
PrefixSolve: Efficiently Solving Multi-Source
Multi-Destination Path Queries on RDF Graphs by Sharing

Suffix Computations

Sidan Gao
Department of Computer Science

North Carolina State University
Raleigh, NC 27606, USA

sgao@ncsu.edu

Kemafor Anyanwu
Department of Computer Science

North Carolina State University
Raleigh, NC 27606, USA

kogan@ncsu.edu

ABSTRACT
Uncovering the “nature” of the connections between a set of
entities e.g. passengers on a flight and organizations on a
watchlist can be viewed as a Multi-Source Multi-Destination
(MSMD) Path Query problem on labeled graph data models
such as RDF. Using existing graph-navigational path find-
ing techniques to solve MSMD problems will require queries
to be decomposed into multiple single-source or destination
path subqueries, each of which is solved independently. Nav-
igational techniques on disk-resident graphs typically gener-
ate very poor I/O access patterns for large, disk-resident
graphs and for MSMD path queries, such poor access pat-
terns may be repeated if common graph exploration steps
exist across subqueries.

In this paper, we propose an optimization technique for
general MSMD path queries that generalizes an efficient al-
gebraic approach for solving a variety of single-source path
problems. The generalization enables holistic evaluation of
MSMD path queries without the need for query decomposi-
tion. We present a conceptual framework for sharing com-
putation in the algebraic framework that is based on “suffix
equivalence”. Suffix equivalence amongst subqueries cap-
tures the fact that multiple subqueries with different pre-
fixes can share a suffix and as such share the computation
of shared suffixes, which allows prefix path computations to
share common suffix path computations. This approach of-
fers orders of magnitude better performance than current
existing techniques as demonstrated by a comprehensive ex-
perimental evaluation over real and synthetic datasets.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords
RDF, MSMD Path Query, Suffix Equivalence, Work Sharing

1. INTRODUCTION
The growing availability of Semantic Web data is strength-

ening its position as an indispensable knowledge base. Many
investigative and exploratory applications that rely on the

Semantic Web have requirements beyond matching query-
described subgraph patterns in data. Sometimes the goal
is to “connect-the-dots” by uncovering the structure of rela-
tionships between a set of entities in complex social, biologi-
cal, and other types of networks represented on the Semantic
Web. The need to support such tasks has led to an increased
interest in navigational query models e.g. reachability and
path queries [9, 6, 22, 23, 20, 21, 13] and motivated re-
cent extensions to the SPARQL query language to include a
path expression query construct. Similarly motivated pro-
posals were made earlier [6, 10, 4, 19, 5, 16]. The theoretical
implications of evaluating SPARQL path expression queries
are discussed in [8, 7, 14]. In particular, [7] demonstrates
the limitation of the current semantics for such constructs
that results in inefficient and impractical implementations
in current systems, and warns about the negative impact on
its adoption for real-world applications. Their results speak
eloquently to the strong need for developing efficient query
evaluation techniques for navigational queries.

Structure discovery queries require the ability to extract
undescribed substructures e.g. paths or subgraphs based
on a given set of entities. As examples, (i) the process of
drug discovery may need to explore all the ways a chemi-
cal interacts with potential drug target in order to select a
mechanism of action (pathway) with the least amount of side
effects and also to avoid not detecting potentially dangerous
drug mechanisms, (ii) in security intelligence applications,
investigators may be interested in understanding the entire
scope of a criminal enterprise which includes all types of
direct and indirect relationships. For many structure dis-
covery applications, it is not always the case that interest-
ing structures can be characterized simply in terms of their
structures e.g. shortest paths. Rather, importance is often
determined by the nature of the structure i.e. the types of
properties/edges on paths. This perspective is particularly
crucial for heterogeneous networks like Semantic Web net-
works but maybe less so for homogeneous networks where
all relationships/edges have a uniform semantics. In addi-
tion, some applications such as drug target require a view
into the entire scope of possible relationships, not just the
most immediate ones. Unfortunately, most existing tech-
niques primarily support shortest [18, 15] or bounded length
paths/subgraphs [21] or pattern-based subgraphs [12] rather
than generalized path querying.

For most applications interested in finding paths or con-
nections, the focus is often on sets of sources and destina-
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Figure 1: (a) A graph G (b) G’s path sequence indexed using B+ tree

tions rather than a single source or destination i.e., Multi-
Source Multi-Destination (MSMD) Path Queries. Most
existing techniques [18, 15, 21] require either the source or
destination to be a single node. Therefore, MSMD path
queries will need to be decomposed into multiple single-
source path subqueries, one for each source or destination
node. Unfortunately, this approach is very inefficient par-
ticularly if the database is disk-resident. For example, we
ran a single source node path query on a real-world RDF
dataset, BioCyc [1], containing 100K nodes using the best
performing system based on the evaluation discussed in [7],
and it took 820 seconds! In contrast, a more holistic, yet
naive, MSMD path query evaluation technique with 120
query source nodes on the same (BioCyc) dataset took
700 secs! This is despite the fact that for the latter case
the database was on disk (indexed) while the former had
the graph in memory. Enabling more efficient generalized
path and subgraph querying is the motivation of this paper.
Related earlier efforts include [21, 13, 4, 18, 12].

In this paper, we propose an optimization technique for
efficiently evaluating MSMD path queries. The optimization
generalizes an algebraic approach [24, 25] for efficiently solv-
ing single-source path problems to efficiently solve multi-
source path problems. The algebraic approach serves as
a good foundation for efficient path query evaluation be-
cause (i) you can interpret different kinds of path problems
in the same framework as discussed in [24, 25] allowing sup-
port for different kinds of path queries to be possible, (ii)
it has two distinct phases that can be split into a prepro-
cessing phase and a query processing phase with the cost of
the former dominating, but can be amortized over all future
queries, (iii) it is more amenable to holistic query evaluation
and disk based graphs so that we can avoid the inefficiency
of decomposing into single-source subqueries and very poor
I/O access patterns of graph navigational strategies. Specif-
ically, we make the following contributions:

• An efficient holistic evaluation strategy for MSMD path
queries for disk resident RDF databases, which avoids
query decomposition into single-source path queries.

• A conceptual framework for work sharing across sub-
queries based on a notion, “suffix equivalence”, and algo-
rithms for integrating work sharing into algebraic path
problem solving techniques.

• A comprehensive evaluation of the approach over syn-
thetic and real datasets. The results show a significant
improvement in performance of our approach.

