system through its “People

You May Know” feature.

Detecting communities within an organization is another impor-

tant challenge. On most online social networks, a user can follow

an entity to receive updates on it within a personalized news feed.

For example, members can follow a company on LinkedIn and re-

ceive company updates. To recommend entities for a member to

follow, the entities the member’s community are already following

are good candidates. Simply using the entire organization yields

inferior results as most organizations are diverse with several or-

thogonal groups (for example, sales, marketing, engineering) and

subgroups (for example, front-end, database, machine learning).

As another example, this news feed is generated by online activ-

ity and its volume can quickly overwhelm a user. A key feature in

ranking this feed is to promote an update if the member is in the

same community as the originator of the update.

In this paper, we present a model of edge affinity between two

users that uses the time of joining and departing an organization.

Here, the intuition is simple: the affinity between two members

working in a company together for 10 years is greater than mem-

bers who’ve worked at the company for only a few months. In

this work, we present a mathematical model of organizational time

overlap and experimental validation of this model based on real so-

cial network data from LinkedIn. We also show empirically that our

model works for diverse organizations such as companies, schools,

and online groups.

This work aids the link prediction scenario as previous ap-

proaches [1, 9, 10, 18, 29, 31] have mainly exploited existing edges

in the social graph, but not organizational time overlap. Using this

model to predict existing edges on LinkedIn and two other public

networks show that our method is 42% better than Common Neigh-

bor and Adamic-Adar based link prediction in terms of precision at

top5.

The organizational overlap model also works well for detecting

communities within an organization. It is usually hard to evaluate

the quality of communities because of a lack of ground truth. We

therefore use an indirect method to evaluate the quality of com-

munities: intuitively, the speed of information propagation should

be faster within a community, so we measure the quality of the de-

tected communities by the speed of information propagation within

it. Using the LinkedIn social network, we evaluate the detected

communities by the propagation speed of company follows and

sharing activity. Results show that communities detected by our

method are up to 66% better than communities detected by only
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links in terms of the propagation speed of shared articles, and

15% better in terms of the propagation speed of company follows.

The main contributions of this paper include:

• Experimental insights from social network data on organiza-

tional overlap

• A novel mathematical model to compute the probability

of connection between two people based on organizational

overlap, including experimental validation of the model

• New ways the organizational overlap model can be applied

to link prediction and community detection.

The rest of the paper is organized as follows. First, Section 2

describes related work. Section 3 presents experimental insights in

modeling probability of connection between two people based on

organizational overlap, a mathematical model formulation, and ex-

perimental evaluation of the model. Section 4 and Section 5 discuss

applications of our organization overlap model for community de-

tection and link prediction. We conclude in Section 6 and discuss

future work.

2. RELATED WORK
In this paper, we model the probability of connection between

people using organizational time overlap information, and apply

our model to community detection and link prediction. Although

there are many studies on modeling organizational overlap of peo-

ple [11, 31], and some of the properties of community structure in

social networks have been discussed previously in Leskovec et al.

[13], but none of them have incorporated the overlap time informa-

tion in their models. In this section, we discuss the related work for

community detection and link prediction.

Community detection is an active research topic in social net-

work analysis [2, 7, 8, 14, 20, 21]. Traditional community detec-

tion algorithms find a partition of graph to optimize a measurement

of the quality based on the given network, for example, modularity-

based methods aim to find a partition of the graph that maximizes

the modularity [5]; or spectral clustering methods, such as normal-

ized cut, minimize the number of between-cluster edges [6, 26].

One drawback of these community detection techniques is that they

only use mainly edge information. Recently, the use of explicit

feature information for community detection has been studied. In

Pathak et al. [23], the Community-Author-Recipient-Topic (CART)

model has been proposed to combine the topic information with

graph structure for predicting communities. Also, the topic-link

LDA model [17] and relational topic model [4, 24] were also pro-

posed to incorporate the content information. However, none of

these existing works consider using organizational time overlap for

community detection, which we will show in this paper can outper-

form the use of graph only algorithms.

Predicting an unknown link in a given social network is another

important application, especially for online social networks such as

Facebook, LinkedIn, and Twitter. Similar to the case of community

detection, traditional link prediction algorithms predict unknown

edges based only on given edges in the social networks [15]. Ex-

amples of such techniques are common neighbor (CN), Katz [10]

and Adamic-Adar (AA) [1], which are efficient to compute and are

widely used. Recently, graphical model-based methods have also

been applied to obtain more accurate predictors [19, 29]. How-

ever, these methods are only based on link structure. If we are

given context information, supervised learning frameworks [9, 16]

have been proposed to train a linear model based on the given fea-

tures. For example, Backstrom and Leskovec [3] used a weighted

random walk strategy for predicting unknown edges. Soundara-

jan and Hopcroft [28] proposed to use community overlap (without

time information) to improve common neighbor. In this paper, we

also consider a cold-start problem of link prediction [12], where

we want to predict connections of a new user on a social network

and users who are not connected to any other users. In this case,

the connection information is unknown, and we show that using or-

ganizational time overlap is a very promising way to recommend

connections in a cold-start setting.

