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ABSTRACT
We present a practical off-path TCP-injection attack for
connections between current, non-buggy browsers and web-
servers. The attack allows web-cache poisoning with ma-
licious objects; these objects can be cached for long time
period, exposing any user of that cache to XSS, CSRF and
phishing attacks.

In contrast to previous TCP-injection attacks, we assume
neither vulnerabilities such as client-malware nor predictable
choice of client port or IP-ID. We only exploit subtle details
of HTTP and TCP specifications, and features of legitimate
(and common) browser implementations. An empirical eval-
uation of our techniques with current versions of browsers
shows that connections with popular websites are vulnera-
ble. Our attack is modular, and its modules may improve
other off-path attacks on TCP communication.

We present practical patches against the attack; however,
the best defense is surely adoption of TLS, that ensures secu-
rity even against the stronger Man-in-the-Middle attacker.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols

Keywords
Web and Network Security; Off-Path Attacks; Browser Se-
curity

1. INTRODUCTION
TCP is the main transport protocol over the Internet,

ensuring reliable and efficient connections. TCP is trivially
vulnerable to man-in-the-middle (MitM) attackers; they can
intercept, modify and inject TCP traffic. However, it seems
that MitM and eavesdropping attacks are relatively rare in
practice, since they require the attacker to control routers
or links along the path between the victims. Instead, many
practical attacks involve malicious hosts, without MitM ca-
pabilities, i.e., the attackers are off-path.

There is a widespread belief that TCP communication is
reasonably immune to off-path attackers; i.e., that such ad-
versaries cannot inject traffic into a TCP connection. The
reasoning is that TCP specifications and implementations
were enhanced to provide security against such adversaries,
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who are incapable of eavesdropping to communication: mod-
ern TCP implementations randomize not only the 32-bit se-
quence number [14], but also the 16-bit client port [21]; in
order to successfully inject data to the TCP stream, the
adversary must provide valid values to both fields.

This belief is even stated in RFCs and standards, e.g.,
in RFC 4953, discussing on TCP spoofing attacks (see Sec-
tion 2.2 of [33]). Indeed, since its early days, most Inter-
net traffic is carried over TCP - and is not cryptographi-
cally protected, in spite of warnings, e.g., by Morris [23] and
Bellovin [6, 7].

We present an attack that allows an off-path adversary to
learn the (randomized) client port and sequence numbers,
and thereby inject traffic to the TCP connection. The tech-
nique exploits subtle properties of the TCP specification,
as well as common - and legitimate - behavior of browsers,
which was introduced in the early versions of browsers and
still exists in the modern browsers. Our TCP injection tech-
nique is independent of the victim’s operating system, and
allows the attacker to bypass the browser’s same origin pol-
icy (SOP) defense [5, 28, 36]. In particular, this allows in-
jection of web-pages and scripts in the context of a third-
party web-server, and can be exploited for cross-site script-
ing (XSS), cross-site request forgery (CSRF) and phishing
attacks without relying on a vulnerability in the web-server.

1.1 Network Settings and Attack Outline
Figure 1 illustrates our network model and outlines our

attack. Mallory, the attacker that we consider, is an off-path
(spoofing) attacker. Mallory cannot observe traffic sent to
others; specifically, she cannot observe the traffic between a
client C and a server S. However, Mallory can send spoofed
packets, i.e., packets with fake (spoofed) sender IP address.
Mostly due to ingress filtering [4, 11, 17], IP spoofing is
less commonly available than before, but it is still possible
with many ISPs1, see [1, 8, 10]. Mallory can use an ISP
that allows IP-spoofing; hence, the spoofing attacker model
is (still) realistic.

Our attack requires that the user enters Mallory’s web-site.
This allows Mallory to run a restricted script in the user’s
browser sandbox. Specifically, this script is restricted by
same origin policy [5, 28] and can only communicate via the
browser, i.e., request (and receive) HTTP objects (no ac-
cess to TCP/IP packet headers). Following [3], we refer to
such attacker-controlled scripts as puppets. Puppets are usu-

1Apparently, there is still a significant number (16%-22%)
of ISPs that do not perform ingress filtering and allow their
clients to spoof an arbitrary, routable source address [1, 8].
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Figure 1: Network Model and Attack Outline.

ally easier to obtain and control compared to zombies, since
browsers normally run scripts automatically upon opening
a web-site, while zombies require installation (of malware).

The attack has five steps, which are illustrated in Figure 1.
In order to circumvent the browser’s same origin policy, the
off-path attacker sends (in the final step of the attack) a
forged response for a request that the puppet sends to S.
This response may contain a malicious object, typically a
script, which we refer to as persistent XSS, since it may
be cached, for a long time (theoretically forever). Persis-
tent XSS can circumvent Content Security Policy (CSP) [30]
and other defenses (e.g., [15]), and perform cross-site script-
ing (XSS), cross-site request forgery (CSRF) [32], phishing,
defacement and more.

Organization. In the rest of the Introduction, we discuss
related works and summarize our contributions. Section 2
presents a modular overview of our attack, and compares
to related attacks. Section 3 presents our client-port de-
randomization technique. Section 4 shows how Mallory can
learn the server sequence number. Section 5 discusses ex-
ploits, Section 6 presents defenses, and Section 7 concludes.

1.2 Related Works

1.2.1 Off-Path TCP Injection Attacks
TCP injections are easy for implementations that use pre-

dictable initial sequence numbers (ISNs). This was observed
already by Morris at 1985 [23] and abused by Mitnick [29].
Later, at 2001, Zalewski found that most implementations
still used predictable ISNs [35]. However, by now, most or
all major implementations ensure sufficiently-unpredictable
ISNs, e.g., following [14].

Since the adoption of randomized initial sequence numbers
and until recently, TCP was widely believed to be immune
to off-path attacks. One exception was the off-path attacks
on TCP of [34], which disconnected BGP connections that
use constant client ports. However, this attack was consid-
ered as reflecting a specific vulnerability of BGP availability.
In particular, with the notable exception of Windows, most
current operating systems adopted algorithms to make it
harder to predict the client port. This and other counter-
measures make this attack inapplicable today [9].

