
Exploiting Annotations for the Rapid Development of
Collaborative Web Applications

Matthias Heinrich
SAP AG

SAP Research Dresden
matthias.heinrich@sap.com

Franz Josef Grüneberger
SAP AG

SAP Research Dresden
franz.josef.grueneberger@sap.com

Thomas Springer
Department of Computer Science
Dresden University of Technology

thomas.springer@tu-dresden.de

Martin Gaedke
Department of Computer Science
Chemnitz University of Technology

martin.gaedke@cs.tu-chemnitz.de

ABSTRACT
Web application frameworks are a proven means to acceler-
ate the development of interactive web applications. How-
ever, implementing collaborative real-time applications like
Google Docs requires specific concurrency control services
(i.e. document synchronization and conflict resolution) that
are not included in prevalent general-purpose frameworks
like jQuery or Knockout. Hence, developers have to get fa-
miliar with specific collaboration frameworks (e.g. ShareJS)
which substantially increases the development effort. To
ease the development of collaborative web applications, we
propose a set of source code annotations representing a light-
weight mechanism to introduce concurrency control services
into mature web frameworks. Those annotations are inter-
preted at runtime by a dedicated collaboration engine to
sync documents and resolve conflicts. We enhanced the
general-purpose framework Knockout with a collaboration
engine and conducted a developer study comparing our ap-
proach to a traditional concurrency control library. The
evaluation results show that the effort to incorporate collab-
oration capabilities into a web application can be reduced
by up to 40 percent using the annotation-based solution.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; H.5.3 [Information Inter-
faces and Presentation]: Group and Organization Inter-
faces—Computer supported cooperative work, Synchronous
interaction, Web-based interaction

Keywords
Groupware, Shared Editing, Web Applications, Web Engi-
neering

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

1. INTRODUCTION
Collaborative web applications are pervasive in our daily

lives since they exhibit numerous advantages in contrast
to traditional desktop applications. Leveraging the web as
application platform provides access from a myriad of de-
vices (e.g. PCs, smartphones, etc.) and allows for imme-
diate adoption without requiring time-consuming installa-
tion procedures. Moreover, providing real-time collabora-
tion features allowing multiple users to edit the very same
document simultaneously supersedes conventional document
merging or document locking techniques. These benefits al-
together prompted prominent collaborative web applications
like Google Docs serving millions of users each and every day.

Even though there is a variety of shared editing use cases
(e.g. jointly create documents, spreadsheets, presentations,
source code files, CAD models, etc.), web-based collabora-
tion tools offering shared editing capabilities are rare. From
the plentitude of web applications – for example the Chrome
Web Store lists more than 6 000 – we could only identify very
few web applications targeting some form of shared editing.
We attribute this mismatch of existing applications to po-
tential use cases to the poor technology support. In particu-
lar, web frameworks do not support concurrency control ser-
vices to the same extent they support common programming
tasks like form validation or asynchronous communication.
On the one hand, general-purpose frameworks like jQuery
or Knockout do not supply any functionality regarding con-
currency control; on the other hand, specific collaboration
frameworks like ShareJS offer only a very limited set of fea-
tures (e.g. only strings can be synchronized). Hence, pro-
grammers face the dilemma of having to get familiar with an
extra framework which might not even suit their needs. In
essence, having to learn a specific collaboration framework
or implementing the required collaboration capabilities from
scratch is a time-consuming and costly endeavor.

To lower the development costs implementing collabora-
tion capabilities, we propose the Collaborative Applications
via Data Annotations (ColADA) approach. ColADA lever-
ages source code annotations to enrich existing general-pur-
pose web frameworks with concurrency control support. An-
notations are a specific form of metadata and represent a
widely adopted, lightweight approach to enhance applica-
tions with additional runtime features that are supplied by a
dedicated annotation engine. For example, Java frameworks

551



like Hibernate or Spring provide annotations (e.g. @Table,
@Column, etc.) accompanied by an annotation engine to
enhance applications with features like object persistence,
dependency injection or container configuration.

We adopt source code annotations as a means to con-
figure a collaboration engine. While developers enrich the
application’s source code with annotations to declare data
objects as synchronized, the ColADA collaboration engine
processes these annotations and accomplishes the synchro-
nization. The implemented ColADA system enriches the
widely-adopted Knockout framework with collaboration ca-
pabilities. In contrast to using a comprehensive program-
ming library, we assume that a minimal annotation language
eases learnability and reduces development time as well as
boilerplate code. Moreover, an annotation-based solution
allows for multiple product variants. While evaluating an-
notations activates the collaboration feature, removing an-
notations results in a fully functional single-user application.

To confirm our assumptions that an annotation-based so-
lution can speed up the development of collaborative web
applications, we conducted a thorough developer study in-
volving eight programmers which had to use the ColADA
solution and a conventional concurrency control library to
develop a collaborative web application.

The main contributions of this paper are threefold:

• We propose an annotation-based approach to enrich
existing general-purpose frameworks with concurrency
control support to speed up the development of collab-
orative web applications.

• We report on a developer study with eight program-
mers comparing the developer productivity of an anno-
tation-based approach with a traditional approach lever-
aging a specific collaboration library.

• We carve out the framework characteristics that are
required to incorporate a collaboration engine for the
rapid development of shared editing applications and
discuss the entailed benefits as well as the induced lim-
itations.

The rest of this paper is organized as follows: Section 2 ex-
poses related work and Section 3 introduces the design goals
of the ColADA system as well as the ColADA architecture.
Section 4 elaborates on the ColADA implementation and
Section 5 shows the results of the conducted developer study
considering development time, lines of code, etc. While Sec-
tion 6 discusses limitations of the proposed approach and
requirements to adopt the ColADA system, Section 7 draws
conclusions.