3. MODELING ORGANIZATIONAL TIME

OVERLAP
To start, we formally define organizational time overlap as the

following. Assume two people A and B belonged to the same or-

ganization O, A belonged to the organization during time interval

tA = [sA, eA] and B belonged to the same organization during

time interval tB = [sB , eB]. We can compute the organizational

time overlap between A and B in organization O as

T (A,B,O) = max(0,min(eA, eB)−max(sA, sB)). (1)

Note that a person can belong to an organization for more than one

time interval. That is, consider A belonged to the organization in

time intervals t
(1)
A , t

(2)
A , · · · , t

(n)
A and B belonged to the same orga-

nization during time intervals t
(1)
B , · · · , t

(m)
B . We can then compute

T (A,B,O) by summing over all nm pairs of intervals. However,

usually people belong to an organization (for example, work in a

company) only once, so m and n are typically 1.

In this section, given T (A,B,O) for all organization O, we aim

to compute the probability that A and B are connected. We will

use P (A,B) to denote this probability. We first assume that A and

B have only one organization in common, so

P (A,B) = f(T (A,B,O), O). (2)

Equation (2) means the probability that A and B are connected de-

pends on two factors: the organizational time overlap T (A,B,O)
and the property of the organization O. We first investigate this

function using data from LinkedIn, and then derive a mathematical

model of f based on our observations.

3.1 Exploratory Data Analysis
We use the organizational time overlap data from LinkedIn to in-

vestigate the properties of P (A,B), the probability of connection

between A and B. LinkedIn is the largest professional social net-

work, where more than 200 million members maintain their profile

and connections. A member’s profile normally includes employ-

ment history, education information, and online group affiliations.

From LinkedIn data we can obtain several different types of orga-

nization, for example, “company”, “group” and “school”. Here we

use “company” and “group” as two types of organization. Also, we

consider each member on LinkedIn as a node in a graph, and the

“connections” on LinkedIn as edges between nodes.

As expressed in Equation (2), P (A,B) depends on two factors:

the time overlap and properties of the organization. We first inves-

tigate P (A,B) for a fixed organization O and changing the time

overlap T (A,B,O). Assuming n users had worked in company O,

we compute the time overlap for all
(

n
2

)

pairs of users, and compute

the following empirical probability

p̂(t) =
# connections with time overlap t

total number of pairs with time overlap t
. (3)

Because the denominator of (3) can be very small for some values

of t, which makes p̂ unstable, we also plot

p̃(t) =
# connections with time overlap ≥ t

total number of pairs with time overlap ≥ t
. (4)
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(a) Company A (cumulated) (b) Company A

(c) Company B (cumulated) (d) Company B

Figure 1: Connection density with respect to time overlap for two

sampled companies A and B. Observe that the probability of con-

nection increases with the time overlap.

Figure 1 shows p̃ and p̂ of two randomly-sampled companies. We

observe that the probability of connection increases with the time

overlap t. This observation leads to the following insight:

Insight 1 Connection density increases with organizational time

overlap.

Also, as shown in Equation (2) the probability of making a con-

nection is related to the properties of the organization. Therefore,

we also investigate the relationship of P (A,B) with the organiza-

tion size. From our data analysis, it appears that other forms of

organization such as schools and groups on LinkedIn also follow a

similar distribution. To investigate the relationship between prob-

ability of connection and the company size, we sample companies

with different sizes (25, 50, 75, 100, 200) and calculate the prob-

ability of connection (as defined in Equation (3)) p̂ with various

time overlap, as shown in Figure 2. We can observe that gener-

ally the probability of a connection decreases as organization size

increases. This observation makes sense because in a smaller orga-

nization people usually have a better chance to know each other by

happenstance, which is not the case in a larger organization. There-

fore, we have the following second insight:

Insight 2 Connection density decreases with the size of the orga-

nization.

3.2 Mathematical Formulation
In the previous section, we observed that organizational time

overlap is an important factor for computing the probability of a

connection. In this section, we derive a mathematical formulation

of P (A,B), the probability of a connection between A and B. For

convenience, we use P (t) to denote f(t, O) in Equation (2), that

is, P (t) is the probability of an edge between two nodes with time

overlap t.
Our first insight is that the problem can be transformed to an

“overlapping community” problem. In an overlapping community

setting, each user can belong to more than one community. To com-

pute P (t), we can decompose t into two smaller time periods t1, t2

such that t = t1 + t2. With this decomposition, a natural way

to model the probability P (t1 + t2) is to think as if there are two

organizations: O1 corresponds to time interval [0, t1] and O2 cor-

responds to the time interval [t1, t1 + t2]. Because the probability

of making a connection in O1 and O2 are P (t1) and P (t2) respec-

tively, assume P (t1) and P (t2) are known. The problem of com-

puting P (t) is now transformed to how to compute the probability

that an edge between A and B exists when both A, B belong to O1

and O2. A large amount of research has been conducted for model-

ing probability given an overlapping community structure in social

networks [22, 30], and recently a simple Community-Affiliation

Graph Model (AGM) [31] was proposed. As proposed in AGM,

assume that A and B both belong to O1, . . . , On, and that the prob-

ability of making a connection in O1, . . . , On are p1, . . . , pn, then

1−
n
∏

i=1

(1− pi)

is the probability that A is connected to B. In our case, n = 2,

p1 = P (t1), p2 = P (t2), so we can make the following assump-

tion:

Assumption 1 For any two non-negative time intervals t1, t2,

P (t1 + t2) = 1− (1− P (t1))(1− P (t2)) (5)

Also, because P (t) is a probability, we can simply assume the

following:

Assumption 2 For any t > 0, 1 > P (t) > 0, and P (t) = 0 if and

only if t = 0.

We can then easily generalize Assumption 1 to decompose a time

interval t into m smaller time intervals, resulting in the following

lemma:

Lemma 1 For any m nonnegative integers t1, . . . , tm,

P (

m
∑

i=1

ti) = 1−

m
∏

i=1

(1− P (ti)) (6)

PROOF. Proof by induction, when m = 2, (6) is equivalent to

Assumption 1. Assume (6) holds for m = a, for m = a + 1 we

have

P (
a+1
∑

i=1

ti) = P (ta+1 +
a

∑

i=1

ti)

= 1− (1− P (ta+1))(1− P (
a

∑

i=1

ti)) (by Assumption 1)

= 1−

a+1
∏

i=1

(1− P (ti)) (by induction hypothesis)

Lemma 2 P (t) is continuous on t ∈ (0,∞).

PROOF. First, from Lemma 1 and Assumption 2 we can easily

show limδt→0+ P (δt) = 0. Using this fact, from Assumption 1

we have

P (t1 + t2) = P (t1) + P (t2)− P (t1)P (t2),∀t1, t2 ≥ 0.

Let t1 = t and t2 = δt. We have limδt→0+ P (t + δt) = P (t).
Also, let t1 = t− δt and t2 = δt we have

P (t− δt) = P (t)− P (δt)/(1− P (δt)).
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(a) company size (b) group size

Figure 2: Connection density with respect to organization size. We observe that the probability of a connection decreases as organization

size increases.

Thus, limδt→0− P (t+ δt) = P (t).

Based on the above assumptions and lemmas, we can then prove

P (t) = 1 − e−λt for some positive constant λ by the following

arguments.

First, we use Q(t) ≡ 1−P (t) to denote the probability that two

users with time overlap t do not know each other. From Lemma 1,

we have

Q(
m
∑

i=1

ti) =
m
∏

i=1

Q(ti), (7)

therefore

Q(nt) = Q(t)n and Q(
t

n
) = Q(t)

1
n

for any integer n. Furthermore,

Q(
n1

n2
) = Q(

1

n2
)n1 = Q(1)

n1
n2 .

Therefore, Q(t) = Q(1)t for any rational number t. Because P (·)
is continuous, Q(·) will also be continuous. Therefore, Q(t) =
Q(1)t for any real number t ∈ [0,∞). Based on Assumption 2,

1 > Q(1) > 0. We can rewrite Q(1) = e−λ where λ > 0. We

then have the following main theorem for modeling organizational

time overlap:

Theorem 1 Let P (t) denotes the probability that two users with

organizational overlap of time t know each other, then

P (t) = 1− e−λt, for some λ > 0. (8)

3.3 Experimental Validation
Next, we verify the model we derived in Theorem 1 using real-

world datasets from LinkedIn, and then show how to select the pa-

rameter λ in Equation (8).

3.3.1 Probability of connection versus time overlap

To verify that our model fit the real social network, we conducted

the following experiments. Using the companies with the same size

(50 or 200), we generated all the within-company pairs and com-

puted the empirical distribution p̂(t) for P (t) as in Equation (3).

(a) Companies with size 50 (b) Companies with size 200

Figure 3: Connection density with respect to time overlap compar-

ing our model with respect to empirical data.

The results are shown in Figure 3. Although Theorem 1 indicates

that P (t) can be 1 when t → ∞, in a large company it is not realis-

tically possible for people to know all their colleagues. Empirically,

we observe there is an upper bound of the probability of connection

within a company. Thus, the probability can be modified to

P̂ (t) = µ(1− exp(−λt)),

where 0 ≤ µ ≤ 1 is a constant controlling the upper bound of the

probability. We also plot P̂ (t) in Figure 3, with µ selected to be the

maximum empirical probability when t → ∞, and λ selected to be

the best parameter to fit the curve. We can see that the empirical

distributions are close to the theoretical guess P̂ (t), which supports

that our model derived in Theorem 1 is a good fit to the empirical

observation.

3.3.2 The Relationship Between λ and Company Size

The parameter λ described in Equation (8) is a company-

dependent parameter, which may depend on many company prop-

erties. An obvious observation is that employees in a small com-

pany are more likely to know each other, while in a large company

it is less likely. Therefore, we conducted the following experiment

to investigate the relationship between λ and company size.