The first ‘proof of concept’ showing that off-path attackers
may still be able to inject data to the TCP stream, even with
randomly-chosen client ports and initial sequence numbers,
was in [20]. This was recently improved to efficient off-path
TCP injection attacks [13, 26, 27]. However, in this work, we
significantly improve upon these works, as we now describe.

The attacks in [26, 27] require malware running on the
client machine (albeit with limited privileges). These at-

tacks use the malware to identify a ‘victim TCP connection’
by probing the client’s system variables (e.g., by executing
‘netstat’); then, the attacker learns the server’s sequence
number by sending spoofed packets with various sequence
numbers, the malware identifies when a packet is accepted
by the client (has valid a sequence number) by reading sys-
tem counters. A significant challenge in practice, that was
not considered in [26, 27], is that many clients connect to the
Internet via NAT devices; in this case, the external port (al-
located by the NAT) is likely to differ from the one observed
by the malware, which runs on the client. Moreover, assum-
ing a local malware agent to perform web-spoofing (injection
of false content) is a strong requirement. In fact, a malware
can display false content to the user and trick him or her
to believing it is genuine (without complex TCP injections);
this is a common attack vector.

In contrast to [26, 27], the attack that we presented in [13]
requires only a puppet running on the victim machine (sim-
ilar to this work). However, [13] as well as [20] exploit a spe-
cific operating-system implementation of the TCP/IP stack.
Specifically, the use of globally-incrementing allocation mech-
anisms for both ports and IP-IDs, as exists in the Win-
dows operating systems. Although Windows is very popu-
lar, avoiding these requirements from the operating-system
still significantly expands the base of vulnerable clients; fur-
thermore, these specific weaknesses may be removed in fu-
ture versions of the operating system (as suggested in our
correspondence with Microsoft’s security team).

1.2.2 Address-Based Authentication and SOP
TCP injection attacks were key to some of the most well

known exploits, specifically, attacks against address-based
client authentication, e.g., see [7]. However, as a result,
address-based client authentication has become essentially
obsolete, and mostly replaced with cryptographic alterna-
tives such as SSH and SSL/TLS.

However, web security still relies, to large extent, on the
Same Origin Policy (SOP) [5, 28], i.e., on domain/address-
based server authentication. Many attacks are based on cir-
cumventing SOP; however, these attacks are usually based
on implementation bugs, mostly in the sites, and some in
the browsers or middleboxes; see [36]. Especially related to
our attack is the HTTP response splitting attack [18], which
exploits the loose separation between HTTP responses.

Notice that using TCP injections to attack address-based
server authentication is more challenging than using it to
attack address-based client authentication. In attacks on
address-based client authentication, the off-path attacker
sends the initial SYN to open a new connection; hence, she
knows the source and destination IP addresses and ports;

436



she ‘only’ needs to predict the server’s sequence number. In
contrast, to attack address-based server authentication, the
off-path attacker must also identify the client’s port.

1.3 Contributions
The basic contribution of this work is in showing that

TCP injections can be very practical, in terms of both effi-
ciency and of requirements: no dependency on malware or
non-recommended implementations of TCP/IP, as in previ-
ous works. This has significant implications. In the short
term, patches should be deployed to prevent our techniques;
we present such defenses in this paper. Most significantly,
we hope that this work will help promote the use of crypto-
graphic defenses, providing strong security assuming MitM
attackers, rather than assuming that attackers only have off-
path capabilities.

We identify the main challenges for off-path TCP injec-
tions, and build our attack modularly, with independent
modules handling different phases and tasks. This allows
some of our modules to be used independently of others. As
one important example, we present a technique for client
port de-randomization. Specifically, we show how to predict
the client port when the client’s operating system uses the
Simple Hash-Based Port Selection (SHPS) Algorithm recom-
mended in [21]. Since SHPS is embedded into Linux, it is
extensively used, e.g., by Android and NAT devices, which
are often based on embedded Linux.

Our attacks, while efficient and practical, are non-trivial
and based on in-depth understanding of the operation of
TCP and HTTP. In particular, we exploit the fact that (cur-
rent) browsers process invalid HTTP responses, by handling
them as payload with a default response header. This be-
havior may have helped in debugging of early HTTP 1.1
implementations, but currently seems unnecessary and dan-
gerous; browsers should be patched to avoid it.

Lastly, our cache-poisoning exploit significantly extends
compared to known exploits for TCP injections.

2. A MODULAR ATTACK SCHEME
In this section we present a modular scheme for a TCP in-

jection attack, breaking the attack into three separate tasks:
� Learn Connection 4-Tuple. The attacker learns the four pa-
rameters of a TCP connection between a client and a server,
i.e., their respective IP addresses and ports.
� Learn Sequence Number(s). The attacker learns the cur-
rent sequence number, for packets sent from the server to
the client. In some attacks, the attacker also learns the se-
quence number for packets from the client to the server.
� Exploit. A non-trivial task is to find how to successfully
exploit a TCP injection ability; this task may depend on the
properties of the attack, e.g., required length of connection.

A modular scheme was not presented in previous off-path
injection attacks [13, 20, 26, 27], however, these attacks fol-
low our scheme. By explicitly stating the scheme, it is easier
to understand new attacks and identify cases where a new
module, improving the solution to one task, can improve an
earlier attack; and, on the other hand, protocols and systems
should be designed to make each step (task) infeasible.

The following subsections present the three tasks that
compose the scheme; for each task, we compare our im-
plementation of a building-block achieving the task, to im-
plementations in previous attacks. Table 1 summarizes our
discussions below.

2.1 Learn Connection 4-Tuple
The first task is to identify a TCP connection to attack, i.e.,

a ‘victim-connection’. In [20], the adversary actively scans
the client machine for an existing connection with a partic-
ular server. As indicated in [20], this technique is typically
detected and blocked by firewalls. In [26, 27], the attacker
runs a rogue application (malware) on the client machine.
The malware monitors connections that the client has with
servers, e.g., by executing netstat.