2. RELATED WORK
There are various approaches aiming to accelerate pro-

grammer productivity when developing collaborative appli-
cations. Those approaches can be divided into two main cat-
egories: (1) concurrency control libraries exposing a set of
low-level methods and (2) transformation approaches capa-
ble of converting single-user applications into collaborative
multi-user applications. In this section, we will introduce
examples for each category and compare them to our work.

All approaches supporting the implementation of shared
editing applications (e.g. collaborative text editors, shared
whiteboards, etc.) have to expose document synchronization

and conflict resolution services. While the synchronization
ensures that the input from various geographically dispersed
users is synchronized without notable delay, the conflict res-
olution allows resolving editing conflicts automatically. For
example, an editing conflict may occur if two users of a
shared word processor add a character simultaneously at
the very same document position or assign different fonts
concurrently to the very same paragraph.

2.1 Concurrency Control Libraries
Numerous concurrency control libraries offer the synchro-

nization of various document copies in real-time as well as
the reconciliation of emerging editing conflicts. The pre-
dominant concurrency control algorithm is the Operational
Transformation (OT) algorithm which has been introduced
by Ellis and Gibbs in 1989 [6]. In the meantime, the OT al-
gorithm has been evolved to suit numerous document struc-
tures (e.g. SGML [5]) and to support advanced concur-
rency control operations (e.g. undo [9] or operation com-
pression [13]).

ShareJS [7] is an example of a concurrency control library.
The open-source ShareJS project is implemented in Coffee-
Script which is compiled to JavaScript and thus, ShareJS can
be embedded in arbitrary web applications. The OT-based
library is capable of synchronizing simple string objects and
JSON documents. However, the library does not allow sync-
ing comprehensive data structures (e.g. graph models).

Apache Wave [2] emanated from the former Google Wave
product and represents a full-fledged collaboration platform
including an OT library. Its support for XML data struc-
tures allows implementing rich text editors that typically
manage their data in some variation of a tree data structure.
Adopting Apache Wave entails the usage of the Google Web
Toolkit (GWT). Thereby, applications are implemented in
Java and compiled to JavaScript. The rigid GWT devel-
opment approach lacks interoperability with other develop-
ment approaches.

SAP Gravity [10] represents another OT library which is
part of SAP Process Flow, an SAP product for collabora-
tive business process modeling. In terms of data structure
support, SAP Gravity is more flexible than Apache Wave or
ShareJS since it allows syncing graph models that may in-
clude cycles. Thus, it is capable to accommodate arbitrary
business processes that can be expressed in BPMN. Since a
tree is a connected graph without cycles, all tree data struc-
tures (e.g. XML) are also supported by SAP Gravity. The
pure JavaScript library provided by SAP Gravity is suited
for all standards-based web applications.

Even though OT libraries give developers a flexible means
to implement collaboration capabilities at hand, adopting
these solutions imposes various challenges. First, web de-
velopers have to become familiar with the Application Pro-
gramming Interface (API). Second, using these APIs to in-
troduce collaboration features into an existing application
requires scattered and verbose source code changes. For ex-
ample, developers have to capture local document changes
and replay remote document changes. Third, some libraries
(e.g. Apache Wave) are not interoperable with general-
purpose frameworks or common development approaches.
Considering these challenges we claim that an annotation-
based approach can (1) reduce the entry barrier, (2) mini-
mize required source code changes and (3) properly integrate
with existing development approaches.

552



2.2 Transformation Approaches
Transformation approaches were pioneered by Sun et al.

who advocated transparent adaptation [15] as a viable means
to lower the development effort for groupware systems. The
transparent adaption approach aims“to convert existing sin-
gle-user applications into collaborative ones, without chang-
ing the source code of the original application”[15]. Thereby,
a specific collaboration adapter links the application model
to a generic collaboration engine in order to locally record
and remotely replay manipulations. Sun et al. reported on
the successful transformation of numerous prominent single-
user tools such as Autodesk Maya [3], Microsoft Word [16]
or Microsoft PowerPoint [15].

A second transformation approach targeting the conver-
sion of single-user web applications was introduced in [8].
The conversion leverages a Generic Collaboration Infras-
tructure (GCI) that allows capturing and replaying Docu-
ment Object Model (DOM) manipulations in an application-
agnostic manner. The GCI transformation was adopted to
successfully convert two widely-adopted, open-source edi-
tors (SVG-edit and CKEditor). In contrast to transpar-
ent adaptation requiring an application-specific collabora-
tion adapter, the GCI represents a more efficient transforma-
tion technique depending solely on a tailored configuration
file.

Both approaches incur limitations that we aim to address
with the annotation-based ColADA solution. On the one
hand, transparent adaption promotes the use of an extra col-
laboration adapter for each application which significantly
increases the transformation effort. On the other hand, the
GCI is only adoptable by web applications which expose a
data model accommodated in the DOM. Web applications
that expose an external data model represented by a specific
JavaScript data structure are not supported.

3. THE COLADA APPROACH
We propose the ColADA approach to overcome the limi-

tations of existing approaches, i.e. the boilerplate code re-
quired by concurrency control libraries, the substantial effort
induced by transparent adaptation and the missing support
of the GCI for external data models. Therefore, in this sec-
tion, we introduce the design goals and challenges of the
ColADA approach as well as framework requirements allow-
ing to adopt ColADA. Moreover, we present the architecture
of the ColADA system.

3.1 Design Goals
The overarching goal of our work is to increase program-

mer productivity in the context of the development of col-
laborative web applications. We refined this coarse-grained
goal into the following objectives:

• Learnability: The approach should be easy to learn.

• Collaboration Functionality Completeness: The col-
laboration engine should expose mature and flexible
concurrency control services.