For simplicity, we assume

|E|

|S|2
= 1− e−λt̄, (9)
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(a) (b)

Figure 4: (a) Comparison of the empirical statistics of λ to the hy-

pothesis that λ = 1/|S|, where |S| is the company size. This figure

shows that the rate of increase of 1/λ is slower than that of |S|. (b)

Comparison of the empirical statistics of λ to the hypothesis that

λ = 1/ log(|S|). This figure shows that empirically the rate of

increase of 1/λ is higher than that of log(|S|).

where |E| is number of edges within a company, |S| is number

of nodes in the company, and t̄ is the average organizational time

overlap in that company. Then we have

1

λ
= −

t̄

log(1− |E|/|S|2)
. (10)

We do not know the value of λ. However, the righthand side of (10)

can be computed from real social networks. To see how the com-

pany size affects the probability of making a connection, which de-

pends on p, we can investigate how the righthand side value of (10)

changes with company size. For each company size |S|, we extract

all the companies with size |S| from LinkedIn data, and use the

connection data to compute the righthand side of (10) empirically.

A simple assumption is that λ ∝ 1
|S|

where |S| is company size.

We compare the righthand side of (10) and this hypothesis in Figure

4(a). However, we find the decay rate of p with respect to company

size |S| is slower than linear.

We then consider the second hypothesis: λ ∝ 1
log(|S|)

. This is

a function slower than the linear decay. Therefore, we plot 1/λ
versus log of company size in Figure 4(b). If λ ∝ 1

log(|S|)
, the

empirical line in Figure 4(b) is a straight line; however, it is growing

faster than a straight line, which indicates that 1
λ

grows faster than

the log function and slower than the linear function.

Therefore, our third hypothesis is that

λ = β|S|−α
for some 1 > α > 0 and β > 0, (11)

which is between 1/|S| and 1/ log(|S|). To verify this hypothesis,

we first assume Equation (11). We define

y(|S|) :=
1

λ
=

1

βS−α
=

−t̄

log(1− |E|/|S|2)
.

To compute α, we compute the ratio between y(|S|) and y(10)1 as

y(|S|)

y(10)
=

|S|α

10α
= (

|S|

10
)α,

so α = log|S|/10(
y(|S|)
y(10)

). Because the righthand side can be com-

puted empirically, we plot this empirical α versus company size in

Figure 5. Figure 5 shows that the α value is stable between 0.8 and

0.85 for company sizes larger than 1000.

3.3.3 Better Estimation of λ

1Any other positive constant can be used here.

Figure 5: Comparison of the empirical statistics of λ to the hypoth-

esis that λ = 1/|S|α , where |S| is company size. This figure shows

that α is stable between 0.8 and 0.85 for company sizes larger than

1000.

Figure 6: MLE estimates of λ as function of company size. Figure

displays a log-log relationship.

We estimated λ heuristically as a solution to equation (9), which

can roughly be thought of as a method-of-moments estimator as-

suming every edge in an organization has an overlap period close

to t̄. This might not be true and we do see heterogeneity in time

overlaps in our data. To adjust for such heterogeneity, we estimate

λ through a maximum likelihood (MLE) approach. To investigate

the relationship between λ and company size |S| more rigorously,

we obtain a separate MLE estimate for companies of different sizes

and investigate the log-linear relationship λ = β|S|−α .

Each pair i in our graph has a pair of observations (ti, Xi), where

ti is the time overlap and Xi is binary indicator of presence/absence

of an edge. According to our model, Xis are independently dis-

tributed Bernoulli random variables with mean (1− e−λti), hence

the MLE of λ is readily obtained by maximizing

∑

i

(Xilog(1− e−λti)− (1−Xi)λti)) (12)

Figure 6 shows the estimated values of λ as a function of differ-

ent company size. Again, we clearly see a monotonically decreas-

ing trend in values of λ as function of size, and the log-linear rela-
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Figure 7: Probability of making a connection with respect to the

difference in the join time between two users. The difference in the

join time seems to be an important factor in computing the proba-

bility of a connection.

tionship posited earlier holds. In fact, a least squares fit of MLEs

of log(λ) on log |S| provides an estimate α = 0.59. But as evident

from the figure, the value of α is higher if we ignore small compa-

nies, consistent with our earlier empirical analysis. For example, if

we ignore companies with size smaller than 20, the α will be 0.7.

3.3.4 The Effect of the Difference in Join Time

Another observation is that the difference in the join time is im-

portant. Intuitively, an employee makes many connections when

the employee first joins a company, while the probability of mak-

ing connections tends to decay as the employee works longer in the

company. Therefore, with the same overlapping time, the proba-

bility of a connection between two employees also depends on the

difference in the join time. In Figure 7, from LinkedIn dataset, we

plot the probability of connection versus join time difference with

the same overlapping time (1 year). The results indicate that this

observation is important for modeling the probability, and we will

use this as a signal in the link prediction (see Section 5).