2. PRELIMINARIES
An RDF graph is a directed labeled graphG = (VG, EG, λ),

where VG is a finite set of nodes, EG ⊆ VG×VG is a set of di-
rected edges, λ : EG → Γ is a labeling function which assigns
each edge e ∈ EG to a label λ(e) ∈ Γ from a set Γ of labels.
We denote a labeled edge e = (v1, v2) with label λ(e) = le as

(v1, le, v2). A path in an RDF graph is defined as an alter-
nating sequence of nodes and labeled edges. A set of paths
connecting two nodes can be represented concisely as a path
expression (PE). A path expression of type (s, d), PE(s, d),
is a triple 〈s, d, R〉, where R is a regular expression over the
set of labeled edges (Γ,EG) defined using the standard op-
erators union(∪), concatenation(•) and closure(∗) such that
the language L(R) of R represents paths from s to d where
s, d ∈ VG. ε and ∅ are two atomic regular expressions de-
noting empty string and empty set resp. For example, given
the graph in Figure 1(a), the path expression of type (1, 4),
PE(1, 4) = 〈1, 4, (1, a, 3) • (3, c, 4) ∪ (1, k, 4)〉. For brevity,
we omit nodes in a regular expression (unless required), and
simply describe path expressions in terms of regular expres-
sions over edge labels. For example, our earlier path expres-
sion can be rewritten as PE(1, 4) = 〈1, 4, a • c ∪ k〉.

If a graph is ordered using any numbering scheme, infor-
mation about paths in the graph can be represented using
a particular sequence of path expressions called a path se-
quence (PS) [24]. For simplicity, assume that we use a node
and its assigned number interchangeably, then a path se-
quence is the sequence of path expressions PS = 〈s1, d1, R1〉 ,
. . . , 〈sl, dl, Rl〉:
• beginning with si ≤ di in ascending order on si followed

by

• 〈si, di, Ri〉 with si > di in descending order on sj .

An important property of PS is that for any non-empty
path p in G, there is a unique sequence of indices of PS
1 ≤ i1 < i2 < · · · < ik ≤ l and p = p1, p2, . . . , pk such
that pj ∈ L(Rij ). Formally, for any path p, we can find a
unique partition of p into non-empty subpaths, and a unique
sequences of indices I of PS, such that the ith subpath of p
is represented by the path expression at the ith index in I.
Given a path sequence, many path problems are solved using
a simple propagation SOLVE algorithm [24] that assembles
path information as it scans the path sequence from left to
right. The time complexity of SOLVE is a function of the
length of a PS which is at most O(|VG|2). However, by
selecting good numbering schemes as mentioned in [24] or
using heuristic techniques presented in [6], we can keep the
length of path sequence much closer to O(|EG|) for G. [24]
also proposes optimizations based on graph decomposition
techniques that enable complexity of the single-source path
expression problem to be reduced to O(|EG|α(|EG|, |VG|))
where α is the functional inverse of Ackermann’s function.

To support disk-resident graphs, path sequence can be
indexed using a B+ tree, psIndex, and SOLVE algorithm
can be implemented as a generalization of an indexed scan of
a path sequence [6]. Indexed scan uses a getNext() method
to advance through the path sequence and returns the next
path expression in the current retrieved leaf of the B+ tree.
Once the last path expression in the leaf is processed, it
advances to the next leaf of the B+ tree.
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Step 1 ε Ø a Ø Ø Ø Ø Ø

Ø ε Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø ε Ø Ø Ø
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Ø ε Ø Ø Ø Ø Ø Ø
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Ø Ø Ø Ø ε Ø Ø Ø
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Step 10 ε Ø a k (a • c) (k (a • c)) • d ((k (a • c)) • d) • e (k (a • c)) • f (k (a • c)) • f • g
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Step i: 1 2 3 4 5 6 7 8 9 10
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Figure 2: Stages of M-Solve for Sources 1, 2, and 5: (i) rows 1,2, and 3 for sources 1,2, and 5 resp and order
is top to bottom then left to right; (ii) all row 1s simulate stages of S-Solve for source node 1

Figure 1 shows a graph G and its indexed path sequence
as leaves of B+ tree. The bold numbers indicate the position
of the path expression in PS, e.g., PE(2, 4) is the 4th path
expression in PS.

Generalizing SOLVE algorithm to incorporate the index
scan of a path sequence leads to an algorithm we refer to
here as S-Solve. Given a path sequence and a source node
s, S-Solve computes a path expression of type (s, d) for all
d ∈ VG. S-Solve uses an array SA, here called solve array,
of size |VG| and begins by initializing SA[s] with 〈s, s, ε〉.

S-Solve (psIndex, s, SA)
Initialization: SA[s]← ε and SA[v]← ∅ for v �= s;
1. i = 1
2. while (PEi(vi, wi)← psIndex.getNext()) �= NULL
3. SA[wi]← SA[wi] ∪ (SA[vi] • PEi(vi, wi))
4. i = i + 1
5. end while

Step i (i.e., iteration i) retrieves the ith path expression
PEi(vi, wi) in PS with source vi and destination wi (line
2). Line 3 extends the path expression currently in SA[vi]
i.e., PE(s, vi), by concatenating it with PEi(vi, wi). The
resulting path expression PE(s, wi) represents paths from
s to wi via vi. It then is used to extend the path expres-
sion currently in SA[wi] using a union operation. We re-
fer to each step i.e., each iteration as a s-SolveStep - single
SolveStep. If during a s-SolveStep line 3 “extends”PE(s, vi)
with PEi(vi, wi) (to create PE(s, wi)), then we refer to the
action in line 3 as a (vi, wi) extension. Extensions will not
be produced if SA [vi] is empty. This implies that so far no
paths have been found from source s to vi, thus there is no
path from s to wi via vi. Consequently, we view the action
of line 3 in this situation as a ∅ extension. At the end of S-
Solve, SA[d] contains PE(s, d) representing all paths from
s to d. The running time of S-Solve is O(l), where l is the
length of the path sequence.

Example 1 . To illustrate the behavior of S-Solve on a
single node 1, we consider the first rows of each of steps
in Figure 2. In each step, the row represents the states of

the solve array after that step. Specifically, each location d
in the array contains the current state of the path expres-
sion PE(1, d). Before step 1, S-Solve initializes SA[1] with
〈1, 1, ε〉 and SA[v] with 〈v, v, ∅〉 for v ∈ VG \ {1}. Step 1
processes the first element in PS, 〈1, 3, a〉, and produces the
path expression 〈1, 3, a〉 since the regular expression in cur-
rent location is ε and ε•a = a which is then unioned with the
current path expression in SA[3] to produce a since a∪∅ = a.
The result of this iteration is a (1, 3) extension. In a simi-
lar manner, step 2 computes 〈1, 4, k〉 and stores it in SA[4],
resulting in a (1, 4) extension. Step 3 produces ∅ extension
since the current path expression in SA[3] is ∅ and ∅• b = ∅.
The process continues similarly as it steps through the ele-
ments of the path sequence.