• Interoperability: The collaborative applications should
support cross-browser and cross-device scenarios, i.e.
users can leverage shared editing capabilities using an
arbitrary modern browser and an arbitrary Internet-
ready device.

Table 1: Catalog of MVC web frameworks

• Separation of Concerns: Collaboration features should
be clearly separated from other functional aspects.

While learnability ensures that programmers can rapidly
adopt the approach, collaboration functionality and inter-
operability assure that the envisioned collaboration engine
meets the requirements of industrial-scale projects in terms
of quality, flexibility as well as browser coverage. The sep-
aration of concerns goal facilitates product maintainabil-
ity and eases the bundling of several product variants (i.e.
single-user and multi-user versions).

To address the learnability objective, we adopt an annota-
tion-based solution exhibiting a minimal set of annotations
that enriches an existing framework instead of devising an
extra framework. Hence, developers might leverage their
existing skill set with respect to the host framework. To
furthermore provide mature collaboration functionality, we
aim to incorporate the operational transformation engine
SAP Gravity that has a proven track record of serving real
applications since it powers the industrial-strength product
SAP Process Flow [10]. Interoperability is the most chal-
lenging objective since there is a myriad of browsers and a
plentitude of Internet-ready devices whereas device charac-
teristics (e.g. screen size) and browser characteristics (e.g.
supported JavaScript libraries) strongly differ. Instead of
dealing with varying browser or device characteristics, we
plan to employ an existing web application framework pro-
viding a robust abstraction and hiding browser inconsisten-
cies as well as device specifics. Satisfying the separation of
concerns objective can also be accomplished through anno-
tations since their declarative style establishes a distinctive
isolation.

3.2 Framework Requirements
In the following, we derive from the design goals a set of

requirements that a framework has to fulfill. First, a frame-
work that qualifies for the enrichment with collaboration
capabilities should enforce the separation of the presenta-
tion and the data layer. The availability of an encapsulated
data model is the key to synchronize numerous application
instances in a device- and browser-independent way since
application models are a means to store data without in-
cluding specifics about their presentation. Thus, the inter-
operability goal can be satisfied. Table 1 lists frameworks
that enforce the established Model-View-Controller (MVC)
structure [4].

553



(a) Scattered Data Model (b) Subgraph-based Data Model

Application Application

Data
Objects

ApplicationApplication

Data Access
Reference

Data
Reference

Annotated 
Data Objects

Business
Logic

Business Logic
Reference

Figure 1: Classification of typical data model struc-
tures

A second framework requirement stems from the fact that
we have to attach a collaboration engine providing suit-
able collaboration functionality (i.e. concurrency control
services). Therefore, captured model changes have to be
supplied to the collaboration engine which requires a notifi-
cation mechanism. This notification mechanism allows the
collaboration engine to react upon model changes. Hence,
model manipulations can be recorded and propagated. As
depicted in Table 1, all considered frameworks supply an
appropriate mechanism to register event handlers.

A last requirement is induced by the adoption of an anno-
tation-based approach supporting the learnability and sep-
aration of concerns objective. Annotations represent a vi-
able means to declaratively mark the data model in order to
configure the collaboration engine. Consequently, the data
model structure determines the quantity of required annota-
tions. Thus, we further analyzed the frameworks shown in
Table 1 and established a data model classification depicted
in Figure 1 grouping MVC applications into (1) scattered
and (2) subgraph-based data model structures. Applica-
tions with a scattered data structure (cf. Figure 1a) ex-
pose numerous partial data models that are not interlinked.
To discover and synchronize each model, the collaboration
engine requires an annotation for each root node of a par-
tial model. In contrast, applications with a subgraph-based
data structure (cf. Figure 1b) require solely one annota-
tion since the interlinked data structure can be completely
discovered marking the single root node of the data model.
Minimizing the number of source code annotations is es-
sential to increase developer productivity and therefore, we
only consider frameworks that enforce applications to expose
a subgraph-based data model.

3.3 Architecture
After carving out framework requirements, we devised the

ColADA architecture depicted in Figure 2. The distributed
ColADA system consists of a server and an arbitrary number
of clients. ColADA components are divided into white com-
ponents belonging to the original application and grey com-
ponents representing the collaboration engine. The white
boxes illustrate a framework-based application including the
model, the view and the controller. The controller mediates
between view and model, i.e. once the user triggers view
changes they are propagated to the model and vice versa.

Additionally, the application model represents the inter-
face to the collaboration engine which captures local model
manipulations and replays remote model modifications. The
capture and replay logic is accommodated in the Framework-

View

Controller

Model
FCA OTEHTTP

View

Controller

Model
FCAOTEHTTP

Client ClientServer

OTE OTE

Application Components

Collaboration Engine Components

FCA - Framework-specific Collaboration Adapter

OTE - Operational Transformation Engine

SCASCA

SCA - Source Code Annotations

Figure 2: Architecture of the ColADA system

specific Collaboration Adapter (FCA). This FCA also in-
cludes the annotation processor that replaces introduced
Source Code Annotations (SCAs) with JavaScript function
calls once the application is loaded. Those inserted function
calls are a means to register listeners as well as to attach
replay handlers. To support proper document synchroniza-
tion and conflict resolution, an Operational Transformation
Engine (OTE) handles all sync mechanics. Thereby, the
FCA supplies change notifications which are converted by
the OTE into OT operations. Transforming concurrent OT
operations allows to resolve conflicts and to maintain consis-
tent document copies. For example, if two users simultane-
ously add a character at the first position of their document
copy, the OTE adapts the indexes so that one character is
added at the first position while the other character is in-
serted at the second position. Hence, the editing conflict is
resolved and both document copies are consistent. Another
responsibility of the OTE is to serialize OT operations in a
JSON representation. Serialized OT operations are sent to
a central server using common bi-directional, HTTP-based
communication techniques such as long polling or HTTP
streaming [17]. The server instance forwards the messages
to all clients except the sender client. Once the message is
delivered to a client, the JSON message is deserialized into
an OT operation. In order to reconcile potential conflicts,
this OT operation has to be transformed against concurrent
local operations. Transformed OT operations are translated
into model manipulations to sync the respective model in-
stance.

