From Query to Question in One Click:
Suggesting Synthetic Questions to Searchers

Gideon Dror, Yoelle Maarek, Avihai Mejer, Idan Szpektor
Yahoo! Research
Haifa 31905, Israel

{gideondr,amejer,idan}@yahoo-inc.com, yoelle@ymail.com

ABSTRACT

In Web search, users may remain unsatisfied for several reasons:
the search engine may not be effective enough or the query might
not reflect their intent. Years of research focused on providing the
best user experience for the data available to the search engine.
However, little has been done to address the cases in which rele-
vant content for the specific user need has not been posted on the
Web yet. One obvious solution is to directly ask other users to
generate the missing content using Community Question Answer-
ing services such as Yahoo! Answers or Baidu Zhidao. However,
formulating a full-fledged question after having issued a query re-
quires some effort. Some previous work proposed to automatically
generate natural language questions from a given query, but not for
scenarios in which a searcher is presented with a list of questions
to choose from. We propose here to generate synthetic questions
that can actually be clicked by the searcher so as to be directly
posted as questions on a Community Question Answering service.
This imposes new constraints, as questions will be actually shown
to searchers, who will not appreciate an awkward style or redun-
dancy. To this end, we introduce a learning-based approach that
improves not only the relevance of the suggested questions to the
original query, but also their grammatical correctness. In addition,
since queries are often underspecified and ambiguous, we put a spe-
cial emphasis on increasing the diversity of suggestions via a novel
diversification mechanism. We conducted several experiments to
evaluate our approach by comparing it to prior work. The experi-
ments show that our algorithm improves question quality by 14%
over prior work and that adding diversification reduced redundancy
by 55%.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Question-answering systems

General Terms

Algorithms, Experimentation

Keywords

Community-based Question Answering, Question generation

1. INTRODUCTION

Web search engines fail to satisfy users’ queries in three cases,
either the search engine is faulty (it did not crawl, index, retrieve or

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.

WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil.

ACM 978-1-4503-2035-1/13/05.

rank the relevant content adequately), or users did not express their
intent adequately (hence the need for query assistance tools) or, fi-
nally, relevant content for the specific intent does not exist on the
Web at the time the query is issued. We are focusing here on this
latter case, which can occur for multiple reasons: the user’s need
may be rare, narrow, complex, heterogeneous, etc., or the Web con-
tent in that specific country/language is still scarce. In such cases,
a common solution is for users to turn to Community Question An-
swering (CQA) sites, such as Yahoo! Answers, Baidu Zhidao or
specialized forums like StackOverflow, and ask for other users to
generate the missing content. To do so, they need to switch sites
and invest some effort in expressing their intent as a question that
is intended to be read by human beings. Ironically, users are so
used to issue a few-word queries by now that expressing a natural
language question might be perceived as tedious. Some of the au-
thors of this paper have studied the transition of “searchers” into
“askers” and discovered that even within users of CQA sites, only
2% take the pain to do the transition [16].

As a step forward in facilitating the transition from searchers to
askers, we propose here to suggest to a frustrated searcher' a few
synthetic natural-language questions that were automatically gen-
erated from the searcher’s query. Searchers can then post a question
in one click (or after minor editing). Our general approach follows
prior work in this area: offline learning of question templates, such
as ‘where should I T1 a T2 in T3?’, and instantiating them online,
with words from the issued query [25, 24]. This approach allows to
automatically generate original relevant questions, which may have
never been asked before by users. However, these prior studies did
not consider the scenario in which a searcher views the generated
questions and is expected to directly click on them to post them.
Particularly, on top of generating questions that are relevant to the
query, our target scenario imposes specific requirements on the
quality of the generated questions. First, the displayed questions
have to be grammatically correct and natural enough to be posted
by human beings. Using only basic language models would lead to
suggestions that should not be shown to users, such as “where rent
villa in italy?”* for the query “italy rent villa”, instead of the more
appropriate “where should I rent a villa in italy?”.

In addition, we argue here that evaluating the generated ques-
tions on an individual basis is fine when these questions are used for
behind-the-scenes improvements, such as query rewriting or rank-
ing [24]. Yet in our scenario, like in search results, another major
requirement is that the list of displayed questions do not include
near-duplicates. Furthermore, it should be as diverse as possible,

"'We note that detecting queries with question intent or identifying
frustrated searchers is out of the scope of this paper.

ZSuch suggestions were generated by our implementation of [24],
which we describe later.

while still relevant to the original query. Indeed, given that queries
tend to be under-specified, a diverse set of suggested questions is
more likely to include a candidate that catches the actual intent of
the user. More generally, a diverse list of suggestions is probably
perceived as more attractive, and would hopefully tease users into
clicking on one of them.

Given the above requirements, we propose a query-to-question
recommendation approach based on a learning-to-rank framework.
Under this framework we employ a large set of features that ad-
dress aspects of question relevance to the original query as well as
aspects of grammatical correctness. These features capture more
complex context and syntax mismatches, such as predicate argu-
ment selection (e.g. that ‘fix car’ is more plausible than ‘fix cat’).
In addition, to promote diversity in the suggested list, we intro-
duce a novel diversification component that filters out redundant
variations of the same question. We argue that the notion of sim-
ilar questions goes beyond traditional paraphrasing, as “what is a
really good way to lose weight?” and “what is your favorite way
to lose weight?” share the same question intent. We thus extract
and utilize interchangeable terms such as good/favorite via an edit
distance algorithm in order to identify such question similarities.