2.1 Evaluating MSMD Path Queries Using Path
Sequences

An MSMD path query is defined as follows:

Definition 1. (MSMD Path Query) Given a graph
G = (VG, EG, λ), an MSMD path query is a 2-tuple (S,D)
where S,D ⊆ VG are sets of sources and destinations resp.
The result of an MSMD path query is the set {PE(si, dj)|
si ∈ S ∧ dj ∈ D}, and PE(si, dj) represents all paths from
si to dj in G.

[24] suggests a straightforward adoption of S-Solve algo-
rithm to an MSMD problem: execute S-Solve once for each
source. We call this algorithm Iterative MultiSolve and its
complexity is O(|S|l) where l is the length of path sequence.
However, when the path sequence resides on disk, this ap-
proach incurs high I/O costs from the repeated path se-
quence scans. In [5], we propose the M-Solve algorithm as
an improvement over Iterative MultiSolve that reduces I/O
costs by restructuring the for loops. During SolveStep i in
M-Solve which processes path expression PEi(vi, wi) from
the path sequence, we produce (vi, wi) extensions for a sub-
set of sources. Specifically, (vi, wi) extensions are produced
for those sources that have paths to wi via vi. We refer to
each SolveStep as an m-SolveStep, since each step consists
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Table 1: Symbol Table
Symbol Description
R Regular expression over edge labels (e.g., a • c ∪ k)
L(R) Language of the regular expression R
(vi, wi, Ri) The ith PE processed by SolveStep i that has src = vi and dest = wi, and regular exp. Ri

PEi(vi, wi) Shorthand for the PE (vi, wi, Ri)
Descendant SolveStep m-SolveStep k is a descendant SolveStep of step i if i < k and either i) for PEi(vi, wi) and

PEk(vk, wk), wi = vk (direct descendant) or ii) ∃ m-SolveStep j s.t. i < j < k and SolveStep
j is a direct descendant of step i and SolveStep k is a descendant of step j.

x ancestor y For SolveStep i whose source node is x, ∃ SolveStep j whose source node is y s.t. step j is a
descendant SolveStep of step i, then x is called an ancestor of y.

S+
i A subset of a set S of query source nodes containing elements that produce (vi, wi) extension

SES(n,i) Suffix equivalent set w.r.t. node n at m-SolveStep i
MQ = (S,D) MSMD path query with source set S and destination set D

of multiple s-SolveSteps that each produces an extension for
one of the sources.

Example 2 . Figure 2 shows the 10-step M-Solve process
for MSMD query ({1, 2, 5} , VG). Each step is represented
by three rows that show the intermediate path expressions
computed for the 3 different sources. The “multi-source”
processing begins from step 3, which initiates the solve pro-
cess for source 2 (happens with the first incoming path ex-
pression whose source is 2 i.e. 〈2, 3, b〉). For subsequent
m-SolveSteps, the subset of query sources i.e., sources 1 and
2 produce (3, 4) extension i.e. rows 1 and 2 are filled. Step 8
initiates the solve process for source 5, which is reflected in
the first non ∅ entry i.e., entry 6 in the third row. This rep-
resents that so far source 5 only has path to 6. Typically,
the solve array maintains for each location a list of path
expressions (one for each source). However, for ease of ex-
position, we separate the computations for different sources
into different rows.

Discussion. The multiprocessing strategy of M-Solve
avoids repeated scanning of a path sequence, however, there
is some repetition within an m-SolveStep, this occurs when
paths from two different sources overlap. E.g., for sources 1
and 2 and destination 5, the m-SolveSteps beginning from
5 will produce the same extensions for both 1 and 2.
Specifically, at step 5, both sources 1 and 2 compute the
suffix expression “•c” as the extension (3, 4). Similarly, the
suffix expression “•d” is computed as the extension (4, 5) at
step 6 and all subsequent steps also compute “equivalent”
extensions. We consider such SolveSteps “redundant” since
the same computation is essentially repeated for all sources.
Factorizing such redundant computations will enable an ap-
proach in which we can compute the shared subpath expres-
sion once for a set of “equivalent” sources. Although, both
strategies have overall time complexity bounds of O(|S|l),
there are salient cost advantages to the approach with fac-
torized computation,

1. it allows the average number of extensions per m-Solve-
Step to remain close to 1 unlike |S| in the regularM-Solve
algorithm.

2. it reduces the overhead due to “wasted redundant Solve-
Steps”: wasted SolveSteps do not eventually lead to a
destination in the query. Predicting which SolveSteps
are wasteful during processing is impractical (requires
reachability checks for source-destination pairs at every
SolveStep). However, by enabling a work sharing ap-
proach across the solve processes for the different sources,

we can ensure that wasted SolveSteps are not computed
repeatedly.

3. HOLISTIC MSMD PATH QUERY EVAL-
UATION

3.1 Foundations
Each step in M-Solve can be viewed as a multi-SolveStep

(m-SolveStep) that encapsulates multiple s-SolveSteps, where
each s-SolveStep is associated with some s in S. We now for-
malize m-SolveSteps in a way that allows explicit capturing
of equivalent or redundant extensions in an m-SolveStep us-
ing a notion called suffix equivalence. Table 1 summarizes
terms and notations used in the paper.

Definition 2. (m-SolveStep) Given a graph G with path
sequence PS = PE1(v1, w1),. . . , PEl(vl, wl) and an MSMD
path query MQ = (S,D) where S,D ⊆ VG, m-SolveStep i pro-
cesses PEi(vi, wi) and produces a 2-tuple 〈S+

i , PES+
i 〉 where

1. S+
i ⊆ S such that s ∈ S+

i =⇒ PE(s, wi) = PE(s, vi) •
PEi(vi, wi) 	= ∅;

2. PES+
i is the set of path expressions PE(sj , wi) such that

sj ∈ S+
i .

m-SolveStep i generates a subsets S+
i where elements in

S+
i produce the same (vi, wi) extension indicating the reach-

ability of wi via an intermediate vertex vi by sources in
S+
i . In example 2, m-SolveStep 3 is represented as a 2-tuple

〈{S+
4 = {2}}, {PE(2, 4)}〉. On the other hand, m-SolveStep 5

is represented as a 2-tuple 〈{S+
5 = {1, 2}}, {PE(1, 4), PE(2, 4)}〉

because sources 1 and 2 produce the same extension (3, 4).
Since an (vi, wi) extension amounts to extending paths

with suffix subpaths (those represented in PEi(vi, wi)), the
sources in S+

i can be thought of as being “equivalent” in
terms of their suffix paths. We make this notion more precise
in the following definition.