This work and [13] rely on a weaker assumption: that the
user’s browser runs a puppet, i.e., a malicious script, down-
loaded and executed automatically from the attacker’s web-
site, e.g., www.mallory.com, to which the user innocently en-
tered. This puppet establishes the victim connection (step 1
in Figure 1). Therefore, Mallory (attacker) knows the client
and server IP addresses, as well as the server’s port. It is
only left to identify the client port (step 2 in Figure 1).

In [13] the attack additionally assumes sequential port al-
location; this allows the attacker to guess the correct client-
port of the connection that the puppet establishes. How-
ever, many operating systems try to avoid predictable port
allocation, as recommended in RFC 6056 [21]. In this paper,
we successfully attack the Simple Hash-Based Port Selection
(SHPS) algorithm, recommended in [21] and implemented
in Linux. SHPS applies to many clients, e.g., running An-
droid or connect to the Internet through NATs, which often
run Linux (which uses SHPS). Our technique, described in
Section 3, is based on an observation from the TCP specifi-
cation, i.e., is independent of the platform (cf. to [13, 20]).

2.2 Learn Sequence Numbers
The next step after identifying the victim-connection is

learning one or both connection’s sequence numbers (step 3
in Figure 1); knowledge of the server’s (client’s) sequence
number allows her to inject data to the connection, imper-
sonating as the server (client). Observing the sequence num-
bers directly from traffic requires an on-path attacker (i.e.,
eavesdropping capability). Off-path TCP injection tech-
niques use different methods to infer the sequence numbers.

2.2.1 Operating-System Specific
In the attacks of [13, 20], the adversary exploits the global

counter IP-ID implementation in Windows. The attacker
observes the difference in the IP-ID field in packets that she
receives from the client to learn the number of packets that
the client had sent to other destinations (since each packet
increments the IP-ID).

In these attacks, the attacker sends to the client spoofed
probe packets (that appear to be from the server). The
client responds to a probe only if it specifies an invalid server
sequence number, i.e., outside the client’s flow-control win-
dow. The client sends the responses to the server and the
attacker learns whether the client responded by observing
the IP-ID field (in packets that she receives from the client
in a different connection).

After learning the server’s sequence number, the tech-
niques in [13, 20] exploit Windows TCP implementation,
which filters incoming packets according to their acknowl-
edgment numbers (this mechanism is non-standard). This
implementation allows the attacker to learn which acknowl-
edgment number is valid (passes filtering) by again observing
the IP-ID side channel; the valid acknowledgment number
equals the client’s sequence number.
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Learn Connection 4-tuple Learn Sequence Numbers Exploit

Lkm [20]
Active probing for connection
(Windows client, no firewall)

Exploit global IP-ID counter impl.,
both seq. # obtained

(Windows client)
None

Qian
et al.[26, 27]

Monitor connections,
e.g., with netstat

(Malware)

Read client system counters,
server’s seq. # obtained

(Malware; in [26] also seq. # checking firewall)

XSS, CSRF, phishing
(no TLS/SSL)

Gilad and
Herzberg [13]

Establish connection, exploit
sequential port allocation impl.

(Puppet, Windows client)

Exploit global IP-ID counter impl.,
both seq. # obtained

(Puppet, Windows client)

XSS, CSRF, phishing
(No TLS/SSL)

This work
Establish connection,

client port de-randomization
(Puppet, client behind firewall)

Exploit browser behavior,
server’s seq. # obtained
(Puppet, no TLS/SSL)

As above plus
web-cache poisoning

(No TLS/SSL)

Table 1: Off-Path TCP Injection Attacks: Building Blocks. In brackets: requirements.

2.2.2 Sequence Number Inference Attacks
In the sequence number inference attacks [26, 27] the at-

tacker sends spoofed packets to the client machine. Each
packet specifies a different sequence number. The observa-
tion in [26] is that if the sequence number is not close to the
value that the client expects, then some network firewalls
will discard the packet. The observation in [27] is that the
client will respond to the packet only if its sequence number
is in the flow-control window. Both attacks use the mal-
ware to read system counters, which tell whether the client
received the attacker’s packet ([26]) or responded to it ([27]).

2.2.3 Inject and Observe
We use a different approach than the previous attacks; our

technique, called ‘Inject and Observe’, assumes a standard
TCP/IP stack and does not rely on an operating system
specific leakage, e.g., via the IP-ID field (cf. to [13, 20]).
Additionally, since we assume only a puppet running on the
client machine, Mallory cannot receive feedback from system
files (cf. to [26, 27]).

In the Inject and Observe technique, described in Sec-
tion 4, Mallory sends to the client data which is spoofed as
coming from the server in response to queries that the pup-
pet sends; this phase relies on a very common browser be-
havior that allows the puppet to retrieve the injected data
when buffered in the flow-control window (maintained by
the browser). The data contains the server’s sequence num-
ber that Mallory guessed; hence, when read by the puppet,
Mallory learns a valid sequence number.

2.3 TCP Injection: Exploits
The final building block of the attack is an application of

the injection (steps 4, 5 in Figure 1), typically to inject a
malicious object into the connection. The malicious object
may be cached, and the attacker can easily make sure it stays
in cache (theoretically forever); we refer to such a malicious,
long-lived object or script as a persistent XSS.

Web-cache poisoning with a persistent XSS allows the at-
tacker long-term use of many exploits, including cross-site
scripting, cross-site request forgery and phishing (suggested
in previous works [13, 26, 27]), bypassing the state of the
art defenses such as CSP. See Section 5.

3. CLIENT PORT DE-RANDOMIZATION
The first step in performing a TCP injection is to identify

the victim-connection. As described in Section 2.1, Mallory
uses the puppet to establish the victim-connection; there-
fore, she knows the client’s address as well as the server’s

address and port2. In this section we describe a new tech-
nique that allows Mallory to learn the fourth parameter of
the TCP four tuple: the client port.