4. COLADA SYSTEM IMPLEMENTATION
The ColADA architecture is materialized by a concrete

implementation that we will discuss in the following. In
essence, the implementation section focuses on the annota-
tion language, the annotation incorporation workflow, the
annotation replacement process as well as the sync proce-
dures.

When selecting a specific framework for the ColADA im-
plementation, we took into account the three identified frame-
work requirements: (1) the availability of a notification mech-
anism, (2) the subgraph-based data structure and (3) the
MVC compliance. Consequently, only four frameworks in
Table 1 are eligible for adding shared editing capabilities.
Due to the overwhelming adoption of the Knockout frame-
work in recent months (i.e. approximately 1 million down-
loads in 2012), we selected Knockout [11] for the integra-
tion of an application-agnostic collaboration engine. Hence,
we translated the generic ColADA architecture depicted in

554



Figure 2 into a concrete Knockout-specific implementation1

whereas the framework-specific adapter is materialized by
the Knockout Collaboration Adapter (KCA).

4.1 Annotation Language
We devised a Knockout-specific annotation language com-

prising the source code annotations @Sync and @Class. This
compact annotation language is a means to configure sync
processes in the following way:

• @Sync: The @Sync(modelName) annotation marks the
Knockout model that should be synchronized among
all application instances sharing the same session. The
parameter modelName identifies the name of the Java-
Script variable pointing to the data model.

• @Class: The @Class(className) annotation acts as a
selector for object constructors. In order to allow for
a proper replay of a local object creation at all remote
sites, an object constructor has to be leveraged since
the object creation might incur side effects. For exam-
ple, creating a new object might entail to increment
a global counter. This side effect of incrementing a
counter cannot be replayed in a generic fashion and
thus, the collaboration engine requires a handle to the
actual object constructor.

4.2 Annotation Incorporation
To illustrate how source code annotations can be adopted

to implement collaborative Knockout applications, we intro-
duce the minimal example of a todo list application. This
collaborative application should allow multiple users to con-
currently add, remove or edit tasks that are organized in a
list. Knockout applications commonly comprise two distinct
parts: a view definition as well as a model definition which
are automatically associated at runtime. To enhance such an
application with collaboration support, the following steps
are required:

• Annotation Insertion: Insert source code annotations
in all files encapsulating data model definitions.

• Configuration: Complete a dedicated configuration by
listing all files which contain annotations.

• KCA Import: Adapt the view definition in order to re-
place the original model import with the KCA import.

Figure 3 and Figure 4 show the collaboration-enabled view
as well as the model for to the exemplary todo list appli-
cation. The view definition (cf. Figure 3) mainly com-
prises regular HTML tags intermingled with a Knockout-
specific data-bind attribute. While HTML tags define the
UI to enter new tasks and to enumerate them in a dedi-
cated list, the data-bind attribute establishes the link to the
data model. The only difference between the original and
the collaboration-enabled view definition is the script im-
port section. Instead of embedding the original Knockout
model (encapsulated in the <!- - / - -> tags), the collabo-
ration adapter kca.js has to be included. The kca.js script

1Note that we also adopted the ColADA approach to imple-
ment a second collaboration adapter targeting the SAPUI5
framework [12] which is solely exploited for SAP-internal use
cases.

...
  <!-- <script type="text/javascript" src="model.js"/> -->
  <script type="text/javascript" src="kca.js"/> 
...

  <input data-bind="value: input"/>
  <button data-bind="click: addTask">Add Task</button>
  <ul data-bind="foreach: tasks">
     <li>
         <span data-bind="text: name"></span>
         <a href='#' data-bind="click: delete">Delete Task</a>
     </li>
  </ul>
...

Figure 3: Exemplary Knockout view including the
kca.js script

  
 // @Class("Task")
 var Task = function (data) { this.name = ko.observable(data.name) }
 

 Task.prototype.delete = function() { model.tasks.remove(this) }
    
 // @Sync("model")
 var model = { input: ko.observable(),  
               tasks: ko.observableArray() }
 

 model.addTask = function() {
        model.tasks.push(new Task({'name': model.input()}));
        model.input("") }
 

 ko.applyBindings(model);
... 

Figure 4: Exemplary Knockout model enhanced
with annotations

exploits a dedicated configuration file to retrieve associated
model definitions. Eventually, the parser encapsulated in
the kca.js locates all annotations and replaces them with
the synchronization logic.

In Figure 4, an annotated model definition associated to
the view definition in Figure 3 is depicted. The @Class anno-
tation marks the object constructor to allow for the creation
of new task objects and @Sync points to the model variable
to get a handle to the actual data model. Note that all
annotations are encapsulated in JavaScript comments since
JavaScript does not offer a native annotation concept. To
illustrate the explained example, we additionally produced
a screencast demonstrating the creation of the collaborative
todo application and made it available on our ColADA page
http://vsr.informatik.tu-chemnitz.de/demo/ColADA/.