Definition 3. (Suffix Equivalence ≡) Source node sp
is suffix equivalent to source node sq w.r.t. extension (vi, wi),
denoted as sp ≡(vi,wi) sq, if sp, sq ∈ S+

i . Further, sp ≡(vi,wi)

sq =⇒ sp ≡(vj ,wj) sq for m-SolveStep j which is a de-
scendant m-SolveStep of i. (The implication that the suffix
equivalence of sources in S+

i is preserved over all descen-
dant m-SolveSteps of i holds due to the transitivity of path
connectivity.) In our example, 1 and 2 are suffix equiva-
lent w.r.t. (3, 4) and therefore are suffix equivalent w.r.t. all
extensions in descendant m-SolveSteps of step 5, which are
(4, 5), (4, 7), (5, 6), (5, 7), and (7, 8). 1 and 2 share multiple
common suffix path expressions PE(3, 8), PE(4, 8), PE(5, 8),
and PE(7, 8).
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PS = { ‹ 1, 3, a ›,   ‹ 1, 11, e ›,  
‹ 2, 3, k ›,  ‹ 2, 11, h ›,  ‹3, 11, i ›,  
‹ 11, 13, d ›, ‹ 13, 15, g › }

Step i & PEi(vi, wi) SES(vi ,h) SES(wi ,k) SES(wi ,i)= SES(vi ,h) θ SES(wi ,k)

1        PE1(1, 3) SES(1,0) = {1}1 SES(3,0) = Ø SES(3,1) = {1}1

2 PE2(1, 11) SES(1,0) = {1}1 SES(11,0) = Ø SES(11,2) = {1}1

3 PE3(2, 3) SES(2,0) = {2}2 SES(3,1) = {1}1 SES(3,3) = {{1}1, {2}2}3

4 PE4(2, 11) SES(2,0) = {2}2 SES(11,2) = {1}1 SES(11,4) = {{1}1, {2}2}11

5 PE5(3, 11) SES(3,3) = {{1}1, {2}2}3 SES(11,4) = {{1}1, {2}2}11 SES(11,5) = {{1}1, {2}2 , {1}1, {2}2}3}11

6 PE6(11, 13) SES(11,5) = {{1}1, {2}2 , 
{{1}1, {2}2}3}11

SES(13,0) = Ø SES(13,6) = {{1}1, {2}2 ,{{1}1, {2}2}3}11

7 PE7(13, 15) SES(13,6) = {{1}1, {2}2 ,
{{1}1, {2}2}3}11

SES(15,0) = Ø SES(15,7) = {{1}1, {2}2 ,{{1}1, {2}2}3}11

(a) (b)

3 11 13
a

e

k
i d g

h2

1

15

Figure 3: (a) A graph G and its PS (b) An example of SES computation for mq = ({1, 2} , {11, 15}) for G

Exploiting suffix equivalence can enable reduction in cost
of MSMD path query evaluation. Specifically, if the com-
putation of suffix extensions can be shared by “equivalent”
sources, then recomputations of the same extension for all
such sources can be avoided. More precisely, given an MSMD
path query MQ = (S,D) and l1 number of shared extension
steps (i.e., the number of SolveSteps) shared by S′ ⊆ S,
then the suffix extension computations can be shared to re-
duce the cost of processing by a factor of (l1 × (|S′| − 1) −
|S′|)/(|S′|×l1), from O(|S′|×Cbpe×l1) to O(Cbpe×(|S′|+l1))
where Cbpe is the cost of a single extension.

3.2 Sharing SolveSteps Across “Suffix Equiv-
alent Sets” in M-Solve

To maximize the amount of shared computation amongst
suffix equivalent nodes, it is important to be able to identify
the earliest possible m-SolveStep for which the elements of
an S+

i become suffix equivalent i.e. the smallest i′ such
that m-SolveStep i is a descendant of m-SolveStep i′ and
S+
i = S+

i′ . We will refer to m-SolveStep i′ as the anchor

m-SolveStep for S+
i since its source node (minimal anchor

node) is the origin of the longest shared suffix computations
in S+

i . For example, m-SolveStep 5 in Figure 3 is the anchor
m-SolveStep for S+

6 since SolveStep 5 is the lowest step such
that S+

5 = S+
6 = {1, 2} and step 6 is the descendant step

of 5. Also, node 3 is the anchor node for S+
6 . However,

the problem of identifying and managing shared suffixes is
not that simple. This is because the nodes in S+

i may have
multiple “interacting” suffix equivalent relationships when
some of the prefix paths originating from nodes in S+

i do
not share the longest possible suffix paths. In this case,
there is a shorter suffix that is shared by all prefixes in S+

i

but a longer suffix rooted at anchor node that is shared by
a subset of prefixes i.e. there is a “conflict” in their suffix
equivalence relationship. For example, in Figure 3, a shorter
suffix 〈11, 15, d • g〉 is shared by 4 prefixes: 〈1, 11, a • i〉,
〈1, 11, e〉, 〈2, 11, k•i〉, and 〈2, 11, h〉. However, a longer suffix
〈3, 15, i • d • g〉 is shared by 2 prefixes 〈1, 3, a〉 and 〈2, 3, k〉.
We call the origin node of the shorter suffix a conflict anchor
node. In the above example, node 11 is a conflict anchor
node for {1, 2}.

To develop an efficient representation of nodes that are
suffix equivalent, we can conflate information about all pairs
of sets S+

i and S+
j , 1 ≤ i, j ≤ l (length of path sequence),

i �= j and wi = wj . For example, in Figure 3, S+
1 = {1} and

S+
3 = {2} both have wi as node 3, thus can be conflated.

This will switch the perspective of suffix equivalence to be
in terms of a node n in the graph, rather than in terms of m-
SolveSteps. For example, conflated S+

1 and S+
2 i.e., {1, 2}

can be seen as the suffix equivalent set w.r.t. node 3. In
effect, conflating will summarize suffix equivalence relation-
ships between nodes that reach n, allowing us to have |VG|
suffix equivalent node sets or Suffix equivalent Sets rather
than l sets. However, this representation must also capture
information about conflict and anchor nodes as well as their
precedence relationships. For example, the information that
the suffix equivalent set {1, 2} has node 3 as an anchor node
also needs to be captured by the desired representation.

Definition 4. (Suffix Equivalent Set (SES)) Given a
graph G and a set S of query sources, a Suffix Equivalent Set
SES(wi,i) w.r.t. node wi ∈ VG at m-SolveStep i is a labeled
set {X}y where y ∈ VG is referred as a label of the suf-
fix equivalent set representing the anchor node of SES(wi,i),
and X is either a subset of S or a set of suffix equivalent sets.
For example, SES(3,3) =

{{1}1 , {2}2
}
3
. This represents the

fact that sources 1 and 2 are suffix equivalent w.r.t. node 3
at step 3.