In Windows, learning of the client port is trivial, since
port numbers are assigned consecutively (for all destina-
tions). However, it is widely accepted that this is insecure,
and that the client port should be ‘unpredictable’ to an off-
path attacker. RFC 6056 [21] presents five recommended
client port selection algorithms to secure against off-path
adversaries. We focus on their third suggestion: ‘Simple
Hash-Based Port Selection’ (SHPS).

SHPS is used by the Linux OS kernel in versions 2.6.15 and
above, i.e., from the year 2006; it is embedded in all Android
versions and many NAT devices. Extensive deployment at
the NAT level makes SHPS the de facto port selection algo-
rithm for many clients, even if the client machine does not
use this algorithm.

SHPS chooses a pseudo-random initial port for each des-
tination (server) IP-address; a new connection between the
client and that destination uses the current port which is
then incremented, i.e., a per destination port-counter. SHPS
is expected to be secure against off-path adversaries, since
these are not aware of the initial port.

However, we show a method allowing an off-path attacker
(Mallory) to predict the next port assignment by SHPS. We
begin, in Section 3.1, with port elimination and testing. This
is a simple technique, where Mallory eliminates (or ‘marks’)
a port p, and the puppet tests if the next-assigned port was
supposed to be p. By repeating this for many ports, even-
tually a match happens, allowing the puppet to predict the
next-assigned port. Then, in Section 3.2, we present a meet
in the middle optimization method, which applies elimina-
tion and testing concurrently to multiple ports, improving
the efficiency of the prediction technique. We complete this
section with Subsection 3.3, which discusses practical chal-
lenges and presents an empirical evaluation.

3.1 Port Elimination and Testing
We now describe a method for eliminating a client port p,

and then testing if p is the next port to be assigned by
the client’s port-selection algorithm. Specifically, Mallory
sends a spoofed SYN packet from the client’s IP address and
port p, to the server (S). This causes S to open a (pending)
connection with port p of the client. As a result, the server
will refuse additional SYN packets from port p of the client,
namely, port p is eliminated. After port p was eliminated,

2Our initial discussion assumes that the server has one IP
address; in practice, large servers often have multiple ad-
dresses, we refer to this issue in Subsection 3.3.
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Figure 2: Port De-Randomization, Elimination and Testing.

the puppet tries to establish a new connection with S; the
response time gives an indication if the port was eliminated
or not. We now provide the details to our technique, illus-
trated in Figure 2.

In the first step (see Figure 2), Mallory sends to S a spoofed
TCP SYN with the source address of C and from port p,
which is the port that Mallory tests. When S receives this
SYN, it creates a connection entry for <C:p,S:server-port>
and assigns it the SYN-Received state. S then sends a
SYN+ACK response to C; a stateful firewall that connects
C to the network (see illustration in Figure 1) will discard
the unsolicited SYN+ACK packet from S (as C did not send
a matching SYN); as a result, S stays at the SYN-Received
state for a relatively long time (in our experiments below,
this was typically 10− 20 seconds for popular web-servers).

In the second step (see Figure 2), the puppet establishes a
TCP connection with S, by requesting the browser to embed
an image from S in the puppet’s web-page. The puppet
requests an image from domain i.mallory.com, an attacker-
controlled domain that is mapped to the IP address of S.
The prefix counter i ensures that each request uses a unique
sub-domain; this prevents reuse of an existing connection.

In the third step (see Figure 2), the puppet evaluates
whether p was the connection port and informs Mallory.
Evaluation is easy, based on the response time, which is
very different in the two cases - when the client tried to use
the ‘eliminated’ port p, and when it used a different port.

If the client port selected by the operating system is not p,
then C and S will establish a TCP connection, over which
the browser will request the image. Usually the servers will
refuse the request immediately, since the browser specifies
in the a HTTP request’s ‘Host Header’ a sub-domain of
mallory.com and not the server’s domain (e.g., s.com), due
to the DNS mapping in step 2. Hence, most servers will
close the connection (others might return a HTTP not found
message), and the puppet will receive an error feedback from
the browser after roughly two C-S round-trip times (RTTs),
which is normally much less than one second.

In contrast, if the operating system selects p as the client
port, then C will try to establish a connection, i.e., send

a SYN packet, with the same source port (p), but, almost
always, with a different sequence number than that set by
Mallory in the first step. Therefore, S will discard this packet,
see TCP specification [25] page 69; the TCP connection will
not be established. The client operating system will retry to
establish the connection several times and return an answer
to the puppet only after several seconds. Often, this answer
will be due to exceeding the maximal number of retransmis-
sion attempts; alternatively, the connection may be estab-
lished, but again only after several seconds, when the server
closes the (spoofed) pending connection. In both cases, the
delay is much larger than in the case that the client used a
port different from p.

In order to ‘clean up’ after testing port p, Mallory sends
a reset (RST) packet that corresponds to her spoofed SYN;
this releases the server’s resources in case that these are still
allocated to the connection.

If the port p was indeed the port that the client tried to
use (in connecting to S), then the attacker can now predict
that on the next connection-open by the puppet to S, port
p + 1 will be used. Otherwise, the attacker can repeat the
process, until eventually successful. This would work - but
not efficiently, requiring approximately 215 iterations until
success (since the port field is 16 bits long).

3.2 A Meet-in-Middle Optimization
In this subsection we present a meet-in-middle optimiza-

tion, that reduces dramatically the time and communica-
tion involved in the port de-randomization process. In order
to improve de-randomization performance, Mallory uses the
puppet to establish multiple connections to the server and
eliminate ports simultaneously.

Let π denote the number of possible ports for a connec-
tion between C and S. Since the port field is 16-bits long,
π ≤ 216 (π is often significantly smaller than 216, see next
subsection). In order to improve de-randomization run-time,
Mallory uses the puppet to establish multiple connections to
the server and eliminate ports simultaneously.