4.3 Annotation Processing
To grasp the inner workings of the Knockout-specific im-

plementation, it is crucial to understand the annotation pro-
cessor that replaces annotations with JavaScript source code
at runtime. The annotation processing starts by parsing all
model definition files specified in the configuration and iden-
tifies inserted annotations. Those annotations are expanded
to blocks of JavaScript code which for the @Class anno-
tation is straightforward. The logic replacing the @Class
annotation expands to a function call storing a reference to
the constructor method in a global map. In contrast to this
minimal substitution, the replacement of @Sync is challeng-
ing since the injected code has to bridge the gap between the
Knockout model and the OTE which essentially enables the
propagation of local manipulations and the replay of remote
manipulations. Figure 5 depicts a skeleton of the inlined

555



function traverseModel(knockoutModel) {
    ... // list includes all nodes of the Knockout model
    return koNodeList;
} 
  

foreach(koNode in traverseModel(knockoutModel)) {
  

    koNode.setUUID();
 

    if(koNode.isType(Primitive)) {
 

        // create Gravity node and set inital value
        gravityNode = gravityModel.addNode(...);
 

        // propagate local changes
        koNode.subscribe(function(newValue) {...});
  

        // subscribe to Gravity model changes
        gravityModel.addModelListener(...);
    }
 

    if(koNode.isType(Array)) {...} 
} 

I

II

III

IV

V

Figure 5: Skeleton of the JavaScript function replac-
ing the @Sync annotation

function replacing the @Sync annotation. Note that this
pseudocode is bound to the specific SAP Gravity OTE [10].

The SAP Gravity OTE consists of a graph model accom-
modating nodes, attributes and edges. A graph model is
created using a dedicated JavaScript API that offers func-
tions like createModel(), addNode(), etc. SAP Gravity syn-
chronizes this specific graph model automatically adopting
an OT-based conflict resolution scheme. Hence, to sync an
application, the Knockout model has to be mapped to the
Gravity data structure and vice versa. This bi-directional
mapping is materialized by the functions depicted in Fig-
ure 5. Establishing the mapping is subdivided in (I) travers-
ing the Knockout model, (II) assigning a unique ID to Knock-
out nodes, (III) creating Gravity counterparts for Knock-
out nodes, (IV) registering listeners on Knockout nodes to
inform about local changes and (V) attaching listeners to
Gravity nodes to replay remote changes. In comparison to
inserting a one-line annotation, the complex inlined function
supporting arbitrary Knockout models adds up to more than
a thousand lines of JavaScript code. This complexity origi-
nates from the generic applicability of the function that sup-
ports the traversal of all graph-structured Knockout models,
the mapping of various Knockout node types, the callback
registration for different model change operations, etc. Note
that adding the code for a specific Knockout model would
drastically reduce the code complexity but the five major
code blocks (cf. Figure 5) are still required.

4.4 Synchronization Workflows
After all annotations were replaced with corresponding

JavaScript functions, the synchronization workflows as de-
picted in Figure 6 are executed by the browser’s JavaScript
engine. The synchronization is divided into two processes:
the local change propagation (cf. Figure 6a) and the remote
change incorporation (cf. Figure 6b).

The local change propagation encompasses various steps.
First, listeners registered on the Knockout model translate
all kinds of model manipulations (e.g. change, create or
delete operations) into Gravity API calls and inform the
model handler. As soon as the model handler is notified, the
Gravity API calls are applied on the Gravity model. These
changes to the Gravity model are observed by the operation
generator which is in charge of extracting and grouping the

View Controller Model*

Knockout Application

Gravity
Model

Operation
Generator

2

3
4

Model
Handler

JSON
Serializer

5

6

View Controller Model*

Knockout Application

SAP Gravity OTE

Gravity
Model

Operation
Generator

3
Model

Handler

JSON
Deserializer

2

1

SAP Gravity OTE

4

(a) Local Change Propagation (b) Remote Change Incorporation

1

* Annotations have already been replaced by JavaScript code.

Figure 6: Synchronization workflows

resulting OT operations. Grouping OT operations is a spe-
cific Gravity OTE concept allowing to encapsulate numerous
primitive OT operations in one complex OT operation that
is executed in a transactional manner, i.e. complex oper-
ations are either completely executed or completely rolled
back. For example, inserting a table in a word processor
might comprise the creation of various table cells whereas
this compound create-table operation can be easily trans-
lated to Gravity’s complex operation concept. Aggregated
OT operations are forwarded by the model handler to the
JSON serializer. Eventually, the JSON serializer converts
OT operation objects into a JSON representation that is
transmitted to the server.

The server distributes the JSON messages to all clients ex-
cept the sender client. Clients receiving JSON change sets
trigger the remote change incorporation process (cf. Fig-
ure 6b). Initially, the JSON deserializer transforms JSON
messages into JavaScript objects accommodating OT oper-
ations. The model handler then transforms these opera-
tions against concurrent local operations and the resulting
transformed operations are applied to the Gravity model.
Thereby, the operation generator is detached from the Grav-
ity model to avoid propagating the change back to remote
clients. Moreover, the model handler leverages the inlined
code to reflect the changes in the Knockout model.

4.5 Application Deployment
Annotated web applications can be deployed on regular

HTTP servers whereas an additional sync server is required.
Once the application is deployed, a modern browser is suffi-
cient to execute the annotation processing and the synchro-
nization on the client side. Nevertheless, deploying a mini-
fied version requires the running of the annotation processor
before the minification step since the minification removes
the comments from the source code including annotations.
Besides combining the annotation processor with a minifica-
tion step, it is also feasible to produce a single-user product
variant. Thereby, the minification step is run exclusively
without the annotation processing step.

5. EVALUATION
To assess developer productivity, the Knockout-specific

ColADA system and the set of annotations were leveraged
in a developer study and compared to a traditional con-
currency control library. In this section, we report on the
selected evaluation characteristics, the adopted evaluation

556



Functional Suitability

Compatibility

Usability

Maintainability

Performance Efficiency

Reliability

Security

Portability

Product Quality

Effectiveness

Efficiency

Satisfaction

Freedom from Risk

Context Coverage

Quality in Use

Relevant Characteristics Irrelevant Characteristics

Figure 7: Product quality and quality in use model
defined in the ISO/IEC 25010

procedure, the devised development task as well as the de-
tected evaluation results.

