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ABSTRACT
Online social networks have become a major force in today’s
society and economy. The largest of today’s social networks
may have hundreds of millions to more than a billion users.
Such networks are too large to be downloaded or stored lo-
cally, even if terms of use and privacy policies were to permit
doing so. This limitation complicates even simple computa-
tional tasks. One such task is computing the clustering coef-
ficient of a network. Another task is to compute the network
size (number of registered users) or a subpopulation size.
The clustering coefficient, a classic measure of network con-
nectivity, comes in two flavors, global and network average.
In this work, we provide efficient algorithms for estimating
these measures which (1) assume no prior knowledge about
the network; and (2) access the network using only the pub-
licly available interface. More precisely, this work provides
three new estimation algorithms (a) the first external access
algorithm for estimating the global clustering coefficient; (b)
an external access algorithm that improves on the accuracy
of previous network average clustering coefficient estimation
algorithms; and (c) an improved external access network size
estimation algorithm.

The main insight offered by this work is that only a rela-
tively small number of public interface calls are required to
allow our algorithms to achieve a high accuracy estimation.
Our approach is to view a social network as an undirected
graph and use the public interface to retrieve a random walk.
To estimate the clustering coefficient, the connectivity of
each node in the random walk sequence is tested in turn.
We show that the error of this estimation drops exponen-
tially in the number of random walk steps. Another insight
of this work is the fact that, although the proposed algo-
rithms can be used to estimate the clustering coefficient of
any undirected graph, they are particularly efficient on social
network-like graphs. To improve the network size prior-art
estimation algorithms, we count node collision one step be-
fore they actually occur. In our experiments we validate
our algorithms on several publicly available social network
datasets. Our results validate the theoretical claims and
demonstrate the effectiveness of our algorithms.
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1. INTRODUCTION
The popularity of online social networks has grown enor-

mously in recent years. Users of the most popular social
network, FacebookTM, now number greater than a billion1.
This popularity has increased interest in analyzing the prop-
erties of these networks. In [2, 13, 21] the authors investigate
structural measures of online social networks, including de-
gree distribution and clustering coefficient.

Large social networks, as well as search engines, provide
a public interface as part of their service. Estimating struc-
tural measures of the network using only these public inter-
faces is a research question that has received much attention
in recent studies. Search engine public interfaces have been
used in [6, 8] to estimate corpus size, index freshness, and
density of duplicates, and in [7] estimate the impressionrank
of a webpage. Online social network public interfaces have
been used in [13, 14, 25] to estimate the assortativity co-
efficient, degree distribution, and clustering coefficients of
online social networks, as well as in [14, 15] to estimate the
number of registered users.

In practical scenarios, the underlying social network may
be available only through a public interface. The public
interface of most social networks provides the ability to re-
trieve a list of a user’s connections (“friends”). By applying
this function iteratively to a random member of the connec-
tion list one can effectively perform a random walk on the
network. Although the public interface allows us to store the
social network locally, this practice is considered impracti-
cal due to high time/space/communication cost and often
violates the terms of use agreement. In light of this, in this
paper we proceed under the assumption that (1) only ex-
ternal access to the social network is available; and (2) only
a small number of users/nodes can be sampled. The main

1http://newsroom.fb.com/News/457/One-Billion-People-
on-Facebook
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insight offered by this work is that, even under these limita-
tions, our algorithms achieve a good estimation accuracy of
the network’s structural measures.

This work focuses on two particular structural measures.
The first measure is called the clustering coefficient. The sec-
ond measure is the size of the network. Namely, the number
of registered users in the network2.

The clustering coefficient comes in two main flavors, (1)
the network average clustering coefficient [12]; and (2) the
global clustering coefficient [12]. Both measures are impor-
tant for the understanding of the network structure. First,
we introduce the local clustering coefficient of a node in a
graph as the ratio of the number of edges between its neigh-
bors to the maximal possible number of such edges. The
network average clustering coefficient of a graph is the local
clustering coefficient averaged over the set of nodes in the
graph. The global clustering coefficient of a graph is the
ratio of the number of triangles (ordered triples of differ-
ent nodes in which are all nodes connected) to the number
of connected triplets (ordered triples of different nodes in
which consecutive nodes are connected).

The size of the network is one of the basic structural mea-
sures. The network size can determine the worth of a net-
work (for business development). For certain applications
in business development and advertisement, the size of a
social network subpopulation is extremely important. For
example, the number of users of an online product or the
number of potential users for a product. The subpopulation
fraction (which can also be estimated efficiently [15]) and
the network size can determine the size of the subpopula-
tion. Although some networks report their size periodically,
the difference between consecutive reports can be more than
ten percent. Moreover, even if this number is reported every
day, an unbiased independent estimate would be beneficial.

This work contains three main contributions. The first
and principal contribution is the first external access esti-
mator for the global clustering coefficient. The second con-
tribution is an improved external access estimator for the
network average clustering coefficient. The third contribu-
tion is an improved external access estimator for the network
size.

The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 provided preliminaries and
notations. Section 4 details our clustering coefficient estima-
tors. Section 5 details our network size estimator. Section 6
reports our experimental results. We conclude the paper in
Section 7.

2. BACKGROUND AND PRIOR WORK
We consider the social network as an undirected graph

where nodes and edges are represented by users and friend-
ship connections. Although the algorithms presented in this
paper are correct for general graphs, the structure of social
networks renders them even more effective.