4. COMMUNITY DETECTION
Community detection within an organization is an important

problem for online social networks like LinkedIn. On most social

network, one can follow an entity to receive updates on it within

a personalized news feed. For example, members can follow a

company on LinkedIn to receive updates from the company. To

recommend entities to a member to follow, the entities member’s

community are already following are good candidates. Therefore,

detecting communities on a social network is an important task for

recommendation applications, such as companies to follow or arti-

cles to read.

Given the link information in a graph, traditional community de-

tection methods utilize the graph structure to find communities [5–

7, 20, 21, 26]. However, in real applications, link information is

often too sparse and may not be fully observed in a social network.

Thus, traditional community detection methods give poor perfor-

mance in such cold start setting. In this section, we will demon-

strate that we can detect good quality communities using the orga-

nizational time overlap signal in such cold start setting.

Evaluating community detection algorithms is a hard problem

[14, 21] even if labeled gold-standard ground-truth communities

are given [32]. In our applications, the ground truths are not given.

Therefore, we consider the detected communities as the input of

two applications, vitality of company follow and virality of up-

dates, and define the quality of communities based on the viral-

ity of these two events, which has real applications in practice. In

this section, we first describe how to use time overlap information

for community detection, and then use two applications, virality of

company follow and virality of updates, to evaluate the detected

communities and demonstrate that our algorithm is very useful for

a social network.

4.1 Within-organization Community Detec-
tion by Organizational Time Overlap

In many social networks, such as LinkedIn, the profile of a user

includes employment, education, groups, and other organization af-

filiations. In such datasets, a natural way would be grouping users

by organizations (can be companies, groups, or schools). However,

most organizations are diverse with several orthogonal groups (for

example, sales, marketing, and engineering) and subgroups (for ex-

ample, front-end, database, machine learning). Therefore, we are

interested in finding communities within an organization, which is

important when we want to get hierarchical community structures

for recommendation applications. For each specified organization,

we are given users who belonged to the organization at some point

of time, and we want to find communities among these users.

To start, we construct a graph using the organizational time over-

lap signal described in the previous section. We use the first order

Taylor expansion on e−λt on Equation (8) (since λt ≪ 1 usually),

so

P (t) ≈ λt, (13)

where λ is a company-dependent parameter, and so is a constant

under this setting. Based on this observation, we construct an or-

ganizational time overlap graph GT (V,E) by setting the node set

V to be all the users in the organization and an edge (A,B) in E
if the organizational time overlap between A and B is more than 0,

with weight equal to the organizational time overlap of the two end

nodes.

We can then run any graph-clustering algorithms on this orga-

nizational time overlap graph. In our experiments, we use Graclus

[6], which is a multilevel graph-clustering approach minimizing the

following normalized cut value:

NCut(G, {Vc}
k
c=1) =

k
∑

c=1

∑

i∈Vc,j /∈Vc
Gij

d(Vc)

where d(Vc) =
∑

i∈Vc

p
∑

j=1

Gij .

Notice that sometimes GT may be dense and the clustering on

GT may be expensive. In those cases, we want to further approxi-

mate GT using less memory. We first observe that the time overlap

defined in (1) can be approximated by

T (A,B,O) =

k
∑

s=1

I(A,O, s)I(B,O, s), (14)

where we divide the time into k buckets, and each I(A,O, s) is the

indicator function of whether A was in O at the s’th time bucket.

Based on this observation, we can approximate GT by UTU where

U is a n × k matrix and Uis = I(i, O, s). The memory con-

sumption of this UTU approximation is O(nk), which may be

much less than storing GT . For example, if each month is a time

bucket and the average time for each user to stay in company O is 5

years, than storing U costs 60n memory while storing GT may use
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(a) Average degree: 4-6 (b) Average degree: 12-14

Figure 8: The propagation rate of company follow with respect to the number of days

O(n2) memory. Moreover, with this memory-efficient representa-

tion, eigenvalue solvers such as Lanczos method can be applied ef-

ficiently to compute leading eigenvectors since each matrix-vector

product can be easily computed, thus spectral clustering can be con-

ducted efficiently.

In the following section, we conduct two sets of experiments to

show that clustering using organizational time overlap can be use-

ful. Because the size of organization is not usually too large in our

datasets, we directly use GT with Graclus in all the experiments.

4.2 Virality of Company Follow
On LinkedIn, a company can create a page with a profile, and

post updates about the company. Any LinkedIn member can fol-

low a company to receive updates. When a member chooses to

follow a company, an update is published that the member is fol-

lowing the company, and that update is shared with the member’s

connections (if the member permits). LinkedIn has a recommenda-

tion system that recommends companies that a member can follow.

In this work, we explore how clustering members belonging to a

company can help in recommending companies to follow. To eval-

uate the quality, the detected clusters, we measured the spread of

company following inside the clusters.