Since labels associated with each nested set represent an
anchor node, a desirable property of an SES is that its nest-
ing structure preserves the structure of path prefixes. This
ensures that reassembling the subpaths from SES structure
information produces valid path structures.

Definition 5. (Prefix-Preserving Property of SESes)
The prefix-preserving property of an SES implies that if we
generate a set AL = {al1, . . . , alm} where ali is a sequences
of anchor nodes (i.e., labels) ordered from the innermost to
the outermost level, and 1) every anchor node is represented
in some ali; 2) ∀ali = (n1, . . . , nt) is ordered topologically;
3) ∀ali, ∃alj ∈ AL s.t. suffix(ali)= suffix(alj).

The inclusion relationships between suffix equivalent sets
that naturally arise due to the transitivity of suffix equiva-
lence enable us to reuse previously computed suffix equiva-
lent sets. This results in an incremental computation strat-
egy that aligns naturally with the execution of M-Solve.
This leads to an inductive definition of suffix equivalent sets
w.r.t. a node n in a way that updates their states over m-
SolveSteps i in which n is the wi as follows:

i) i = 0: SES(s,0) = {s}s, ∀s ∈ S

ii) i > 0: SES(wi,i)
= SES(wi,k)

⊕θ SES(vi,h)
, where 1 ≤

k, h ≤ i and steps k and h are the most recent m-SolveSteps
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that update SES(wi,k) and SES(vi,h) resp. and ⊕θ is a
combination operator which we define shortly.

In case i), SES(s,0) = {s}s because at m-SolveStep 0, node
s is only suffix equivalent to itself and there is no anchor
node besides itself since no paths have been computed.

To define the ⊕θ operator in case ii), we assume the exis-
tence of the following functions defined on suffix equivalent
sets. For SES(n,i) = {X}y and SES(m,j) = {U}t,
• add(SES(n,i),SES(m,j)) returns {X,SES(m,j)}y;
• label(SES(n,i)) returns the label y;

• isLabel(SES(n,i), r) returns True if r = y; otherwise, re-
turns False;

• isEmpty(SES(n,i)) returns True if SES(n,i) = ∅; other-
wise, returns False.

Definition 6. (⊕θ Operation) Assume SES(vi,h) is suf-
fix equivalent set w.r.t. vi which is last updated at SolveStep
h and SES(wi,k) is suffix equivalent set w.r.t. wi which is
last updated at SolveStep k, then,
SES(vi,h) ⊕θ SES(wi,k) =⎧⎪⎨
⎪⎩

SES(vi,h) isEmpty(SES(wi,k))

{SES(wi,k), SES(vi,h)}wi ¬isLabel(SES(wi,k), wi)

add(SES(wi,k), SES(vi,h))

If the ⊕θ operator can enforce the prefix-preserving prop-
erty at each m-SolveStep, then integrating the operator at
every m-SolveStep can guarantee the prefix-preservation of
all SESes at the end of final m-SolveStep.

Lemma 1. Assume ∃SES(wi,k)
and SES(vi,h)

, where 1 ≤
k, h ≤ i and steps k and h are the most recent m-SolveSteps
that update SES(wi,k) and SES(vi,h) resp. At m-SolveStep
i, SES(wi,i) = SES(vi,h) ⊕θ SES(wi,k) is prefix-preserving.

Proof. To prove that SES(vi,wi) is prefix-preserving, there
are three cases that need to be considered.

Condition (1), SES(wi,k) = ∅ =⇒ � m-SolveStep i′ s.t.
i′ < i and wi = wi′ . This means that so far node wi has
not been reached by any other node except vi. Therefore,
all nodes including those that are suffix equivalent w.r.t vi
reach wi via vi due to the transitivity of path connectedness.
Since there is no new branch to wi, wi is not an anchor node.
For SES(wi,i), wi is not an anchor node and the anchor node
for SES(wi,i) is the same as SES(vi,h).

For the second and third conditions of ⊕θ, some SES
has already been associated with wi from a previous m-
SolveSteps. We will need to update the SES to include
new sources and/or new anchor node sequences to reflect
any new prefix paths depending on two possibilities: either
wi has already been identified as an anchor node or wi is
just being identified as an anchor node. In the former, the
nesting level does not change and we merely need to add
vi’s SES into the current outermost level that has wi as an-
chor node. (This represents new set of prefixes that merge
at wi). Nesting in this way preserves the ordering in which
these nodes will appear on a path. In the latter case, we
need to increase the nesting depth by creating a new SES
with the two SESes nested as elements and make wi the la-
bel for the outermost level. In this case, since the anchor
nodes for SES(vi,h) and SES(wi,k) meet at wi, nesting them
in the new SES preserves the order of these nodes.

The second and third condition address the two situations
when both SESes (from left and right operands) are non-
empty. First condition addresses condition with SES(wi,k)

as empty. We ignore the case of both operands being empty
since we initialize the SESes for each node s in query source
set (left operand) with {s}s at the beginning. Subsequently,
the destination node (right operand) of the previous step
serves as the source node (left operand) for the next step.

Example 3 . Figure 3(b) shows the first 5 steps of com-
puting SESes for mq = ({1, 2} , {11, 15}) given the graph
and its path sequence in Figure 3(a). Initially (i.e., i = 0),
we have SES(1,0) = {1}1 and SES(2,0) = {2}2. SESes
computed at m-SolveSteps 1 to 5 are listed in Figure 3(b).
As shown here, m-SolveStep 1 propagates SES(1,0) i.e. {1}1
to node 3 leading to SES(3,1) = {1}1. On the other hand,
at m-SolveStep 3, source 2 meets source 1 at node 3, thus,
we nest SES(2,0) and SES(3,1) into SES(3,3) and update its

label to 3 resulting in SES(3,3) =
{{1}1 , {2}2

}
3
.

3.3 Implementation
Our approach for MSMD path query evaluation with suffix

computation sharing is a two-phase algorithm PrefixSolve
that consists of algorithms sesSolve and solveSelectedDest.
sesSolve (Algorithm 1) extends the original M-Solve algo-
rithm by integrating the management of suffix equivalent
sets as well as corresponding prefix and suffix sub path ex-
pressions and their associations. solveSelectedDest (Algo-
rithm 2) reconstructs complete path information for destina-
tion nodes that are found to be reachable from some source
using information about any shared suffixes that reach those
destinations.