Both the network average and the global clustering coeffi-
cient (also known as transitivity) are a long studied classical
computer science problem. The running time of the naive
algorithm for computing them is O(n3) for dense graphs
(where n is the number of nodes in the graph), and it is con-
sidered impractical for large graphs. For the global cluster-

2Technically, the algorithm estimates the size of the largest
connected component and isolated users are neglected.

ing coefficient, the most challenging part of the computation
is counting the total number of triangles, since computing
the number of connected triplets is done in linear time. To
this end, the computation of global clustering coefficient and
the computation of the number of triangles is equivalent.

We provide references for a partial list (most recent) for
several directions for estimating the number of triangles.
Alon et al. [3] provided an exact algorithm for the count-
ing the number of triangles. The running time of this al-

gorithm is O(E
2ω

ω+1 ) = O(E1.41), where ω < 2.376 is the
exponent of matrix multiplication. Avron [4] provided an
estimator based on numerical matrix-vector multiplication
using O(log2 n) samples, each of which requires O(|E|) time
(where E is the set of nodes in the graph). Both these algo-
rithm access the entire graph.

Buriol et al. [10] provided an approximate solution to the
global clustering coefficient in the streaming model. The
streaming models allows the algorithm to have a single pass
on the input while (1) reading the edges in arbitrary/vertex
ordered appearance (different algorithms) and (2) use con-
stant amount of space. Becchetti et al. [9] provided an
algorithm for the network average clustering coefficient in
the streaming model. In contrast to [3, 4] these works as-
sume there is no random access to the graph. However, the
streaming algorithms access each edge at least once.

Schank et al. [27], provided estimators for both the global
and network average clustering coefficient which only uses
a sample of the nodes. However, unlike our work, the al-
gorithms assume there is an efficient way to sample nodes
with distribution that is tailored to the clustering coefficient.
Specifically, for the network average clustering coefficient the
sampling distribution is the uniform distribution and for the
global clustering coefficient each node vi with degree di is
sampled proportionally to di(di − 1). In contrast, the algo-
rithms provided in this work do not even assume the number
of nodes is known and does not require a tailored sampling
distribution.

Another research direction [13, 25] addresses the problem
of estimating the local clustering coefficient with external
access3. In these papers, the graph can only be accessed
via the exploration of nodes that lie on the frontier of previ-
ously explored nodes. Ribeiro et al [25] explored the graph
using a random walk. Gjoka et al. [13] explored the graph
using Metropolis-Hastings random walk that generates uni-
form samples from the nodes set. In both these papers, the
computation requires augmenting the set of explored nodes,
S, with further exploration of S’s ego network. An ego net-
work of a set of users S, is the set of users S′ that contains
all the users in S and all their (immediate) friends [13, 28].

In this work, we perform a random walk but remove the
requirement of exploring the ego network. This difference
is illustrated in Figure 1. The random walk contains three
nodes v1, v2, v3. Our approach requires the exploration of
the nodes v1, v2, v3 (marked by a thick circle), the ego net-
work approach requires additional exploration of the nodes
v4, v5, v6. In total the ego network requires exploration of
all the nodes v1, v2, . . . , v6 (marked by solid fill). In sec-
tion 6, we show that the algorithm provided in this paper

3Ref [25] mistakenly refers to the global clustering coeffi-
cient, but provides an accurate definition of the network
average clustering coefficient.

540



va

vb

vc

in random walk

in ego network

beyond reach

visible by random walk
and ego network

visible by ego network
only

visible by neither

v1 v2

v3

v4

v5

v6

v7

v8

v9

Figure 1: An example of a random walk with its
corresponding ego network augmentation.

outperform competing approaches [25, 13] on all the social
networks we study.

Another method for estimating the clustering coefficient
from a random walk was presented in [14]. This algorithm
uses only the ids of nodes visited by a random walk and
does not assume any prior information. In contrast, the al-
gorithms in this paper assume not only the node ids are
visible, but also their list of friends (adjacency list). Practi-
cally, if this assumption holds, it renders [14] uncompetitive.

In this work, two estimators are provided for the cluster-
ing coefficient. The first for the network average clustering
coefficient and the second for the global clustering coeffi-
cient. Both estimators use samples taken from a random
walk on the graph. Namely, not only that the algorithms do
not access the entire graph, they do not even have random
access to the graph’s nodes and edges. The only assumption
is that a random walk can be performed via the public inter-
face, and the visited node ids along with their list of friends
(adjacency list). This is the case for many social networks.
Indeed, the act of performing a random walk at all in an
online social network typically necessitates having access to
this information.

Both [14, 15] provide estimators for the total number of
registered users in the network. These algorithms use only
the node ids visited on the random walk and do not assume
any prior information on the graph. The underlying idea
in both papers is to count node collision, a pair of indices
(k, l) such that the same node appears in the kth and lth

location of the random walk. Nodes on the random walk
are highly correlated when their index distances (|k − l|) are
short, which increases the probability of a node collision. To
ensure a unified probability of collision across all node pairs,
a collision is counted only if the nodes appear a significant
number of steps apart. These works differ in the way they
select these pairs. In [15] the estimator chooses all pairs
in which both k and l are a multiple of a parameter m,
while [14] chooses all pairs in which m ≤ |k − l|. Choosing
all pairs [14] is practically better, but harder to analyze. The
convergence of social network like graphs is very fast and
depends on the degree distribution. For example, if the node
degrees are distributed according to a Zipfian distribution
with maximum degree of

√
n and parameter α = 2, then the

number of samples needed to guarantee convergence for a
fixed accuracy is O(n1/4 log n) [15].