In the first phase of the de-randomization process, Mallory
performs port-elimination (described above) on

√
π ports,
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Figure 3: Port De-Randomization, Meet-in-the-
Middle Optimization. At the top are ports allocated
by the operating system, illustrated by the arrows;
numbers with underscore mark the connection num-
ber. At the bottom are ports that Mallory eliminates.

specifically, the ports {di
√
πe}
√
π−1

i=0 . In this phase, the pup-
pet establishes

√
π connections to S, which we number by

the order of establishment. See illustration in Figure 3.
In order to use the puppet to establish multiple connec-

tions to S, Mallory must circumvent the fact that browsers
which support HTTP 1.1 would normally send multiple re-
quests to the same server using the same ‘persistent’ connec-
tion. Circumvention of this mechanism is performed by ma-
nipulating DNS mapping of attacker controlled domains: the

puppet requests objects from {i.mallory.com}
√
π−1

i=0 ; Mallory
controls the DNS records for these domains and maps them
to the IP address of S. Browsers use domain-names to iden-
tify servers and not IP addresses; hence, this technique,
which we verified on Chrome and Firefox, opens

√
π new

connections to S.
We assume that the user does not create an independent

connection with S during port de-randomization. According
to the SHPS algorithm, client port allocation is sequential;
therefore, one of these connections will use a port eliminated
by Mallory, the wait-time for feedback from that connection
is significantly longer than in other connections and this is
identified by the puppet; let x denote the number of that
connection. Since the puppet had established

√
π−x connec-

tions after connection x, the current value of the operating
system’s client-port counter is k

√
π−x for some 0 ≤ k <

√
π.

This completes the meet in the middle phase.
The following phase of the de-randomization process is an

exhaustive search that is performed in iterations to identify
the current port of the remaining

√
π possibilities. In each

exhaustive search iteration, Mallory performs the elimina-
tion process simultaneously on half of the remaining ports
and the puppet requests only a single object. If the port
allocated by the operating system is one of those tested by
Mallory, then the feedback from S to the puppet is delayed.
Since each iteration eliminates half the possibilities, the ex-
haustive search requires dlog2

√
πe iterations to complete.

3.2.1 Analysis
The maximal number of simultaneous connections that

the puppet may open changes according the version of the
browser; this value is at least 15 in all modern browsers
and typically increases with new releases. Based on this, we
estimate the amount of transmitted data and time required
to perform port de-randomization.

Mallory sends
√
π ≤

√
216 = 256 spoofed SYNs during

the meet in the middle phase and a similar number of SYNs

during the exhaustive search phase, i.e., overall at most 512
packets of 40 bytes each, in total 20KB.

The puppet requests at most 256 objects during the meet
in the middle phase; since the browser allows simultaneous
requests for 15 objects, the number of ‘request-iterations’
during the meet in the middle phase is at most

⌈
256
15

⌉
= 18.

Each iteration takes roughly two C-S round-trip times (RTTs).
In total, the iterations take 36 RTTs, which are 3-7 seconds
(for typical Internet RTTs of 100-200 milliseconds). The ex-
haustive search phase has at most 8 iterations which perform
one after the other, i.e., requiring 16 RTTs, i.e., typically
about 1.5-3 seconds.

3.3 Real-World Challenges and Evaluation
This subsection describes practical challenges in perform-

ing client port de-randomization and presents an evaluation
of our technique on connections with popular web-servers.

3.3.1 Challenges
A. Multiple Server IP Addresses. Large web-sites often map

their domains to multiple IP addresses; this allows load dis-
tribution on several server-machines and shorter round-trip
time to the client, who connects to a physically close server.
However, this induces a difficulty on our attack since we wish
to learn the port-counter associated with the specific server
IP address that the client uses.

Usually, the attacker can identify a small set of possible IP
addresses just by the client’s physical location or ISP (e.g.,
our ISP provides six addresses for www.google.com). These
possibilities are eliminated with a short validation phase at
the end of the port de-randomization process: after Mallory
learns the value of the port-counter for some server IP, she
sends a spoofed SYN to the server using the next port; the
puppet tries to retrieve an object from the server’s domain
(cf. to attacker controlled domains as described in Subsec-
tion 3.1). If the puppet receives a feedback after a relatively
long delay, then Mallory de-randomized the port counter for
the correct IP address; otherwise, Mallory performs the de-
randomization process again for another IP address.

B. SYN Flooding. Our port de-randomization technique
requires sending

√
π SYN packets during the meet in the

middle phase, i.e., create up to 256 ‘half-open’ connections.
This might be identified by some web-servers as a SYN flood-
ing attack [9], i.e., an attempt to clog the server’s connec-
tions backlog; we now discuss the defenses suggested in [9]
that might be triggered and influence our technique.

The first defense is to filter connections from the client’s
IP address. This defense blocks our attack, but fails to miti-
gate SYN flooding when the attacker can spoof her address.
Moreover, this defense may be abused by such IP-spoofing
attackers to deny service from legitimate clients by sending
spoofed SYNs using their addresses.

The second defense is to use SYN-cookies, i.e., avoid state
keeping at the web-server until the TCP handshake com-
pletes. In this case, the server will reply to the client’s SYN
even if it uses a port that was ‘eliminated’ by Mallory. SYN-
cookies encode the connection state in the server’s sequence
number, which is returned to the client in the SYN+ACK
packet; this allows the server to reconstruct its state when
receiving the following ACK packet from the client. How-
ever, SYN-cookies are not widely used, since they come ‘at
a high price’; they allow the server to specify only one of
four options for maximal segment size (MSS), which may
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degrade service for some clients. Furthermore, SYN-cookies
reduce the entropy in the server’s sequence number which
may allow an attacker to guess its value, see [16].

Finally, the server may reduce its TCP timers; this will
release server resources faster, but may deny service from
clients with long response time. This defense does not pre-
vent our attack, but forces a tighter time constraint on it:
the puppet must perform all requests until timeout or Mallory
must ‘refresh’ her spoofed SYN packets.