3.3.1 The sesSolve Algorithm
For each node v, sesSolve maintains two lists PrefixList

and SuffixList in SA[v] that store prefix and suffix path
expressions respectively and a map that associates node v to
the current state of v’s SES i.e. SES(v,i). sesSolve initializes
the SES(s,0) with {s}s and PrefixList with 〈s, s, ε〉 for s ∈
S and stores them in SA[s] (lines 1-3). For s′ ∈ VG \ S, it
sets SA[s′].SES(s′,0) and SA[s′].P refixList to ∅ (lines 4-5).
At m-SolveStep i (i.e., the ith iteration), sesSolve mainly
performs two tasks: 1) computing prefix path expressions
or storing suffix path expressions; and 2) updating suffix
equivalent set. Task 1 is performed by considering two cases:

• Case 1 (lines 9-10): SES(vi,i) = {s}s, which means that
at step i, only s has been found to have a path to vi.
There are no redundant constituent steps in m-SolveStep
i, and thus the extension (vi, wi) is produced for s in the
same way as the S-Solve resulting in prefix path expres-
sion PE(s, wi) stored in SA[wi].

• Case 2 (lines 11-12): SES(vi,i) is not a singleton, which
means that a set of suffix equivalent sources all reach vi
and share PEi(vi, wi) as suffix path expression. Thus,
the algorithm inserts PEi(vi, wi) into SA[wi].SuffixList.

Then, sesSolve updates SES(wi,i) (lines 13-19) according to
the definitions 4 and 5.

Example 4 . Given mq = ({1, 2} , {11, 15}) in Figure 3,
after initialization we have SES(1,0) = {1}1 and SES(2,0) =
{2}2 stored in SA[1] and SA[2] resp. At step 1, since SES(1,0)

is singleton, sesSolve produces (1, 3) extension resulting in
prefix path expression PE(1, 3) = 〈1, 3, a〉. We update SES(3,1)

= {1}1. SESes at steps 2 to 4 are computed similarly and
shown in Figure 3(b). In addition, we compute prefix path
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Algorithm 1: sesSolve

Input: psIndex, S ;
Output: An array SA to store SESes, PrefixList, and
SuffixList for node d at location d ;

1 foreach s ∈ S do
2 SA[s].SES(s,0) ← {s}s ;

3 SA[s].PrefixList.add((s, s, ε)) ;

4 foreach s′ ∈ V (G) \ S do
5 SA[s′].SES(s′,0) ← ∅ ;

6 i = 1 ;
7 while PEi(vi, wi)← psIndex.getNext() not NULL do
8 src← label(SA[vi].SES(vi,i)

) ;

9 if |SA[vi].SES(vi,i)
| = 1 then

10 SA[wi].PrefixList.add(SA[vi].PrefixList.get(src)•
PEi(vi, wi) ∪ PE(src, wi)) ;

11 else if |SA[vi].SES(vi,i)
| > 1 then

12 SA[wi].SuffixList.add(PEi(vi, wi)) ;

//Handle condition isEmpty(SES(wi,k))

13 if SA[wi].SES(wi,i)
= ∅ then

14 SES(vi,h) ;

//Handle condition isLabel(SES(wi,k,wi)
)

15 else
16 if label(SA[vi].SES(vi,i)

) = wi then
17 add(SES(wi,k), SES(vi,h)) ;

//Handle condition ¬isLabel(SES(wi,k,wi)
)

18 else
19 {SES(wi,k), SES(vi,h)}wi

;

20 i = i + 1 ;

21 return SA ;

expressions PE(1, 11) = 〈1, 11, e〉 , PE(2, 3) = 〈2, 3, k〉, and
PE(2, 11) = 〈2, 11, h〉. Then, at step 5, since SES(3,3) is not
singleton, which satisfies the condition on line 11, we only
save PE(3, 11) = 〈3, 11, i〉 in SA[11] instead of producing
(3, 11) extension for 1 and 2.

At the end of sesSolve, each non-empty element of SA
maintains a suffix equivalent set and a set of prefix and suffix
sub path expressions. solveSelectedDest uses suffix equiva-
lent sets to determine associations between suffix and prefix
path expressions and concatenates them to produce com-
plete path expressions for source-destination combinations.

3.3.2 The solveSelectedDest Algorithm
To eliminate the wasted computations, we only run solveS-

electedDest for query destinations. Further, given some
profitable ordering scheme used for graphs e.g., topological
ordering of its strong components, we can select the order
of destinations to run thoughtfully, so that repeated compu-
tations do not arise across computations for different desti-
nations. For the query mq in Example 3, running node 11
before node 15, leads to repetition for some of the computa-
tion that has been done for 11 because the path expression
from source to 15 contains the one from source to 11 as a
subexpression. We can avoid this by proceeding in reverse
topological order from destination nodes. In implementa-
tion, we keep nodes to be processed in order using a prior-
ity queue. The algorithm uses BFS strategy to explore the
nodes that reach d in a backward direction and processes
them in a specific order i.e., the element with higher topo-
logical order has higher priority. For each node cID being
processed, the algorithm does two things:

Algorithm 2: solveSelectedDest

Input: SA[d], where d ∈ D ;
Output: SA[d] consisting of complete path expressions
for all sources to d ;

1 PQ← ∅ ;
2 SA[d].bPE ← (d, d, ε) ;
3 PQ.insert(SA[d]) ;
4 while PQ.size > 0 do
5 pq ← PQ.dequeue() ;
6 cID ← PQ.getID() ;
7 y ← label(pq.SES) ;
8 if y �= cID then
9 while y �= sID do

10 foreach PE with source sID in
pq.SuffixList do

11 SA[sID].bPE ←
pq.SuffixList.get(sID) • pq.bPE ∪
SA[d].PrefixList.get(sID) ;

12 PQ.insert(SA[sID]) ;

13 else
14 foreach nested ses with label z in pq.SES do
15 if ses = {s}s then
16 PE(s, d)← SA[y].PrefixList.get(s) •

SA[y].bPE ∪ SA[d].PrefixList.get(s) ;

17 else
18 SA[z].bPE ←

SA[y].SuffixList.get(z) •
SA[y].bPE ∪ SA[d].PrefixList.get(z) ;

19 PQ.insert(SA[z]) ;

20 return SA ;

• assembling suffix path expressions; specifically, it com-
putes SA[sID].bPE representing paths from sID to d
by concatenating PE(sID, cID) (currently retrieved suf-
fix sub path expression) with SA[cID].bPE which is the
already assembled suffix path expression for cID; Note
that, initially, we have SA[d].bPE = 〈d, d, ε〉.

• concatenating the prefix path expressions in SA[cID].
P refixList with SAcID.bPE if there exist any prefixes
for cID to compute path expressions for d.