In some applications the size of a subpopulation needs
to be estimated. This subpopulation is defined by a prop-
erty of the user’s profile. For example, the number of regis-
tered users who use a specified online product. Estimating
the size of a subpopulation requires multiplying the total
size of the network by the ratio the target nodes to the
total nodes which could also be estimated by the random
walk [15]. In this work, we improve the network size estima-
tion algorithms by using not only the visited node ids, but
also the adjacency list of each of the visited nodes. This is
done by counting node collision one step before they actu-
ally occur. Namely, two nodes on the random walk (enough
nodes apart) that share a connection. We call this collision
a neighbor collision.

3. PRELIMINARIES AND NOTATIONS
We denote by G(V, E) the social network’s underlying

undirected graph, where V = {v1, v2, . . . , vn} is the set of
nodes (users) and E is the set of edges (friendship connec-
tions). Additionally, we denote by di the degree of node
vi and the sum of degrees by D =

∑n
i=1 di = 2 |E|. The

maximum degree of a node in the graph is noted by dmax =
maxn

i=1 di.
We denote by an n×n matrix A the adjacency matrix for

graph G. Namely, Ai,k = Ak,i = 1 if node vi is connected
by an edge to node vk and 0 otherwise. We assume no self
loops, thus Ai,i = 0 for all i.

Definition 1. A triplet of nodes (vj , vi, vk) is called con-
nected if vj is connected to vi, vi is connected to vk, and
j < k. Formally, if Aj,i = 1, Ai,k = 1, and j < k.

Definition 2. A triangle is a connected triplet (vj , vi, vk)
in which vj and vk are connected. Formally, if Aj,k = 1.

Following these definitions, a triplet of nodes is connected
if j < k and Aj,iAi,k = 1 and it is a triangle if j < k
and Ai,jAi,kAj,k = 1. For a specific node vi, the number
of connected triplets (vj , vi, vk) is thus

∑
j<k Aj,iAi,k. Note

that
∑

j<k Aj,iAi,k = di(di−1)/2 since there are di(di−1)/2
choices for j < k in which both Aj,i = 1 and Ai,k = 1.
For a specific node vi, the number of (vj , vi, vk) triangles is
denoted by li =

∑
j<k Ai,jAi,kAj,k (it is also the number of

edges between neighbors of vi) .

Definition 3. The local clustering coefficient [12] for node
vi, denoted by ci, is defined as the ratio of the number of
(vj , vi, vk) triangles to the number of (vj , vi, vk) connected
triplets. Formally,

ci =
2li

di(di − 1)

Note that ci ∈ [0, 1]. In the case where di = 1 or di = 0, we
have ci = 0.

Definition 4. The network average clustering coefficient
[12], denoted by cl, is defined by

cl =
1

n

n∑
i=1

ci
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Definition 5. The global clustering coefficient [12], de-
noted by cg, is defined as the ratio of the total number of
triangles to the total number of connected triplets. Formally,

cg =
2
∑n

i=1 li∑n
i=1 di(di − 1)

Note that a set of three nodes {vj , vi, vk} forms three dif-
ferent triangles4 one is counted in lj , a second in li, and a
third in lk.

The first step of the estimation algorithms is to generate
a random walk. A random walk with r steps on G, denote
by R = (x1, x2, . . . , xr), is defined as follows: start from an
arbitrary starting node vx1 , then move to one of the neigh-
boring nodes uniformly at random (with probability 1

dxi
)

and repeat r − 1 times. We use Pr [A] to denote the prob-
ability that event A occurred. We denote the distribution
induced by R, as

πR = (Pr [xr = 1] ,Pr [xr = 2] , . . . ,Pr [xr = n]) .

The probability Pr [xr = i] after many random walk steps

converges to pi � di/D and the vector π = (p1, p2, . . . , pn)
is called the stationary distribution of G.

In our estimators, we assume that x1 is drawn from the
stationary distribution5. This assumption is valid because
we can always perform an initial random walk from an ar-
bitrary node to draw a starting node from the stationary
distribution.

The actual number of steps needed to converge to the
stationary distribution depends on the mixing time of G.
There are several definitions of mixing time, many of which
are known to be equivalent up to constant factors. All def-
initions take an ε parameter to measure the distance be-
tween the stationary and the induced distribution. Both
the book [17] and the survey [19] provide excellent overview
on random walks and mixing times. We denote the mixing
time of graph G by τ (ε) or τ (ε is assumed to be a small
constant). We use the following definition:

Definition 6. Let R = (x1, x2, . . . , xr) be a random walk.
Then, let the distance between π and πR be the maximum dif-
ference between the probability of drawing a specific node xr

over all possible choices of nodes x1 and xr. Namely,

d(r) =
n

max
x1=1

n
max
i=1
|pi − Pr [xr = i]|.

We have τ (ε) = min {r | d(r) ≤ ε}.
Social network graphs are known to have low mixing times

and constant clustering coefficients (which are not extremely
small). Recently, Addario-Berry et al [1] proved rigorously
that the mixing time of Newman-Watts [23, 24] small world
networks is Θ(log2 n). Mohaisen et al. [22] provide numeri-
cal evaluation of the mixing time of several networks. The
authors claim that “the mixing time is much larger than an-
ticipated”. However, Table 1 and Figure 2 in their paper
show that to have d(r) ≈ 0, the number of steps should

4In some references a triangle is defined by an unordered set
of three nodes, in which case cg is defined by three times the
ratio of the total number of triangles to the total number of
connected triplets.
5This is not necessary in practice. However, the running
time bound is tighter with this assumption.

be r = log2 n for the Facebook network, r = 3 log2 n for
the DBLP and youtube networks, and r = 10 log2 n for the
Live Journal network. Both the low mixing time and the
relatively high value of the clustering coefficients enable the
clustering coefficient estimation algorithms in this paper to
provide accurate result with relatively low number of sam-
ples. Notations are summarized in Table 1.