All these defenses have disadvantages which may discour-
age servers from deployment. A typical solution, suggested
in [9] and [22], is a hybrid approach: the server keeps a small
state for each connection, e.g., using SYN cache [9], and em-
ploys one of the defenses described above when it identifies
a SYN flooding attack. Indeed, the majority of servers in
our experiments did not employ IP filtering or SYN-cookies
even after we sent the spoofed SYNs; this allowed us to de-
randomize the client port with high success rates (see next).

3.3.2 Evaluation
Setup. We evaluated our technique on connections with

popular web-sites, specifically, the top 1024 sites in the Alexa
ranking [2]. We used a Linux client (kernel version 3.2.0)
with a local IP-tables host level firewall (version 1.4.12).
The Linux kernel uses the range [32768, 61000] for choosing
client ports; this is a significantly smaller range than all pos-
sibilities for the 16-bit port field. This observation helps to
improve the search run time.

We placed the attacker and client machines in the same
network, which allowed the attacker to send packets to the
Internet using the client’s IP address (in reality, the attacker
would connect through an ISP that does not perform ingress
filtering, see discussion in Section 1.1). The client and at-
tacker connect through different physical interfaces of a net-
work switch, this prevents the attacker from observing pack-
ets to/from the client, i.e., attacker is off-path. The client
and attacker connect through 10Mbps link to the Internet.

We performed our experiments when the puppet runs in
Mozilla Firefox (version 16.0.2) and Google Chrome (version
23.0.1271.64). We verified our port prediction by executing
netstat on the client side and observing the selected client
port in the following connection.

Results. Figure 4 shows the failure rates as a function of
web-site popularity. Port de-randomization failed for ap-
proximately 7% of the 1024 websites that we tested (see
Figure 4 line 1); i.e., a 93% success rate.

We also measured the deployment and effect of the SYN
flooding defenses described above: when failed to de-randomize
the port, we tested whether the web-site allows new connec-
tions from the client, i.e., whether the client’s IP address is
filtered; these ‘filtering’ servers were approximately 3% of
the servers (see Figure 4 line 2). If the client’s IP address
was not filtered, we tested whether the client can connect
to the server using an ‘eliminated’ port; if it can, then the
server either has a short timer, that had elapsed by the time
we tested the correct port, or uses the SYN-cookies defense
(i.e., server does not ‘remember’ the spoofed SYN); these
‘stateless’ servers were approximately 1% of the servers (see
Figure 4 line 3). Port de-randomization for other servers
(approximately 3%) failed due to other errors; e.g., some-
times we were not able to retreive the server’s IP address
(probably due to DNS filtering at the network or ISP level).
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Figure 4: Port de-randomization failure rates, as a
function of web-site popularity. Rates are the aver-
age of two runs: one when puppet runs on Firefox
and the other on Chrome. Error-bars mark stan-
dard deviations.

4. LEARNING THE SEQUENCE NUMBER
We now proceed to the second building block (and attack

phase), as in the design presented in Section 2.2.3. At the
end of this phase Mallory learns the 32-bit server’s sequence
number; this allows her to send data to the client, imper-
sonating as the server. We assume that Mallory has the
parameters of the victim-connection, in particular, that she
identified the client port; e.g., by executing the technique
described in Section 3 (or other methods, see Table 1).

Our attack exploits an under-specification of HTTP 1.1 [12].
Subsection 4.1 provides required background, explaining how
browsers handle HTTP responses that they receive. Sub-
section 4.2 describes our search technique. Subsection 4.3
presents the requirements of our search technique and presents
an empirical evaluation in the real-world.

4.1 HTTP Request/Response Handling
As of HTTP 1.1 [12], clients can send multiple requests to

the same server in a single (‘persistent’) HTTP connection;
furthermore, clients can send these requests in pipeline, i.e.,
without waiting for response to one request before sending
the next request. In order to allow browsers to match be-
tween each response and the corresponding request, the re-
sponses are sent by the server, exactly in the order in which
the client had sent the requests.

More specifically, the browser (client) keeps a FIFO queue
of pending HTTP requests for each connection, and handles
them one by one, as follows. In order to handle the (oldest)
request, the browser reads the bytes in TCP’s receive-buffer
(allocated per-connection) when they become available. The
browser expects to find the matching response in the begin-
ning of TCP’s receive-buffer. Next, the browser parses the
response as per [12], embedding it in the web page. This
process continues until there are no more requests awaiting
reply from the particular connection.

Unfortunately, the HTTP standard [12] does not specify
what the browser should do when the receive-buffer contains
data which is not a valid HTTP response. We tested the
current versions of the three most popular browsers (Internet
Explorer, Firefox and Chrome), and all of them handled this
situation as follows: the browsers treat all available data in
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Figure 5: Server Sequence Number Learning Technique.

the receive-buffer as payload of a response with the following
‘default’ HTTP header:

HTTP/1.1 200 OK

Content-Type: text/html; charset=us-ascii

Content-Length: available-data-size

The browser returns this ‘response’ to the requesting mod-
ule, normally, the browser’s rendering engine or a script/applet.
The browsers do not break the existing TCP connection, and
continue processing responses to requests sent over it3. The
following subsection explains how we exploit this behavior
to learn the server’s sequence number.

4.2 Inject and Observe
In this subsection we present the server sequence num-

ber learning technique which is illustrated in Figure 5. The
technique has two steps: (1) Inject and (2) Observe.

(1) Inject step. In this step, Mallory injects data into the
stream of HTTP responses sent from the server (S) to the
client (C). This data is ‘observed’ (read) in the following
step, which allows Mallory to determine the server’s sequence
number.

Let wnd denote the browser’s receive-buffer for the con-
nection and |wnd| denote its size. In order to inject the data,

Mallory sends to the browser 232

|wnd| packets, spoofed to ap-

pear to be from S (on its victim-connection with C). The ith

packet has server sequence number i · |wnd|, and contains as
payload pad||page(i), where pad is an easily-removable ‘pad’4

and page(i) is a simple web-page defined as follows:

<HTML><BODY>

<iframe src = "www.mallory.com/i.html" />

</BODY></HTML>

Hence, exactly one of these packets contains a ‘valid’ server
sequence number, which falls within wnd; all the other pack-
ets are discarded by C.