4.2.1 Evaluation and Discussion

To compare the communities detected by edges and by organi-

zational time overlap, we sample companies with varying average

degrees. More specifically, we consider companies with average

degrees of 0−2, 4−6, 8−10, 12−14, and 16−18. We randomly

sample 100 companies for each interval.

For each of the selected companies, we run the following three

community detection algorithms to detect 10 non-overlapping com-

munities and compare the results:

• Community detection by organizational time overlap, as de-

scribed in Section 4.1. Because the company size is generally

not too large, we directly form GT and run Graclus to detect

the communities.

• Community detection by links. We construct the adjacency

matrix for users belonging to each company, and run Graclus

to detect 10 communities.

• Random. As a baseline method, we randomly partition the

nodes into 10 communities with community size the same as

the communities detected by time overlap.

We define a measure of the spread of company following event

inside detected communities as follows. For each user i and com-

pany C, we are given T (i,C) which denotes the time that i follows

C (T (i, C) = ∞ if i never followed C). Given a partition of nodes,

{Vc}
k
c=1, we compute the first company follow time for each com-

munity Vc by

F (Vc, C) := min
i∈Vc

T (i,C).

Assume A(Vc) denotes the set of companies C, which is followed

at least once in Vc, then we can measure the spread of company

following inside each detected community by

S(Vc, d) =

∑

C∈A(Vc)
|{i : i ∈ Vc and T (i, C) < d}|

|A(Vc)|
,

which is the average number of companies followed within d days

of the first following event. We then normalized the previous mea-

surement by the number of users in each community and computed

the following propagation rate:

M(d) =

k
∑

c=1

S(Vc, d)

|Vc|
. (15)

A partition {Vc}
k
c=1 with a higher M(d) value means the company

follow event spreads faster within the community. For each of the

three clustering algorithms described, we compute the M(d) value

and show the results for various link densities of companies. The

results are shown in Figure 8.

We found that the rate of spread of company following inside de-

tected communities is much faster than the rate of spread of com-

pany following inside communities formed by randomly grouping

members. Interestingly, the communities detected by time over-

lap are consistently better than that by link. In addition, we can

observe that the difference between them is large when average

degree is between 4 − 6, and becomes smaller when the average

degree increases to 12 − 14. This observation is not surprising

because the link information is not enough to find good commu-

nities for companies with low average degree, while it is affective
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(a) Company Follow propagation rate with respect to degree (b) Articles propagation rate with respect to degree

Figure 9: The propagation rate of company follow and articles with respect to degree. As average degree increases, the propagation rate

increases in communities detected by link information.

for companies with high average degree. We further investigate

this phenomenon in Figure 9(a). As the average degree increases,

the propagation rate of communities detected by link and overlap

becomes closer. The average degree of companies usually follows

the power-law distribution, which means there are many compa-

nies with very few connections, and only few companies with dense

connections. Therefore, clustering by organizational time overlap

is very useful in practice.

4.3 Virality of Updates
Besides the company following event, we can also use the viral-

ity of updates on LinkedIn to evaluate the detected communities.

On LinkedIn, users can view an article (in their feed of updates

from connections) that are shared by a connected user, and reshare

that article to their connections. We use the speed of an article’s

propagation within a cluster of users to evaluate the quality of clus-

ters. We show that the propagation speed of articles among the

communities detected by using organizational overlap information

is much faster than those using link information, and in certain

cases, the difference is up to 100%. Therefore, for a given user,

articles shared by other users in the same community are good can-

didates to recommend on the user feed of updates.

4.3.1 Evaluation

To generate randomly-sampled companies, we follow the same

methodology mentioned in the previous section. That is, we sam-

ple companies with varying average degrees. Similar to the ex-

periments on company follow events, we sample companies with

a wider range of average degree. For each interval, we randomly

sample 100 companies.

We test the quality of communities detected by organizational

overlapping time, by link information, and by random generation.

To measure an article’s propagation speed, we define the mea-

surement similar to Equation (15). The only change here is that

T (i, C) is now defined as the time that user i read article C on

LinkedIn. We again plot the propagation rate M(t) for the shared

articles in Figure 10. For each of the three clustering algorithms

described previously, we compute the M(t) value and show the

results for the various link densities of companies. We again see

that communities detected by time overlap have faster propagation

speeds than communities detected by link information or random

partitions. Also, similar to the company follow experiments, as

shown in Figure 9(b), when average degree increases, the propaga-

tion speed improves in communities detected by using link infor-

mation.

5. LINK PREDICTION
To apply the organizational time overlap model for link predic-

tion, we consider link prediction under two settings: warm start

problems and cold start problems.

In a warm start link prediction problem, we are given the cur-

rent connection between users at some specific time, and the task is

to predict future connections between users. In other words, we

are given a graph G(t1) = (V,E(t1)) at time t1 where edges

correspond to connections at time t1, and the task is to predict

edges in G(t2) = (V,E(t2)), for some time t2 > t1. As dis-

cussed in Section 2, many link prediction algorithms (for example,

as in Liben-Nowell and Kleinberg [15]) have been proposed to pre-

dict future edges based on current edges, and these algorithms are

widely used in practice. However, we will show that a supervised

learning method using only time overlap and company size infor-

mation outperforms traditional link-based predictors.