5.1 Evaluation Characteristics
In order to yield meaningful results conducting a devel-

oper study, we embraced a number of established software
metrics that target the evaluation of software systems. In
particular, we took into account the product quality model
and the quality in use model which are both defined in the
ISO/IEC 25010 standard [1]. While the product quality
model determines the static quality of a software system,
the quality in use model emphasizes characteristics that are
relevant in concrete usage scenarios. Both models encom-
pass various quality aspects whereas some are not appropri-
ate for the assessment of developer productivity. Figure 7
shows relevant characteristics that we embraced in the de-
veloper study as well as irrelevant characteristics that we
chose to neglect.

5.2 Evaluation Procedure
Before conducting the actual developer study, several as-

pects had to be planned in advance. For example, develop-
ers were recruited, introductory lectures about the ColADA
approach and the selected concurrency control library were
prepared, a suitable task description for the development of
a collaborative application was devised and a questionnaire
to assess the selected quality characteristics was authored.

To limit the evaluation costs, we offered a three months
course at the Dresden University of Technology instead of
recruiting professional developers. Students were only eli-
gible for the course if they were enrolled at the faculty of
computer science. Eventually, eight students participated
and completed a questionnaire assessing their programming
expertise at the beginning of the course. The completed
questionnaires showed that all students were familiar with
numerous programming languages (e.g. Java, C, etc.). How-
ever, no student was acquainted with the development of
shared editing applications.

The offered course was divided into three development
sprints where students were asked to first develop a single-
user application using the Knockout framework. Moreover,
students had to enrich this single-user application with col-
laboration capabilities using, on the one hand, the devised

Benefitlow high

C
os

t
lo

w
hi

gh

Cost-Benefit Analysis

Discontinue
  

- Item A1
- Item A2

Review Costs
  

- Item B1
- Item B2

Alternatives
  

- Item C1

Continue
  

- Item D1

New Item Delete Item ... ...

Functional Requirements:
  

(1) Cost and benefit items shall be classified in a 2 x 2 matrix.
(2) Matrix cells shall accommodate user-created items.
(3) Users shall be able to add and remove items.
(4) Users shall be able to move and reorder items using drag-and-drop.
(5) Matrix cells and the matrix itself shall expose a heading and the matrix axes shall exhibit a label.
(6) Headings, labels and items shall be editable.
(7) All user changes shall be synchronized in real-time and conflicts shall be automatically resolved.

Figure 8: Mockup and requirements of the cost-
benefit analysis application

ColADA solution; and on the other hand, leveraging the
concurrency control library SAP Gravity. Each develop-
ment sprint started with a tailored lecture targeting (1) the
Knockout framework, (2) the annotation-based program-
ming model and (3) the SAP Gravity API.

The collaborative web application that was going to be
developed to compare the traditional approach leveraging
the Gravity API with the proposed annotation-based solu-
tion should support cost-benefit analyses. A Cost-Benefit
Analysis (CBA) is a systematic process to justify an invest-
ment or to compare various projects by listing all positive
and all negative factors. For example, a CBA might be used
to review the construction of a new highway or to rethink
the introduction of an enterprise resource planning system.

The development specification in Figure 8 defines the func-
tional requirements and a mockup of the CBA application
that students had to implement. After receiving an intro-
ductory session about programming Knockout applications,
the task specification (cf. Figure 8) was distributed among
all participants. In the first development sprint, students
had to program the single-user application which served as
the base application for the development of the collabora-
tive CBA applications. In the second sprint, students pro-
grammed the collaborative CBA application adopting the
Knockout collaboration adapter and in the third sprint, they
were asked to introduce shared editing capabilities using the
SAP Gravity API. Adopting the Gravity JavaScript API
means students have to manually write the source code to
sync the Knockout model and the Gravity model which in-
cludes traversing the models, registering callback functions,
etc. (cf. Figure 5). During the entire development period,
students had to work and implement their prototypes au-
tonomously. However, a weekly meeting was setup to discuss
issues with other participants or with a dedicated supervisor.

To properly analyze the students’ work, various qualita-
tive and quantitative data sources were captured. In partic-
ular, the following data sources were used to compare the
two approaches for collaborative application development:

557



Figure 9: Calculated mean μ in the development
time analysis

• Development Documentation: In every development
sprint, students were asked to complete a form. This
form was divided into two parts: the time recording
and the issues section. In the time recordings’ part,
students had to enter a subtask description associated
to the time spent for the completion. In the issues
section, students explained encountered problems.

• Source Code: The source code handed in at the end of
each sprint was analyzed to assess the fulfillment of the
functional requirements and to measure the resulting
lines of code. The lines-of-code analysis divided the
code contributions into the individual programming
languages (e.g. JavaScript, HTML, etc.).

• Questionnaire: After completing the three develop-
ment sprints, all students had to fill out a question-
naire comprising 34 questions, 17 of which addressed
the Gravity-based development and the other 17 aimed
to assess the annotation-based development approach.
The questionnaire depicted in Figure 11 was designed
to evaluate product quality characteristics (cf. Q1 -
Q12) as well as quality in use aspects (cf. Q13 - Q17).

5.3 Evaluation Results
To compare the effectiveness and efficiency of the ColADA

approach with the conventional concurrency control library,
we first employed two quantitative measures: (1) the devel-
opment time and (2) the lines of code measure. Therefore,
we exploited data collected in the form of development docu-
mentation and handed in source code. Only if all functional
requirements were fulfilled, the collected data was included
in the effectiveness and efficiency assessment. From eight
students seven were able to completely finish the develop-
ment of the single-user application as well as the implemen-
tation of the two collaborative applications.