During each step, there are two cases need to be considered:
(1)(lines 9-12) if current node does not have prefixes asso-
ciated with it, then the algorithm only assembles the suffix
path expressions for each retrieved node until it encounters
the node whose prefix list is not empty; (2)(lines 13-19) oth-
erwise, the algorithm first assembles the suffix path expres-
sions using retrieved suffix sub path expression and then
computes path expressions for d. At the end of the algo-
rithm, SA[d].bPE stores all complete path expressions for d
from sources that reach d.

Example 5 . Considering the destination 11, at initial-
ization, we have SA[11].bPE = 〈11, 11, ε〉. The algorithm
starts by processing SA[11]. From example 3, we have that
SES of 11 has label 11 satisfying the condition y = cID.
The algorithm then retrieves and processes its nested SESes.
For singleton SESes, e.g., {1}1 (i.e., source 1 reaches 11
via a prefix sub path expression PE(1, 11)), it computes
PE(1, 11) by concatenating PE(1, 11) with SA[11].bPE re-
sulting in PE(1, 11) = 〈1, 11, e〉. Similarly, we compute
PE(2, 11) = 〈2, 11, h〉. For non-singleton SES i.e., SES(3,3),
the algorithm computes SA[3].bPE by concatenating the
suffix path expression i.e., PE(3, 11) with SA[11].bPE re-
sulting in SA[3].bPE = 〈3, 11, i〉. It then processes SA[3] by
retrieving the nested SESes in SES(3,3) and processing them
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Table 2: Properties of the Datasets
BioCyc SP2B BSBM

# of Nodes 1,160,709 1,571,149 1,154,367
# of Edges 5,278,504 9,053,235 7,757,574
# of PEs 4,192,419 5,798,502 4,867,370
# of SCCs 105,014 1,569,530 1,154,332

individually resulting in PE(1, 11) = 〈1, 3, a〉•SA[3].bPE =
〈1, 11, a • i ∪ e〉 and PE(2, 11) = 〈2, 11, k • i ∪ h〉.

Theorem 1. At the end of sesSolve, all the shortest com-
plete prefixes to one anchor node have been computed and all
path expressions that comprise suffixes have been recorded in
the topological order. solveSelectedDest assembles prefixes
with associated suffixes correctly. (Proof omitted for brevity)

To further improve performance, we integrated a prefetch-
ing strategy to decrease the latency of accessing a path ex-
pression during M-Solve. This is achieved by prefetching a
set of path expressions into a cache using a separate thread,
which ensures that the path expressions are in-memory when
needed. Retrieving a subsequence of path expressions also
reduces latency by reducing the overall seek time.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the scalability and perfor-

mance of the different approaches for MSMD path queries.
Among the algebraic approaches, we compared 3 variants
with different optimization strategies: Iterative Multisolve
(ITRMS), M-Solve (MSOLVE), and PrefixSolve (PRFS).
Additionally, we compared an extended version of PRFS
that enables a prefetching strategy (PRFSPF). We also im-
plemented 1 representative navigational evaluation technique
DFSS that is based on depth-first-search that executes on
disk-resident graphs. To minimize the random I/O access
patterns typically generated by navigational style algorithms,
we used a storage model that clusters nodes on disk based
on disconnected subgraphs of a graph. The subgraphs were
indexed using BerkeleyDB and for each pair of query source-
destination nodes, the associated subgraphs were loaded into
memory, and the DFSS algorithm was executed. Since join-
based techniques [18, 15] address shortest or bounded length
paths and are not optimized for multiple sources and desti-
nations, we do not compare against them in this evaluation.
We also do not include algorithms requiring memory-based
graphs [11, 26].

Setup. All experiments were conducted on a machine
with 2.33GHz Intel Xeon running on Linux, with a 2.6.18
kernel with maximal runtime memory of JVM was set to
15G. All algorithms were implemented using Java 1.6 and
Berkeley DB Java Edition was used for storage and B+ tree
indexing with a cache size of 8G. Each query was executed
three times without dropping the caches and the average
execution time was measured across three runs.

Datasets. Two synthetic datasets generated using RDF
benchmark generators BSBM [2] and SP2B [3] were used
for scalability evaluation. Additionally, a subset of the real-
world data collection Biocyc [1] that consists of 1763 databases
describing the genome and metabolic pathways of a single or-
ganism was used. The path sequences for datasets were pre-
computed and loaded into BerkeleyDB prior to query pro-
cessing. Table 2 summarizes the properties of the datasets.

Table 3: PEs and Query Time on BioCyc Dataset
MSOLVE PRFS

# of Nodes P-Exps Time P-Exps Time
100K 112,219 116 293 6
200K 227,122 269 472 11
400K 454,387 662 472 31
600K – – 7,193 82
850K – – 7,193 85
1100K – – 15,991 86

4.1 Scalability Evaluation
We conducted a total of 6 scalability experiments by 1)

varying sizes of MSMD path queries (from 20 to 200) with
a fixed size of data graphs; 2) varying sizes of the data
graphs (from 100K to 1100K) with a fixed size of MSMD
queries (120). Note that the size of a MSMD path query
mq’= (S,D) is defined as |S| + |D|. For both cases, a sub-
set of nodes from the three datasets were selected as sample
queries. The set of nodes were verified to be connected.

Figure 4(a)-(c) show the results of 1) for BioCyc, SP2B,
and BSBM datasets, resp, while Figure 5(a)-(c) show the
results of 2). Note that missing bars in the charts repre-
sent cases where the corresponding algorithms did not finish
query evaluation within two hours or ran out of memory be-
fore obtaining the results. The experimental results show
overall superiority of the algebraic-based PRFS algorithm
whose performance gains over other approaches increases
with query and data sizes, indicating better scalability. The
reasons are as follows.

The query decomposition strategy of DFSS results in large
I/O costs and repeated exploration of the same search space
across multiple subqueries making the total cost prohibitive,
particularly for queries with a large number of query nodes.
ITRMS suffers similar limitations. However, for BSBM dataset,
DFSS outperforms ITRMS for both scalability experiments
(see Figure 4(c) and Figure 5(a)). We note that BSBM
datasets consist of a large number of star substructures with
depth of 1 and the schema graph is small with 10 nodes
and 8 edges resulting in low connectivity. This results in a
smaller search space for DFSS during query processing. On
the other hand, the algebraic techniques scan the entire path
sequence representing the entire graph. We also notice that
for Biocyc dataset, DFSS outperforms ITRMS when the
number of query nodes is no greater than 100. A close ob-
servation of the results reveals that some sources and desti-
nations (randomly selected) are not connected. In this case,
DFSS exploits the indexing strategy to detect the discon-
nection immediately without exploring the graph (different
components have different range of keys). MSOLVE shows
improved performance by avoiding a potential |Q| (i.e., the
number of query nodes) separate disk I/Os for each path ex-
pression. The results for PRFS shows the benefits of avoid-
ing redundant and wasted computations.