G underlying undirected graph
n number of nodes in the graph
A adjacency matrix for G
vi node in G
di degree of node vi
D the sum all nodes degrees

∑n
i=1 di

r total number of steps in the random walk
xk the index of kth node in the random walk

pi p(xk = i) = di
D

π the stationary distribution (p1, p2, . . . , pn)
li number of edges between neighbors of vi
cl network average (local) clustering coefficient
cg global clustering coefficient
ĉl cl estimation
ĉg cg estimation
n̂ n estimation

τ (ε) mixing time
dmax maxn

i=1 di

Table 1: Summary of notations

4. CLUSTERING COEFFICIENT ESTIMA-
TION

We now present the main observation used in both net-
work average and global clustering coefficient estimators.
Given a random walk (x1, x2, . . . , xr), we define a new vari-
able φk = Axk−1,xk+1 for every 2 ≤ k ≤ r − 1. For any

function f(xk) the following holds6:

E [φkf(xk)] =
n∑

i=1

piE [φkf(xk)|xk = i]

=

n∑
i=1

di
D

2li
d2i

f(vi) (1)

=

n∑
i=1

1

D

2li
di

f(vi).

The first equality holds due to the law of total expectation.
The second equality holds because there are d2i equal proba-
bility combinations of (xk−1, vi, xk+1) out of which only 2li
form a triangle (vj , vi, vk) or a reverse triangle (vk, vi, vj).
Notice that in a triangle or a reverse triangle vj is connected
to vk (Aj,k = 1). The third equality holds due to algebraic
manipulation.

4.1 Network average clustering coefficient
To estimate cl, we introduce two variables. First, we de-

fine Φl as a weighted sum of φjs, Φl =
1

r−2

∑r−1
k=2 φk

1
dxk
−1

.

Second, we define Ψl as the sum of the sampled nodes re-
ciprocal degrees, Ψl =

1
r

∑r
k=1

1
dxk

.

6We choose f(vi) = 1/ (di − 1) for the network average clus-
tering and f(vi) = di for the global clustering estimator.
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Using linearity of expectation and Eq (1) it is easy to
compute Φl and Ψl expectation.

E [Φl] = E

[
φk

1

dxk − 1

]
=

n∑
i=1

1

D

2li
di(di − 1)

=
1

D

n∑
i=1

ci

E [Ψl] = E

[
1

dxk

]
=

n∑
i=1

di
D

1

di
=

n

D

From the above equations we can isolate cl and get that:

cl =
1

n

n∑
i=1

ci =
E [Φl]

E [Ψl]

Intuitively, both Φl and Ψl converge to their expected values
and the estimator Φl/Ψl converges to cl as well.

Definition 7. Let ĉl be the estimator for cl, defined as
follows:

ĉl �
Φl

Ψl
.

Lemma 1. For any ε ≤ 1/8 and δ ≤ 1 we have:

Pr[cl(1− ε) ≤ ĉl ≤ cl(1 + ε)] ≥ 1− δ

when the number of samples, r, satisfies:

r ≥ rl ∈ O

(
D

ncl
τ (ε)

)
.

Proof. The proof first finds the number of step, rl, which
guarantees both Φl and Ψl be within ε/3 approximations to
their expected values with probability at least 1− δ/2. See
Appendix A for more details. Since the probability of Φl or
Ψl deviating from their expected value is at most δ/2, the
probability of either Φl or Ψl deviating is at most δ (using
the union bound). Then, we use the fact that

(1− ε)cl ≤
(1− ε

3
)

(1 + ε
3
)

E [Φl]

E [Ψl]
≤ Φl

Ψl
≤ (1 + ε

3
)

(1− ε
3
)

E [Φl]

E [Ψl]
≤ (1+ ε)cl

to complete the proof.

Note that for social network like graph the mixing time is
assumed to be relatively low (for Newman-Watts networks
τ (ε) = O(log2 n) [1]), D = O(n) and cl is a small constant.
Thus, the number of steps needed is linear in the mixing
time, τ (ε).

4.2 Global Clustering Coefficient
To estimate cg, we introduce two variables. First, we de-

fine Φg as a weighted sum of φjs, Φg = 1
r−2

∑r−1
k=2 φkdxk .

Second, we define Ψg as the sum of the sampled nodes de-
grees minus one, Ψg = 1

r

∑r
k=1 dxk − 1.

Using linearity of expectation and Eq (1) it is easy to
compute Φg and Ψg expectation.

E [Φg ] = E [φkdxk ] =
n∑

i=1

1

D

2li
di

di =
1

D

n∑
i=1

2li

E [Ψg] = E [dxk − 1] =

n∑
i=1

di
D

(di − 1) =
1

D

n∑
i=1

di(di − 1)

From the above equations we can isolate cg and get that:

cg =
1∑n

i=1 di(di − 1)

n∑
i=1

2li =
E [Φg ]

E [Ψg]
.

Intuitively, both Φg and Ψg converge to their expected
values and the estimator Φg/Ψg converges to cl as well.