Actually, this description was a bit simplified, since TCP
also validates the acknowledgment number specified in re-
ceived packets. Specifically, TCP ignores packets whose ac-
knowledgment number is for data not yet sent (relative to

3This behavior may have been adopted to simplify ‘debug-
ging’ of servers that implement HTTP pipelining incorrectly.
4The length of the pad and its use will become clear when
we present the following ‘observe’ step.
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Figure 6: The state of wnd after ‘inject’ step.

the cyclic space of acknowledgment numbers), see TCP spec-
ification [25] page 72. Therefore, if we select the acknowl-
edgment number randomly, there is a 50% chance that it
would be ignored. The solution is simple: Mallory sends two
packets for each sequence number, one specifies Ack = α for
some α ∈ {0, 231}, and the other specifies Ack = α + 231;
this ensures that the Ack number in one of the two pack-
ets is valid. Hence, exactly one of the packets will contain
‘good’ sequence and acknowledgment numbers, and its data
is saved in the receive-buffer (wnd). Namely, after this step,
C’s victim-connection wnd is as illustrated in Figure 6.

During the ‘inject’ step, the puppet ensures that there is
always at least one request waiting for reply in the browser’s
queue; this by generating two initial requests and sending a
new request when a response arrives (these requests were
removed for readability from Figure 5). The reason that
one request must always be enqueued is that when there are
no pending requests, some browsers clear the receive-buffer
(those will discard the injected data).

(2) Observe step. In this step, the puppet makes preva-
lent requests to the server, until it reaches the data injected
by Mallory in the previous step. Similarly to the previous
‘inject’ step, the puppet maintains at least one request en-
queued until this phase completes (see Figure 5). Each re-
sponse that arrives at C shifts wnd forward; once a sufficient
number of responses arrived, such that there is no gap of un-
received bytes between the injected data (buffered in wnd)
and the last response, then the browser will also read the
injected response, expecting it to be the following response;
see illustration in Figure 7. In fact, the last response would
(usually) overwrite part of the pad at the beginning of the
injected data; the pad is at least as long as the server’s re-
sponse5, hence, some of the pad and all of page(i) would
remain and be read and rendered by the browser. As ex-
plained in the previous subsection, in all browsers that we

5The pad may, for example, be of the form {0}m||1, where
m is the length of the longest possible response.
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Figure 7: The state of wnd during the ‘observe’ step.

tested, the remaining injected data is handled as a regular
response with a default header, and returned to the puppet.

The requests that the puppet sends are for arbitrary web-
pages that will yield short responses, e.g., HTTP 404 re-
sponses (page not found). When the browser renders the
injected response, it will try to retrieve the page i.html from
Mallory’s web-site (see Figure 5); providing to Mallory the
value of i. This allows Mallory to compute the next server
sequence number that C expects.

4.2.1 Analysis
The Inject and Observe technique requires Mallory to send

a number of packets that is linear to the number of sequence
numbers. Specifically, Mallory sends during the ‘inject’ step

2 232

|wnd| packets. For typical |wnd| of 216, we find that the

Mallory sends 217 packets. The number of additional pack-
ets sent during ‘observe’ step is negligible. Each packet is of
maximal response size to the puppet queries, which are usu-
ally short; assume that it is 800B; in this case, Mallory sends
approximately 100MB of data during Inject and Observe.

4.3 Requirements and Real-World Evaluation
In this subsection we present the requirements of the In-

ject and Observe technique and evaluate its success rate on
connections with popular web-sites.

4.3.1 Requirements
Our Inject and Observe technique has two requirements

from the web-server side:

1. Support persistent HTTP connections and request pipelin-
ing (default in HTTP 1.1 [12]). This allows the puppet
to send several requests over the same connection; if
the server does not support these properties, then the
connection will close after the first response arrives.

2. Use HTTP without cryptographic protection (i.e., no
HTTPS). SSL/TLS defenses will not allow Mallory to
inject data to the application (browser will discard the
spoofed data before HTTP parsing).

In Figure 8 we evaluate the applicability of the Inject and
Observe technique on connections with the top 128 web-
sites in Alexa popularity rank; we observe that 73% of these
web-sites are potentially vulnerable (see Figure 8, line 1).

4.3.2 Evaluation
We verified that the browser behavior which we exploit ex-

ists in Chrome (v23), Firefox (v16) and Internet Explorer (v9).
We empirically evaluated the Inject and Observe technique
with Chrome and Firefox (IE does not run on our Linux
client machine). We measured the success rate in two sce-
narios: (1) as a standalone component, where the client-
port is obtained by executing netstat on the client machine;

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8 16 32 64 128

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Number of Top Web-Sites Tested (log scale)

1. Persistant HTTP Servers (Potenial Success)
2. Standalone Sequence # Search
3. Combined Attack

Figure 8: Inject and Observe, Evaluation. Potential
and measured success rates as a function of web-site
popularity. Error-bars mark standard deviations.

(2) as part of a complete injection attack, together with
the client-port de-randomization technique presented in Sec-
tion 3. We identified a successful execution when Mallory
receives a GET request for i.html from the client (where i
is an integer).

Setup. Our setup is as in Section 3.3.2.
Results. Figure 8 compares the success rates (average of

measurements in Chrome and Firefox) for both scenarios.
The indicated success rate of our attack as a standalone
component is approximately 35% (see Figure 8, line 2). This
rate is significant, but lower than what we expected, and is
roughtly half of the potential success rate (Figure 8, line 1);
observing the logs, we found that some servers responded to
the puppet’s requests (during the ‘observe’ step) with long
HTTP 404 responses. These responses were longer than our
padding (800 bytes), which caused an error and failed the
search. In practice, inspection of the web-server to identify
short objects that the puppet could request will increase the
success rate. The combined attack (see Figure 8, line 3) has a
similar success rate to that of standalone Inject and Observe;
this is since our port de-randomization technique has high
probability for success (see evaluation in Section 3.3.2).