Table 3 shows the total number of path expressions (i.e.
path expression computation as a unit of work) computed
and execution time of the solve process to highlight the
performance characteristics of both algorithms on six data
graphs ranging from 100K to 1100K nodes (BioCyc dataset
shown in Figure 5(b)). Missing entries indicate failure to
compute results after 2 hours. PRFS demonstrates clear
benefits by doing less work due to the sharing strategy re-
flected in the fewer number of path expressions computed.
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Figure 4: Scalability study with increasing number of query nodes
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Figure 5: Scalability study with increasing size of graphs

4.2 Performance Evaluation
In this sub-section, we take a closer look at the PRFS

algorithm. We first study the impact of paths originating
from different query nodes but with overlapping suffixes, on
the performance of algorithms. Then, we present a study on
the benefits of optimization using the prefetching strategy.

4.2.1 Impact of DPO on the Performance
We introduce a metric DPO(S,D) to capture the degree

of path overlap between a set of sources S and a set of des-
tinations D defined as follows:

DPO(S,D) = # of nodes in the overlap paths between S and D
total # of nodes in all paths between S and D

.

Intuitively, a smaller DPO implies a lower degree of over-
lap. For this experiment, DPO varied from 0 to 0.67, and
the graph size varied from 100K to 1100K nodes. Test cases
were generated by running M-Solve with 100 randomly se-
lected query nodes to obtain path information for the nodes.
We then select source and destination node sets manually
based on connectivity and compute DPO for each case. The
total number of query nodes used for this experiment is less
than 40 since the algorithms that do not use a sharing strat-
egy have prohibitively long execution times with large query
sizes. The results are shown in Figure 6. When DPO = 0
(no path overlap in query node paths), PRFS offers no ad-
vantage and is equivalent toM-Solve. On the other hand, for
DPO = 0.26, 0.5, and 0.67, PRFS’s performance advantage
is clear for all data sizes.

In addition, we observe that DFSS outperforms PRFS
and other approaches for DPO = 0 and 0.26. The rea-
sons are as follows. During the query processing, DFSS first
checks if the pair of nodes is in the same component, if yes,

it loads the component into memory and finds paths us-
ing DFS; otherwise, no path exists between them. In this
test, since all query nodes reside in the same component,
DFSS only loads the component into the memory once sim-
ilar to an in-memory algorithm. However, for DPO = 0,
PRFS will not benefit from saving redundant path expres-
sions computations since there are no common suffix path
expressions. For DPO = 0.26, there are only 12 pairs of
nodes to be computed, so DFSS performs well in this case.
On the other hand, for the last two cases with high existence
of common suffix path expressions, PRFS outperforms the
other approaches.

4.2.2 Optimization Using Prefetching Strategy
Here, we study the performance of PRFS with prefetch-

ing optimization, denoted by PRFSPF. In this experiment,
we introduce a parameter called prefetching capacity (PC)
to capture the proportion of path expressions prefetched
to memory. Figure 7(a) and (b) compare the time cost
by PRFS and PRFSPF on BioCyc and SP2B datasets for
PC = 10% and 50%, resp. For all six data sizes over two
datasets, we see an overall performance gain of up to 22%
for PC = 10% and 54% for PC = 50%. Prefetching a good
number of path expressions into cache allows m-Solvesteps
to retrieve path expressions from memory instead of from
disk without requiring the entire path sequence to be main-
tained in memory. This decouples the latency associated
with the getNext() call on the B+ tree index. However, in
some cases, PRFS may not benefit from prefetching. For
example, for the BioCyc dataset with 100K nodes, when
PC is set to 10%, execution time of PRFSPF is similar
to that of PRFS. A close observation reveals that: 1) All
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Figure 6: Performance study with varying DPO

0

10

20

30

40

50

60

70

80

100 200 400 600 850 1100

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

# of Nodes (K)

PRFS PRFSPF(10%) PRFSPF(50%)

Dataset = SP2B
Query Nodes = 200

(b)

0
10
20
30
40
50
60
70
80
90

100

100 200 400 600 850 1100

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

# of Nodes (K)

PRFS PRFSPF(10%) PRFSPF(50%)

Dataset = Biocyc
Query Nodes = 200

(a)

Figure 7: Varying prefetching capacities
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Figure 8: Impact of PRFS phases on performance

path expressions in the path sequence are relatively small
containing only single edges. This means that a disk page
containing B+ tree contains a large number of path expres-
sions reducing overall disk I/O. 2) For all these path ex-
pressions, the algorithm produces ∅ extensions. In other
words, the algorithm did not build new path expressions
using the prefetched path expressions. Therefore, in this
case, prefetching does not improve performance. Assum-
ing a fixed-size cache, prefetching strategy may not always
decrease the query execution time based on the above ob-
servations. Therefore, a more optimal prefetching strategy
is needed in the future.

4.2.3 Impact of Two Phases of PRFS on the Perfor-
mance

Figure 8 shows the impact of different phases of PRFS
algorithm on the performance. The execution time for ses-
Solve dominates since the reassembly of prefixes and suffixes

handled by solveSelectedDest is performed on path expres-
sions in the solve array in main memory and there is less
work because complete suffix path expressions have been
assembled only once and attached to associated prefixes.

5. RELATED WORK
In recent years, there have been several research efforts

in providing navigational functionalities for query languages
for RDF data. These languages can be classified into two
categories: path pattern matching queries [22, 23, 20, 10, 17]
that find node pairs connected by paths matching a path
pattern; and path “extraction” queries [21, 13, 4, 18, 12]
that return paths. We will focus our related work discussion
on path extraction queries. For evaluating path extraction
queries, some existing systems [13, 12] leverage navigational
style approach which is not suitable for large disk-resident
data, while some other systems [21, 4, 18] provide solutions
from a database perspective by using join-based approach.
Specifically, [18], which is the most closely related to our
work, provides a full-fledge database solution by proposing
a join-based graph operation and cardinality estimation for
path triples during the query processing. However, all of
the above approaches are different from our work in the
following aspects: (1) All these approaches only supported
single-source multi-destination (or vice verse) shortest path
queries. To use them for MSMD path queries, we need to re-
peat the process for multiple sources (or destinations), which
will lead to inefficiency, especially for disk-resident graphs.
(2) Since most of the algorithms are designed for mainly
supporting fixed length or shortest path query, it is unclear
how to generalize them to solve all path queries.

6. CONCLUSIONS AND FUTURE WORK
This paper extends an algebraic framework to enable sup-

port for generalized MSMD path query evaluation. It presents
framework for work sharing across subqueries that avoids re-
dundant wasted computations. Future work will address the
issue of efficient representation of path expressions during
the execution time for further performance improvement.
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