Consequently, when calculating the mean μ of the total
development time, we only considered the timesheets from
seven students. On average, students spent 54 hours to get
familiar with the Gravity API and to program the collabo-
rative application in contrast to 42 hours adopting source
code annotations (cf. Figure 9). Hence, employing the
annotation-based approach could reduce the development
effort by 22 percent. The overall development times of 54
hours and 42 hours respectively include 25 hours that were
dedicated to the implementation of the single-user applica-
tion. Thus, the actual development effort for introducing
shared editing capabilities adds up to 29 hours versus 17
hours. This represents a 41 percent reduction when adopt-
ing the annotation-based approach. Even though the eval-
uation was only conducted with eight developers and solely
included one specific concurrency control library (the Grav-
ity API) as well as one specific annotation solution, the trend
is apparent that configuring a collaboration engine using

Figure 10: Calculated mean μ in the lines of code
analysis

source code annotations is beneficial in terms of efficiency
and can significantly outperform conventional collaboration
libraries. In terms of effectiveness, both development ap-
proaches are suitable to develop collaborative applications
since the resulting implementations were able to fulfill all
functional requirements.

The second quantitative measure analyzed the Lines of
Code (LoC) metric whereas seven valid source code contri-
butions were included in the analysis. The code contribu-
tions were divided into the individual categories (1) HTML
code, (2) JavaScript code, (3) annotation code and (4) con-
figuration code. Figure 10 shows the LoC measurements
whereas in each category the mean μ is depicted. One dis-
tinguishing factor between the use of the Gravity API and
the use of annotations is the JavaScript LoC measure. On
average, developers needed 97 lines of JavaScript code ac-
companied by 4 annotations and 7 configuration lines to
inject collaboration capabilities in contrast to 515 lines of
JavaScript code for adopting the Gravity API. This rep-
resents a considerable reduction of 81 percent in terms of
JavaScript code when leveraging the proposed annotation-
based approach. Even though the HTML LoC exposes only
minor differences, the overall LoC measure resulting in 878
LoC versus 462 LoC once again shows a 47 percent source
code reduction adopting the introduced ColADA solution.
The substantial LoC reduction is another demonstration of
the efficiency an annotation-based solution can deliver.

Besides employing quantitative measures, we also exploi-
ted qualitative evaluation techniques. Therefore, we created
a questionnaire (cf. Figure 11) that targeted the selected
evaluation characteristics (cf. Figure 7). For both develop-
ment approaches, eight completed questionnaires were used
to calculate the mean μ as well as the confidence interval [14].
While the mean μ is depicted in Figure 11 by grey bars,
the confidence interval is visualized using black error bars.
Confidence intervals are associated to a confidence level of
90 percent and the significance level of α = 0.1. The confi-
dence level expresses the likelihood that further equally con-
ducted developer studies would also expose a mean within
the limits of the confidence interval. Moreover, confidence
intervals are a viable means to detect whether the difference
of various mean constants (e.g. the means calculated for the
two development approaches) are significant or not. If con-
fidence intervals do not overlap, the differences of the means
are significant [14]. If, on the contrary, confidence intervals
do overlap, deriving an assured conclusion is not possible.

In general, the results of the experiment demonstrate that
the ColADA approach constantly received superior ratings
compared to the conventional approach leveraging the Grav-
ity API. The functional suitability ratings could confirm
that both approaches provide the necessary functionality

558



Figure 11: Developer study questionnaire and the corresponding evaluation results

to develop collaborative applications (Q1: μKCA = 4.50,
μGra = 3.88). However, the ColADA approach could sig-
nificantly outperform the Gravity approach with respect to
the ease of development (Q2: μKCA = 4.50, μGra = 3.25).
Regarding the compatibility characteristics (Q3-Q4) devel-
opers stated that both programming methodologies did not
restrict their choice of technology and that the technology
interplay worked well. Even though the KCA ratings are
slightly better (Q3 2 : μKCA = 2.25, μGra = 2.38, Q4:
μKCA = 4.00, μGra = 3.25), the difference is not substan-
tial. The same trend with modestly better ratings for the
KCA approach continued in the usability category where
students were asked to assess the learnability, the ease of use
and the error prevention. We would, however, have expected
a larger difference, in particular in terms of learnability (Q5:
μKCA = 3.63, μGra = 2.88). Maintainability ratings once
again exhibited considerable advantages for the KCA ap-
proach. In particular the separation of synchronization code
from the rest of the application code is appropriately sup-
ported by the annotation-based approach (Q8: μKCA =
3.88, μGra = 2.63). Nevertheless, the ability to detect and
reconstruct failures leaves room for improvement. For the
KCA approach error detection and debugging is especially
cumbersome since annotations are replaced at runtime and

2Note that in Q3 the lower the mean μ the better is the
rating.

consequently, the design time and the runtime definition dif-
fer. The satisfaction category once again assured that the
KCA is easily adoptable (Q16: μKCA = 4.00, μGra = 2.63)
and represents a comfortable means to develop collabora-
tive applications (Q17: μKCA = 4.38, μGra = 2.88). The
non-overlapping confidence intervals in Q16 and Q17 exhibit
that this difference is significant.

6. DISCUSSION
While exploring an annotation-based concurrency control

solution, we observed numerous benefits and limitations. In
the evaluation section, we reported on the benefits. For
example, development time and lines of code were crucially
reduced. In addition, evaluated software characteristics con-
stantly received superior ratings compared to a traditional
concurrency control API. In this section, limitations regard-
ing the Knockout-based implementation are discussed.