The average run-time of a successful Inject and Observe
was approximately 146 seconds (standard deviation 21 sec-
onds), the average run-time of the complete attack was ap-
proximately 180 seconds (standard deviation 28 seconds).

5. EXPLOITS
In Sections 3 and 4 we showed how Mallory can learn the

client port and server’s sequence number for a ‘victim’ con-
nection that the puppet establishes; these parameters allow
Mallory to inject data to the connection, impersonating as
the server. We, as well as Qian et al., extensively discussed
the XSS, CSRF and phishing exploits in [13, 26, 27] which
are briefly reviewed in this section. This section focuses on
the web-cache poisoning exploit that was not considered in
prior works.

5.1 XSS, CSRF and Phishing
Cross-Site Scripting (XSS). The puppet requests an HTML

page from the server over the victim-connection, e.g., by in-
cluding <iframe src="www.server.com/page.html"/>. Mallory
provides a spoofed HTTP response with an HTML page that
contains a JavaScript. This script then executes in context
of www.server.com; i.e., Mallory circumvents the same ori-
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gin policy. Since Mallory writes the HTTP header of the
response, she can bypass state of the art XSS defenses such
as CSP [30]. This attack vector is illustrated in Figure 1.

Cross-Site Request Forgery (CSRF). Once attackers suc-
ceed in an XSS attack, i.e., run a malicious script in context
of a victim site, they can exploit it in many ways. In partic-
ular, an XSS attack allows attackers to send a forged request
to the server on the user’s behalf, circumventing all known
defenses against CSRF attacks for non-secured connections,
except for (few) defenses requiring extra user efforts for sub-
mission of each sensitive request; see [24].

Phishing. Mallory opens the victim-connection to some
website and learns the connection’s parameters. Mallory
waits until the user enters to the same website, and since
browsers re-use connections, the browser will send the user’s
requests over the victim-connection, allowing Mallory to in-
ject a spoofed web-page in response. In particular, Mallory
can learn user credentials by spoofing the homepage of web-
sites, which often do not invoke SSL until the user presses
a log-on link; this is done by injecting a spoofed homepage
where the log-on link points to Mallory’s site.

5.2 Web-Cache Poisoning and Persistent XSS
The exploits above are limited: they can only run at the

present moment and in the current victim-connection be-
tween C and S. This motivates a long-lasting web-cache poi-
soning attack [19, 31]. Mallory can cache spoofed responses
(for requests made by the puppet) at the browser, as well
as possible intermediate network proxies that will provide
the spoofed page to other users. For example, the following
HTTP headers cache the spoofed response for a day, and
impede the browsers from refreshing the page:

Last-Modified: today

Cache-Control: public

Expires: tomorrow

Mallory can poison the web-cache with spoofed pages that
users will receive when they access the (poisoned) websites.
In particular, this allows Mallory to cache spoofed login pages,
i.e., a persistent phishing exploit. Furthermore, Mallory can
cache a malicious script in context of some target website,
and run it automatically (without further TCP injections)
when a user in the network enters the target website. Sim-
ilarly to the XSS exploit shown above, the cached script
executes in context of victim website; i.e., a persistent XSS
exploit.

6. DEFENSES
In Sections 3 and 4 we showed how an off-path attacker

can learn the client port and server sequence number of a
TCP connection, allowing the exploits in Section 5. This
section presents client and server end defenses for the attack
vectors considered in this paper.

6.1 Client-End Defenses

6.1.1 Client-Port De-Randomization
Client-side operating systems should stop using the popu-

lar Simple Hash-Based Port Selection (SHPS) port selection
algorithm, attacked in Section 3, and adopt a secure alter-
native. RFC 6056 [21] presents SHPS, together with four
other algorithms, which are therefore good candidates. The

security of the port selection algorithm should be analyzed
considering TCP mechanisms that might leak the state of
connections.

Furthermore, since many clients connect to the Internet
via NAT devices, which modify the client port selection,
effective mitigation of our attack requires modification of
the port selection algorithm at the NAT level as well.

6.1.2 Exposure of Server Sequence Number
The Inject and Observe technique that we presented for

exposing the server’s sequence number exploits a de facto
browser behavior standard, which is not required by the
HTTP specification: process and display corrupt responses.
We believe that browsers should modify this behavior and
in the exception case that a response does not pass HTTP
parsing, browsers should identify a problem in the TCP con-
nection, send a TCP reset to the server and close the connec-
tion. This modification conforms with the HTTP standard
and protects the user from attacks based on the Inject and
Observe technique.

6.2 Server-End Defense
The Inject and Observe technique that we introduced for

learning the server’s sequence number injects data to the
TCP stream; injected data is observed by the puppet who
provides a corresponding feedback to the attacker. In order
to ensure data integrity, cryptographic defenses should be
deployed; i.e., servers should use SSL/TLS instead of relying
on randomized initial sequence numbers for authentication.

7. CONCLUSIONS AND FUTURE WORK
We presented a new technique to perform off-path TCP

injections and evaluated its effect on connections with pop-
ular servers. We showed the need to fix two components of
Internet communication: (1) the client port selection algo-
rithm and (2) the way that browsers handle invalid HTTP
responses; we suggested modifications that conform with the
HTTP and TCP specifications.

This work continues a line of recent works on TCP injec-
tions [13, 20, 26, 27], showing that the folklore belief that
TCP communication is immune to off-path attacks is incor-
rect. This motivates deployment of cryptographic protocols,
such as SSL/TLS, to protect communication. We believe
that more servers should adopt these defenses, even if com-
munication is not considered sensitive.

This paper leaves directions for future work. First, a secu-
rity analysis of the remaining four port selection algorithms
suggested in [21] is required to identify the best alternative
for the extensively deployed SHPS algorithm. Second, it
may also be possible to learn the client sequence number,
e.g., as in [13]; this will allow data injection to the server-
side, which may allow new exploits.
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