The cold start link prediction problem is another setting that we

use to predict future links for a given node with no link information

to this node. This problem is harder because less information exists,

but it is important in practice. For example, when a new user joins a

social network, such as LinkedIn or Facebook, it is very important

to provide good recommendations for connections to engage the

user. Therefore, the cold start problem is getting more recent atten-

tion in both link prediction and recommender systems [12, 25]. We

will tackle this problem by using the organizational time overlap

signal with other information. We will show that our model is very

effective in the cold start problem setting.

As shown in Equation (13), when λ and t are small, P (t) can

be approximated by a linear model; therefore, we use the following

linear model to approximate P (t):

P (t) ≈
d

∑

i=1

wixi,
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(a) Average degree: 4-6 (b) Average degree: 12-14

Figure 10: The propagation rate of articles with respect to the number of days

where x = [x1, · · · , xd] denotes features, including overlap time

t and company properties, and w = [w1, · · · , wd] denotes model

parameters. We consider the following features on a pair of users:

• Time overlap: The organizational time overlap of two users.

• Company size: As we discussed in Section 4, the parameter

λ highly depends on |S|−0.8, where |S| is the company size.

• Company propensity: How likely employees in a company

are friends. We compute this feature by

2(number of connections in company)/(company size)2.

• Company average age: We compute the average age of each

company.

• Company cluster coefficient: We compute the cluster coeffi-

cient for each company by

number of closed triplets

number of connected triples of vertices
.

The cluster coefficient measures how closely users are con-

nected in a company.

• Node propensity: We use average degree of each node as

the node propensity, which denotes how likely the node is

connected to another node.

• Join time difference: As discussed in Section 3.3.4, the join

time difference is also important to the probability of con-

nection. Thus, we also use this as a feature in our model.

For each problem, we consider two models:

• 2-features model: using only time overlap and company size

as features.

• all-features model: using all the features described in the

model.

For warm start problems, we compare the link-based meth-

ods Common Neighbor (CN) and Adamic-Adar (AA) with our 2-

features model. We do not compare CN and AA with models uti-

lizing more features because other features include the link infor-

mation, and we want to show our model outperforms link-based

methods without utilizing any link information. For both methods,

we use the training data (connections before the specific time t̄) to

compute the measurement or learn model parameters, and compare

the top-k accuracy (as defined in below) on the testing data (con-

nections after t̄).

For cold start problems, because there is no link information for

a given node, we compare 2-features model, all-features model,

and random by company. For all-features model, we will only

use the features available from the datasets. The model random

by company indicates that we predict links between users in the

same company by a uniformly random guess. The training/testing

sets are generated differently for each dataset (see Section 5.1).

Each of the link prediction methods will output scores on all the

node pairs. To evaluate the performance for each node i in the so-

cial network, we rank all other nodes j based on the score of pair

(i, j), and select the top-k nodes without an edge connected to i in

the training data as the top-k friend recommendations to user i. We

then compute the average accuracy on these top-k recommenda-

tions based on the testing data. This measurement, which is directly

related to the quality of top-k friend recommendations in online so-

cial networks, has been used in many recent papers [3, 27, 29]. We

use “top-k accuracy” to denote this measurement throughout our

experiments.

5.1 Experimental Setup
We consider three datasets: LinkedIn, Enron Email, and Wik-

iTalk. The description of the datasets is as follows:

• LinkedIn dataset: For the cold start problem, we randomly

sampled 20 companies, and formed a social network con-

sisting of the past and current employees. We selected the

date 2011/10/30 to separate the training and testing data.

We use all the connections before this time as training data

(for link-based algorithm), and connections after it as test-

ing data. (Note that we collected the data in Aug, 2012, so

all the nodes and edges after this time are not present in this

dataset.)

For the warm start problem, we randomly sampled 2 separate

networks, one for training and one for testing. Both training

and testing datasets contained (past or current) employees

from 5000 randomly-sampled companies.

• Enron Email dataset: A public dataset2 containing the mail-

boxes of 150 Enron employees. We used the emails in the

2Downloaded from http://www.cs.cmu.edu/~enron/
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inbox of these 150 Enron employees and generated a graph

where edges corresponds to an email exchange of two em-

ployees. Because some of the inboxes are empty, this pro-

duced a social graph with 137 nodes and 1611 edges.

For the warm start problem, we consider all the links before

September 2001 as training data, and all the links after it as

testing data. The training data contains 529 edges and the

testing data contains 1082 edges. For the cold start problem,

we use a subset of users (20 users) as training data, and the

rest of the social network as testing data.

Although this dataset does not have organizational time over-

lap information, we use the following heuristic to compute an

approximated overlap time from this data: for each user, we

can find his/her first and last email in the mailbox. Because

it is the company Enron’s mailbox, we use the first and last

email in their mailbox as the joining time and leaving time

for the user, and then compute the organizational time over-

lap by Equation (1).