Definition 8. Let ĉg be the estimator for cg, defined as
follows:

ĉg � Φg

Ψg
.

Lemma 2. For any ε ≤ 1/8 and δ ≤ 1 we have:

Pr[cg(1− ε) ≤ ĉg ≤ cg(1 + ε)] ≥ 1− δ

when the number of samples, r, satisfies:

r ≥ rg ∈ O

(
Ddmax

cg
∑n

i=1 di(di − 1)
τ (ε)

)
.

The proof is similar to the proof of Lemma 1, except the
number of steps rg that guarantees convergences for Φg and
Ψg is different. See Appendix B for more details.

Both estimators presented in this section are consistent.
Formally, as the number of samples, r, grows the estimators
converge to the true value. This also implies the estimators
are asymptotically unbiased.

5. NETWORK SIZE ESTIMATION
In this section we present an estimator for the graph size

(number of nodes). The estimator uses observations of node
pairs which are “far away” from each other in the random
walk (as in Ref [14]). This assumption is needed to ensure
both nodes in a pair are (approximately) uncorrelated: each
drawn from the stationary distribution7. Specifically, the es-
timator examines node pairs whose index distance is greater
than a threshold m. Formally,

I = {(k, l) | m ≤ |k − l| ∧ 1 ≤ k, l ≤ r} .
The estimator counts weighted neighbor collisions. A neigh-

bor collision is a pair of indices (k, l) such that vxk and vxl

share a common neighbor. Formally, let Ai be the set of ver-
tices adjacent to vi. Thus, Ai∩Aj is the set of nodes neigh-
boring both vi and vj . Given a random walk (x1, x2, . . . , xr),
we define a new variable φk,l = |Axk ∩Axl |. Note that if
(k, l) ∈ I , then

E

[
φk,l

1

dxkdxl

]
=

n∑
i=1

n∑
j=1

di
D

dj
D
|Ai ∩Aj | 1

didj
=

n∑
j=1

(
dj
D

)2

.

To see why
∑n

i=1

∑n
j=1 |Ai ∩Aj | = ∑n

j=1 d
2
j consider the

following combinatorial proof. For a node vk, the number of
connected triplets (vi, vk, vj) with no restrictions on i and
j is d2k. Thus, the total number of connected triplets is∑n

k=1 d
2
k. Alternatively, for nodes vi and vj the number

of connected triplets (vi, vk, vj) is |Ai ∩Aj |. Thus, the to-
tal number of connected triplets can also be expressed by∑n

i=1

∑n
j=1 |Ai ∩Aj |.

Next, we define Φn to be the averaged value of φk,l
1

dxk
dxl

over all possible choices of (k, l) ∈ I . Namely,

Φn =
1

|I |
∑

(k,l)∈I
φk,l

1

dxkdxl

.

7The larger the value of m, the smaller the bias in the esti-
mate introduced by this correlation, but increasing m means
fewer observations of node pairs and a larger estimator vari-
ance. However, note that we again benefit from the fast-
mixing nature of social graphs, and m need only be of the
order O(log2 n).
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Let Ψn be the averaged sum of
dxk
dxl

over all possible choices

of (k, l) ∈ I . Formally,

Ψn =
1

|I |
∑

(k,l)∈I

dxk

dxl

.

Due to linearity of expectation, we have

E [Φn] = E

[
φk,l

1

dxkdxl

]
=

n∑
j=1

(
dj
D

)2

E [Ψn] = E

[
dxk

dxl

]
=

n∑
i=1

n∑
j=1

di
D

dj
D

dj
di

= n
n∑

j=1

(
dj
D

)2

Notice that n = E [Ψn]/E [Φn]. Intuitively, both Ψn and
Φn converge to their expected values and the estimator Ψn/Φn

converges to n as well.

Definition 9. Let n̂ be the estimator for n, defined as
follows:

n̂ � Ψn

Φn
.

Prior art algorithm [14, 15] count the number of node
collisions, C, and estimates n by Ψn/C. A node collision
is a pair of indices (k, l) such that such that xk = xl. In
contrast Φn counts neighbor collision and estimates n by
Ψn/Φn.

Lemma 3. The neighbor collision estimator, n̂ (defini-
tion 9), has confidence intervals tighter than the node colli-
sion estimator.

Proof. Formally, C = 1
|I|

∑
(k,l)∈I 1xk=xl where 1xk=xl

is 1 if xk = xl and 0 otherwise. The key observation is that

E
[
1xk+1=xl+1 | xk, xl

]
= φk,l

1

dxkdxl

.

This stems from the combinatorial argument that (a) there
are dxkdxl equally likely joint node transitions from xk and
xl to xk+1 and xl+1; and (b) in only φk,l = |Axk ∩Axl | of
them xk+1 = xl+1 holds. Note that, xk is uncorrelated with
xl when (k, l) ∈ I . Using this observation we have,

Φn =
1

|I |
∑

(k,l)∈I
E
[
1xk+1=xl+1 | xk, xl

]
.

This is the Conditional Monte Carlo estimator8 of C, which
guarantees Var [C] ≥ Var [Φn] [26](Section 5.4).

5.1 Implementation notes
The straight forward computation of Ψn and Φn running

time is O(r2) and O(r2d2max) respectively. However, a care-
ful implementation can reduce this complexity to O(r) and
O(rdmax) respectively. For Φn the expected running can be

reduced to O(r
∑n

i=1

d2i
D
).