Debugging Support: As described in Section 4.3 an
annotation processor is in charge of replacing annotations
with blocks of JavaScript code that are executed at runtime.
When debugging the annotated application, developers are
confronted with generated code and not with familiar anno-
tations. This representation switch may hinder the debug-
ging efficiency since developers have to adapt to the injected
source code representing annotations. Nevertheless, the in-
lined JavaScript functions (cf. Figure 5) are fixed and thus,

559



the replacement of an annotation is analog to stepping into
the definition of a function call. The only difference is that
the method body entered during debugging is associated to
an annotation and not to a function call.

Notification Bypassing: The Knockout-specific noti-
fication mechanism is established through observable func-
tions that allow inspecting model elements and thus, this
mechanism is exploited by the KCA to capture model ma-
nipulations. Individual model properties (e.g. task name
or task due date) can only be monitored if they are de-
clared as Knockout observables. The Knockout framework
offers three methods to declare observables: observable(),
computed() and observableArray(). While the observable
method allows declaring simple model properties (e.g. name),
the computed method can declare aggregated properties (e.g.
first and last name) and observableArray is used to declare
arrays. However, if developers circumvent this Knockout-
specific notification mechanism, the KCA has no means to
record model manipulations and the sync mechanism breaks.

Runtime Model Enhancements: Once the kca.js script
is loaded by the browser, the included annotation processor
locates annotations and replaces them with JavaScript code
that accommodates the listener and the replay logic. If the
model definition changes at runtime (e.g. a task object is
enhanced with a new priority property), the KCA will not
take notice and will fail syncing this novel model property.
Constantly examining all runtime objects for property en-
hancements could eliminate this limitation but at the cost
of performance degradation. Since changing the model def-
inition at runtime is rather exceptional, we did not adapt
the current KCA implementation.

7. CONCLUSION
Incorporating shared editing capabilities in web applica-

tions using traditional concurrency control libraries is a time-
consuming and tedious task. Therefore, we evaluated the
ColADA solution which promised to increase development
productivity since lightweight source code annotations are
leveraged instead of using conventional collaboration libra-
ries that induce the need to rigorously change the applica-
tion’s source code.

Through the transformation of the widely-adopted Knock-
out framework into a collaboration-enabled web application
framework, we showed that source code annotations are in
the first place a viable option to introduce collaboration fea-
tures. Moreover, a developer study employing the adapted
Knockout framework could affirm our hypothesis that the
annotation-based ColADA approach can outperform a tra-
ditional concurrency control library. In the particular de-
veloper study, we compared the enriched Knockout frame-
work with the SAP Gravity library and the results showed
that the development time as well as the required source
code changes can be substantially reduced when adopting
an annotation-based solution. Additionally, the developer
study exhibits that programmers are generally more satisfied
with an annotation-based approach when comparing soft-
ware quality characteristics like functional suitability, com-
patibility, usability, maintainability and satisfaction. Be-
sides being beneficial for development efficiency, annotations
are also a capable means to define multiple product variants
(e.g. single-user and multi-user version) in one single code
branch.

8. ACKNOWLEDGMENTS
This work was partially supported by funds from the Eu-

ropean Commission (project OMELETTE, contract number
257635).

9. REFERENCES
[1] ISO/IEC FDIS 25010 : 2010 (E) - Systems and

Software Engineering - Systems and Software Quality
Requirements and Evaluation (SQuaRE) - System and
Software Quality Models. 2012.

[2] The Apache Software Foundation. Apache Wave.
http://incubator.apache.org/wave/, 2012.

[3] Agustina, F. Liu, S. Xia, H. Shen, and C. Sun.
CoMaya: Incorporating Advanced Collaboration
Capabilities into 3D Digital Media Design Tools. In
Proc. CSCW, pages 5–8, 2008.

[4] F. Buschmann, K. Henney, and D. C. Schmidt.
Pattern Oriented Software Architecture Volume 5: On
Patterns and Pattern Languages. John Wiley & Sons,
2007.

[5] A. H. Davis, C. Sun, and J. Lu. Generalizing
Operational Transformation to the Standard General
Markup Language. In Proc. CSCW, pages 58–67, 2002.

[6] C. A. Ellis and S. J. Gibbs. Concurrency Control in
Groupware Systems. In Proc. SIGMOD, pages
399–407. ACM, 1989.

[7] J. Gentle. ShareJS - Live Concurrent Editing in your
App. http://sharejs.org/, 2012.

[8] M. Heinrich, F. Lehmann, T. Springer, and
M. Gaedke. Exploiting Single-User Web Applications
for Shared Editing - A Generic Transformation
Approach. In WWW, pages 1057–1066, 2012.

[9] A. Prakash and M. J. Knister. A Framework for
Undoing Actions in Collaborative Systems. ACM
Trans. Comput.-Hum. Interact., 1:295–330, 1994.

[10] A. Rickayzen. Collaborative Process Modeling.
http://scn.sap.com/community/bpm/

business-process-modeling/blog/2012/03/20/,
2012.

[11] S. Sanderson. Knockout : Home.
http://knockoutjs.com/, 2012.

[12] UI Development Toolkit for HTML5 Developer
Center. http://scn.sap.com/community/
developer-center/front-end, 2012.

[13] H. Shen and C. Sun. Flexible Notification for
Collaborative Systems. In Proc. CSCW, pages 77–86,
2002.

[14] G. Simpson, A. Roe, and R. Lewontin. Quantitative
Zoology: Revised Edition. Dover Books on Biology,
Psychology and Medicine. Dover Publications, 2003.

[15] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai.
Transparent Adaptation of Single-User Applications
for Multi-User Real-Time Collaboration. ACM Trans.
Comput.-Hum. Interact., 13:531–582, 2006.

[16] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen.
Leveraging Single-user Applications for Multi-user
Collaboration: the CoWord Approach. In CSCW,
pages 162–171, 2004.

[17] N. C. Zakas. Professional JavaScript for Web
Developers. Wrox, 2012.

560



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