• Wiki talk dataset: A public dataset3 containing a collec-

tion of the edit history of Wikipedia talk pages. Because

Wikipedia talk pages are discussions among Wikipedians,

two users editing the same Wikipedia talk page can be con-

sidered linked. Based on the edit history, we generate a social

graph with 1, 038, 443 nodes and 488, 283, 928 edges.

Similar to the Enron Email dataset, we generate the approxi-

mated overlap time from Wiki talk dataset by identifying the

first and last editing time for each user.

For the cold start problem, we divide the edges into

training/testing sets by the time before/after Jan 1, 2007

(the original data contains logs between 2003/01/06 to

2008/02/06). The resulting dataset has 199, 058, 354 edges

for training and 289, 225, 574 edges for testing. For the code

start problem, we use a subset with 1000 users for training,

and the rest for testing.

5.2 Experimental Results
Table 1 shows the results on our three datasets with warm start.

We can see that using only 2 features (time overlap and company

size) without any link information can achieve competitive or even

better top-k prediction compare to the two widely-used link pre-

diction methods Common Neighbor (CN) and Adamic-Adar (AA).

This result indicates that the organizational time overlap informa-

tion described in this paper is useful for predicting future links, for

example, 2-features model performs 42% better than CN and AA

in terms of precision at top5 on LinkedIn dataset.

We further show the performance of our proposed method in the

cold start setting. For the LinkedIn dataset, we extract all the fea-

tures from LinkedIn data. For the other two public datasets, all

users are in the same organization, thus the 2 feature model only

has one feature – time overlap. Also, company propensity, com-

pany average age, and company cluster coefficients do not matter

for Enron Email and Wiki Talk, so we only use the rest of the fea-

tures for the all feature model on these two public datasets. The

comparisons are shown in Figure 2. We can observe from Table 2

that the 2-feature model, which uses only organizational time over-

lap and company size, is dramatically improved over random by

company (based on whether two users belong to the same com-

pany), for example, in terms of precision at top5, 2-feature model

is more than 10 times better than random by company on LinkedIn

3Downloaded from the SNAP dataset collection http://snap.
stanford.edu/data/wiki-meta.html.

Table 1: The experimental results for the warm-start problem

LinkedIn dataset

top5 top10 top20 top50 top100

2 features 0.1207 0.1128 0.0893 0.0540 0.0313

CN 0.0847 0.0912 0.0792 0.0528 0.0310

AA 0.0837 0.0905 0.0770 0.0524 0.0311

Enron Email dataset

top5 top10 top20 top30 top50

2 features 0.3883 0.2605 0.1580 0.1267 0.0880

CN 0.03118 0.2722 0.2220 0.1776 0.1082

AA 0.03215 0.2833 0.2214 0.1812 0.0958

Wiki Talk dataset

top5 top10 top20 top50 top100

2 features 0.0819 0.0712 0.0495 0.0391 0.0241

CN 0.0625 0.0551 0.0414 0.0361 0.0217

AA 0.0728 0.0654 0.0458 0.0365 0.0214

Table 2: The experimental results for the cold-start problem

LinkedIn dataset

top5 top10 top20 top50 top100

2 features 0.282 0.249 0.210 0.156 0.122

all features 0.396 0.324 0.246 0.161 0.112

random by company 0.026 0.025 0.022 0.018 0.012

Enron Email dataset

top5 top10 top20 top30 top50

2 features 0.55 0.35 0.21 0.17 0.17

all features 0.61 0.38 0.22 0.18 0.17

random by company 0.17 0.17 0.17 0.17 0.17

Wiki Talk dataset

top5 top10 top20 top50 top100

2 features 0.0912 0.0875 0.0755 0.0542 0.0433

all features 0.1153 0.1041 0.0804 0.0626 0.0479

random by company 0.0009 0.0009 0.0009 0.0009 0.0009

dataset. Moreover, using more features can further improve the ac-

curacy over 2 features. The results show that organizational time

overlap is very important for link prediction tasks.

6. CONCLUSION
In this paper we proposed a novel model to compute probabil-

ity of connection between two people based on organizational time

overlap, and novel ways this could be applied to link prediction

and community detection on a social network. We showed that this

model is especially useful in cold start settings, which is very im-

portant for any online social network, and not much attention has

been given to these settings in existing research. In the future we

aim to utilize more node properties and combine that with graph

properties for link prediction and community detection.

To obtain a better fit, we also considered models with success

probability µ(1 − e−λt
γ

i ), where 0 < µ ≤ 1 and γ > 0. The

power function on overlap time moderates the edge probabilities,

especially for extreme overlap values. As before, µ is a nugget to

adjust for the fact that in larger companies a connection may not be

made even after large time overlap. We fit two models using a MLE

approach — (a) no-nugget model that fits (λ, γ) assuming µ = 1,

and (b) full model that fits all three parameters. The no-nugget

model provided a fit that was similar to the full model. However,

the no-nugget model seems promising and we are further exploring

it.
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