First, we define (l+m)+ to be min {r, l +m} and (l−m)−

to be max {l −m, 1}. For the computation of Ψn instead of
multiplying the value of 1

dxl
by each dxk separately, it is mul-

tiplied by the sum of
∑(l+m)+

k=(l−m)− dxk . The sum in turn, can

8Note that if (k, l) ∈ I , then (k − 1, l − 1) ∈ I except for
k = 1 which holds only for a negligible fraction of the pairs.

be efficiently computed for every k in O(1), using a cumu-
lative sum precomputation. Specifically, if Bq =

∑q
k=1 dxk ,

then

|I |Ψn =
r∑

l=1

1

dxl

(
Br −B(l+m)+ +B(l−m)−

)
.

To compute Φn one must first construct an inverted index
of neighboring nodes. In document-term view, each node is
a document containing adjacent nodes as terms. Specifi-
cally if vj is a neighbor of xk then k is a term in vj . The
running time of creating an inverted index is linear in the

number of terms (O(rdmax) worst case and O(r
∑n

i=1
d2i
D
) ex-

pected). Then, the entry for vj holds a list Lj of all indices
in which vj is a neighbor. Thus, |I |Φn =

∑n
j=1 Cj , where

Cj =
∑

(k,l)∈I|k∈Lj∧l∈Lj

1
dxk

dxl
. To efficiently compute Cj

in O(|Lj |), a precomputation Bq(j) =
∑

q≥k∈Lj

1
dxk

should

be used (similarly to the computation of Ψn).

6. EXPERIMENTAL EVALUATION

6.1 Networks with public dataset
We demonstrate the effectiveness of the estimators by

experimenting with social networks with known structure.
Datasets statistics are enclosed in Table 2.

Network n D/n cl cg
DBLP 977,987 8.457 0.7231 0.1868
Orkut 3,072,448 76.28 0.1704 0.0413
Flickr 2,173,370 20.92 0.3616 0.1076

Live Journal 4,843,953 17.69 0.3508 0.1179

Table 2: Networks statistics

In all our datasets we perform the following: (1) if the orig-
inal network is directed, the direction is removed (the edge is
made undirected); (2) only the network’s largest connected
component is retained and the rest of the nodes/users are
dropped. All the datasets we use are publicly available9.

DBLP In the “Digital Bibliography and Library Project”
(DBLP[18]) dataset each entry is a reference to a paper
which contains a title and a list of authors. In the
corresponding network each node is an author and an
edge between two authors represent co-authorship of
one or more papers. We used a snapshot taken Oct 01,
2012.

Orkut Orkut is a general purpose social network. The
dataset contains a partial snapshot (11.3% of the nodes)
taken during 2006 by [21]. In this social network the
friendship connections (edges) are undirected.

Flickr Flickr is an online social network with focus on photo
sharing. The dataset contains a partial snapshot taken
during 2006–2007 by [20]. In this social network the
friendship connections (edges) are directed.

9The DBLP, Orkut, Flickr, and LiveJournal are pub-
licly available at http://dblp.uni-trier.de/xml/ and
http://konect.uni-koblenz.de/networks/{orkut-links,flickr-
growth,soc-LiveJournal1} [16], respectivly.
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LiveJournal LiveJournal is an on-line social network with
focus on journals and blogs. The dataset contains a
partial snapshot of the nodes taken by [5]. In this
social network the friendship connections (edges) are
directed.

The x-axis in our figures is the percentage of mined nodes
(number of mined nodes over the total number of network
nodes). The y-axis is the relative estimated value (esti-
mate value over the true value). We display [5%, 95%]-
confidence intervals for all figures. A [5%, 95%]-confidence
interval of random variable z, is defined as the interval [L, U ]
such that Pr [z ≤ L] = 0.05 and Pr [z ≤ U ] = 0.95. Thus,
Pr [z ∈ [L,U ]] = 0.9. To estimate the confidence interval,
each simulation was run independently 100,000 times. The
values L and U are estimated by the 5th and 95th percentile
values respectively.

In subsections 6.2 and 6.3 we compare the prior art al-
gorithms method with the random walk approach described
in this work. For comparison we consider the following ap-
proaches: (1) the estimator based on random walk combined
with ego network exploration described in [25] (labeled RW
Ego network); and (2) the estimator based on Metropolis-
Hastings sampling with ego network exploration described
in [13] (labeled MH Ego Network). The estimator described
in subsection 4.1 is labeled random walk. In the random
walk estimator (our approach) the number of mined nodes is
exactly the random walk’s length, while in the Ego network
algorithms (prior art) the mined nodes include the (sampled)
walk nodes as well as their neighbors.

In subsection 6.4 we compare prior art node collision esti-
mator [14, 15] (labeled node collision) with the new proposed
neighbor collision estimator (labeled neighbor collision).

6.2 Network average clustering coefficient
Figure 2 displays confidence intervals for all algorithms

and datasets. The proposed random walk estimator sig-
nificantly outperforms ego network estimators. Specifically,
using only 1% of the network size, the confidence intervals
of the random walk estimator are about fifty percent tighter
for the DBLP network and four times as tight for the Orkut,
Flickr, and LiveJournal networks. The exact numbers are
enclosed in Table 3.

Network random walk MH Ego RW Ego
DBLP [0.967, 1.033] [0.942, 1.051] [0.910, 1.073]
Orkut [0.916, 1.085] [0.583, 1.468] [0.426, 1.658]
Flickr [0.891, 1.111] [0.557, 1.415] [0.064, 2.023]
LiveJ [0.951, 1.054] [0.816, 1.200] [0.645, 1.329]

Table 3: Network average clustering [5%,95%]-
confidence interval for 1% mined nodes.

6.3 Global clustering coefficient
In this subsection there is no prior art algorithm for com-

parison. To have a baseline, we retrofit the ego network es-
timator for computing the global clustering coefficient. The
global clustering coefficient can be viewed as a weighted sum
of local clustering coefficients. The ego network sampling es-
timators multiplies each observed cxk by wk = dxk(dxk − 1)
and divide the total by the sum W =

∑
k wk.

Figure 3 displays confidence intervals for all algorithms
and datasets. The proposed random walk estimator sig-

nificantly outperforms ego network estimators by an even
greater margin when compared with the network average
clustering coefficient estimators. The curve for metropolis
hasting ego network in missing in the Flickr graph because
all the values are greater than 8, which demonstrate the
estimator’s inefficiency. In the LiveJournal graph, one can
see the upper 95% curves are even increasing. These curves
converge only after 5% of the network is sampled. Using
only 1% of the network size, the confidence intervals of the
random walk estimator are about three times tighter for the
DBLP network and ten times tighter for the Orkut network.
The ego network estimators for the Flickr and LiveJournal
networks are extremely inaccurate in the [0.1%, 2%] range.
The exact numbers are enclosed in Table 4.

Network random walk MH Ego RW Ego
DBLP [0.869, 1.180] [0.659, 1.919] [0.609, 1.485]
Orkut [0.892, 1.130] [0.424, 2.711] [0.317, 3.068]
Flickr [0.922, 1.078] [0.212, 10.07] [0.176, 1.588]
LiveJ [0.620, 1.523] [0.235, 4.275] [0.246, 3.051]

Table 4: Global clustering [5%,95%]-confidence in-
terval for 1% mined nodes.

6.4 Network size
In this subsection we compare the node collision and neigh-

bor collision estimators. In all estimators the number of
mined nodes is exactly the random walk’s length. We used
m = 2.5%r as the separation parameter for all estimators.
Namely, we used about 95% of the maximum number of
(k, l) pairs (|I | ≈ 0.95r2). In Figure 4 we see that the neigh-
bor collision estimator outperforms the node collision esti-
mator. The node collision estimator and neighbor collision
estimator are Ψn/C and Ψn/Φn respectively. The perfor-
mance of the estimators depend on the variance of Ψn, C,
and Φn. The performance of the neighbor collision reduces
the variance of one factor, but retains the variance of Ψn.
Therefore, we see a different performance impact on these
datasets. Moreover, the fact that 1

1±x
≈ 1∓x+x2∓· · ·+x2k

explains why the neighbor collision estimator has a greater
impact on performance in the early stages of convergence
when r is small.

Using only 1% of the network size, there was a significant
accuracy improvement in the DBLP network, a noticeable
improvement for the Orkut network, and negligible improve-
ment for the Flickr and LiveJ networks. The exact number
are enclosed in Table 5. The second column is prior art
node-collision estimator; the third column is the proposed
new neighbor collision estimator; and the fourth column is
the confidence bound improvement10.

7. CONCLUSIONS
We presented algorithms for estimating the (1) network

average clustering coefficient; (2) global clustering coeffi-
cient; and (3) the number of registered users. These algo-
rithms use the information collected by randomwalk, namely,
the ids of the visited nodes along with their adjacency list.

10In the DBLP network the change from 1.384 to 1.221 in the
95% confidence implies a (0.384−0.221)/0.384 improvement
and the change in the 5% confidence from 0.752 to 0.815
implies a (0.815 − 0.752)/(1 − 0.752) improvement.
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Figure 2: Estimation of the network average clustering coefficient confidence interval vs. the percentage of
mined nodes.

Network Node Neighbor improvement
DBLP [0.752, 1.384] [0.815, 1.221] [25.4%, 42.5%]
Orkut [0.849, 1.187] [0.860, 1.161] [7.30%, 13.9%]
Flickr [0.846, 1.203] [0.843, 1.208] [1.91%, 2.40%]
LiveJ [0.780, 1.232] [0.785, 1.218] [2.27%, 6.03%]

Table 5: Network size [5%,95%]-confidence interval
for 1% mined nodes.

For the clustering coefficients algorithms we showed that (1)
for social-network like graphs these algorithms considerably
outperform prior art (sampling the ego network of each sam-
pled node); and (2) an analytic bound on the number of steps
required for convergence. For the number of registered users
algorithm we showed, both analytically and experimentally,
that the new suggested algorithm is strictly more accurate
than prior art node collision algorithms.

Ego network algorithms sample all the adjacency lists of
nodes in the random walk, while the random walk estimator
samples only two nodes from this list (previous and next
node of the random walk). Investigating between these two
extremes might give rise to further improvement.
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APPENDIX

A. CONCENTRATION OF ΨL AND ΦL

In the proof of Lemma 1 we required that the variables Ψl

and Φl give an ε/3 approximation to their expected values
with probability at least 1 − δ/2.

To prove both Ψl or Φl are concentrated we first restate
a theorem from Chung et al. [11]:

Theorem 4 (Theorem 3.1 [11]). Let M be an er-
godic Markov chain with state space [n] and stationary dis-

tribution π. Let τ = τ (ε) be its ε-mixing time for ε ≤ 1
8
. Let

(x1, x2, . . . , xr) denote an r-step random walk on M start-
ing from an initial distribution ϕ on [n], i.e., x1 ← ϕ. Let

‖ϕ‖π =
∑n

i=1

ϕ2
i

πi
. For every k ∈ [r], let fk : [n] → [0, 1] be

a weight function at step k such that the expected weight
Ev←π[fk(xk)] = μ for all k. Define the total weight of

the walk (x1, x2, . . . , xr) by Z �
∑r

k=1 fk(xk). There ex-
ists some constant c (which is independent of μ, δ and ε)
such that for 0 < δ < 1

Pr [|Z − μr| > εμr] ≤ c ‖ϕ‖π e−ε2μr/72τ ,

or equivalently

Pr

[∣∣∣∣Zr − μ

∣∣∣∣ > εμ

]
≤ c ‖ϕ‖π e−ε2μr/72τ .

Lemma 5. There is a constant value, ξ, such that if r ≥
rΨl = ξD

n
τ (ε), we have

Pr

[
|Ψl − E [Ψl]| ≤ εE [Ψl]

3

]
≥ 1− δ

2

Proof. Let fk(xk) = f(xk) = 1
dxk

. We assume that

ϕ ≈ π, and thus ‖ϕ‖π = 1. We have, E [Ψl] = E
[

1
dxk

]
= n

D
.

From Theorem 4,

Pr
[
|Ψl − E [Ψl]| > ε

3
E [Ψl]

]
≤ ce−ε2nr/9·72·τD
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Extracting rΨl for which
δ
2
= ce−ε2nr/9·72·τD, we have rΨl ≤

ξ̃ log(δ) 1
ε2

D
n
τ (ε). Since ε and δ are constants, this ends the

proof.

Lemma 6. There is a constant value, ξ, such that if r ≥
rΦl = ξ D

ncl
τ (ε), we have

Pr

[
|Φl − E [Φl]| ≤ εE [Φl]

3

]
≥ 1− δ

2

Proof. For this bounds, we cannot apply Therorem 4
directly since fj depends on previously visited node. How-

ever, since
Axk,xk+2

dxk
−1

only depends on a 3-nodes history, we

observe a related Markov chain that remembers the last
three visited nodes. To this end, M̃ has ñ = n × n × n
nodes, and (x1, x2, x3) ← (x2, x3, x4) with the same transi-

tion probability of x3 to x4 in M . Let fk(x̃k) =
Axk−1,xk+1

dxk
−1

.

We assume that ϕ ≈ π, and thus ‖ϕ‖π = 1. We have,

E [Φl] = E
[
φk

1
dxk
−1

]
= 1

D

∑n
i=1 ci = n

D
cl. From Theo-

rem 4,

Pr
[
|Φl − E [Φl]| > ε

3
E [Φl]

]
≤ ce−ε2ncl(r−2)/9·72·τ̃D

Extracting rΦl for which δ
2
= ce−ε2ncl(r−2)/9·72·τ̃D, we have

rΦl ≤ ξ̃ log(δ) 1
ε2

D
ncl

τ̃ . Since ε and δ are constants, this ends

the proof.
Note that τ̃ (ε) ≤ τ (ε). To see this, in the true station-

ary distribution the probability of drawing xk−1, xk, xk+1 is
dxk−1

D
1

dxk

1
dxk+1

. After τ (ε) steps, the probability of drawing

xk−1 is at most ε distance away. Therefore, probability of

drawing xk−1, xk, xk+1 is
(

dxk−1

D
± ε

)
1

dxk

1
dxk+1

, and thus

the difference is bounded by ε 1
dxk

1
dxk+1

≤ ε.

To conclude we combine Lemma 5 and 6, and choose
rl = max {rΨl , rΦl}.

B. CONCENTRATION OF ΨG AND ΦG

In the proof of Lemma 2 we require that the variables Ψg

and Φg give an ε/3 approximation to their expected values
with probability at least 1− δ/2.

Lemma 7. There is a constant value, ξ, such that if r ≥
rΨg = ξ Ddmax∑n

i=1 di(di−1)
τ (ε), we have

Pr

[
|Ψg − E [Ψg]| ≤ εE [Ψg]

3

]
≥ 1− δ

2

Proof. Let fk(xk) = f(xk) =
dxk
−1

dmax
(all values in [0, 1]).

We assume that ϕ ≈ π, and thus ‖ϕ‖π = 1. We have,
1

dmax
E [Ψg] = E

[
dxk
−1

dmax

]
= 1

Ddmax

∑n
i=1 di(di − 1). From

Theorem 4,

Pr

[∣∣∣∣ Ψg

dmax
− E [Ψg]

dmax

∣∣∣∣ > ε

3

E [Ψl]

dmax

]
≤ ce

− ε2
∑n

i=1 di(di−1)r

9·72·τDdmax

Extracting rΨg for which δ
2
= ce−ε2

∑n
i=1 di(di−1)r/9·72·τDdmax ,

we have rΨg ≤ ξ̃ log(δ) 1
ε2

Ddmax∑n
i=1 di(di−1)

τ (ε). Since ε and δ are

constants, this ends the proof.

Lemma 8. There is a constant value, ξ, such that if r ≥
rΦg = ξ Ddmax

cg
∑

n
i=1 di(di−1)

τ (ε), we have

Pr

[
|Φg − E [Φg ]| ≤ εE [Φg ]

3

]
≥ 1− δ

2

Proof. The proof combines the division by dmax of lemma 7
and the the 3-node history markov chain M̃ of lemma 6.
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