We compared our algorithm to an implementation of Zhao et al. [24]

as baseline under several experiments: manual experiments, in which
the results are evaluated by professional human judges, and large-

scale automatic experiments on 150,000 gold-standard query/question

pairs. The results of the manual evaluations show that both the prior
work baseline and our system achieve very high relevance scores,
but our algorithm significantly performs better in terms of gram-
matical correctness. In addition, the novel diversification compo-
nent dramatically reduces the number of redundant questions, with
only a modest decline in question quality. Our large-scale experi-
ments show that our algorithm achieves significantly higher recall,
ranking higher the specific questions chosen by real users for their
queries. Furthermore, when diversifying the suggestions, a better
coverage of question intent is reached, further increasing recall.

The main contributions of this paper are threefold. First, we pro-
pose a general learning framework for ranking question suggestions
that leverages a large set of features, with special attention given
not only to relevance but also to the grammatical correctness of the
synthetic questions. Second, we introduce the concept of diversifi-
cation in question suggestions to improve the overall quality of the
suggested question list. Finally, we use a novel large-scale auto-
matic evaluation mechanism that shows that our system performs
better in terms of both relevance and correctness, as compared to
previous work. We believe that these contributions are critical to
make the question suggestions list attractive enough to be shown to
users and eventually clicked on.

2. TEMPLATE EXTRACTION

Our general approach for automatically generating recommended
questions for a given query is conducted in two steps. In a first
stage, we extract question templates from a very large dataset of
query/question pairs. Then, in a second stage , we instantiate ques-
tion templates with the words of a new query so as to generate syn-
thetic questions, and then rank the latter. In this section, we discuss
the first stage, namely data gathering and the extraction of question
templates.

In order to generate question templates, it is most useful to ob-
serve the relations between queries and questions with similar in-
tent. Some of the authors of this paper have generated such datasets®

*More sophisticated yet smaller datasets were also generated, in
which the question is not a search result, but a question generated

392

| (query, question) | question template |

(“love Justin Bieber”, “Why do | Why do people T1 T2 T3 so
people love Justin Bieber so | much?

much?”)

(“best ever US basketball | Who is the T1 T2 T4 TS5 in

player”, “Who is the best ever | the T3?
basketball player in the US?”)

(“movies downloading free”,

What are the best sites for

“What are the best sites for | T2 T1 for T3?
downloading movies for
free?”)

Table 1: From (query,question) pairs to question templates

of query/question pairs in the past, in which the query is issued
on a search engine, and the question was a search result (coming
from a CQA site) on which the searcher clicked [15]. The inno-
vative step taken by Zhao et al. [24] was to extract question tem-
plates from such datasets, which they built over Baidu’s queries
and Baidu Zhidao’s questions. Interestingly, Zheng et al.[25] used
a similar dataset to evaluate their question generation process, but
not to generate templates.

We follow here the approach of Zhao et al. and apply their
template extraction algorithm on a query/question dataset, mod-
ulo some slight modifications. First, we built a dataset consisting
of 28 million pairs of (query,question), in which the question origi-
nated from Yahoo! Answers, keeping only the title as the question’s
text. We retained only pairs in which all query terms appear in the
question, as an easy approximation of ensuring relevance to the
query. Differing from Zhao et al., who focused only on short Chi-
nese queries containing 1-3 terms, we considered English queries
consisting of 3-5 terms. This choice was driven by previous studies,
such as [12], that showed that shorter queries were rarely express-
ing an information need, let alone a question intent. We did not
go either towards longer queries counting more than 6 terms, as
these become too specified to be good candidates for abstracting
templates. Finally, to ensure the quality of the extracted templates,
we used a simple heuristic, and kept only questions that start with
one word that belong to a manually-defined white list. This white
list holds about 20 words, such as the so-called six “WH question
words” (what, who, etc. and how), as well as some auxiliary verbs
(e.g., should, can, is, etc.) This heuristics plays the role of a very
simplistic shallow parser and ensures the elimination of questions
such as “Photosynthesis question?” or “arrested for less than a
gram of marijuana (youth)?”. Following this filtering, we ended
up with 4.2 million query/question pairs.

From the 4.2 million pairs in our dataset, templates are extracted
by substituting the query terms found in the question with “slot
fillers”, exactly in the same manner as done by Zhao et al. For ex-
ample, from the pair formed by the query, ‘fix old car’, and the
clicked question “how can I fix my old car?”, we extracted the
template “how can I T1 my T2 T3?”. We encode the query term
position as part of the variable name, to avoid mistakes induced by
asymmetric relations for instance. Thus, “Is T1 taller than T2?”
and “Is T2 taller than T1?” are considered different templates. See
Table 1 for additional examples*. We then filter out rare templates,

and posted by a searcher in a same session that started by issuing
the query in the pair, [16].

“Note that these have been slightly modified for privacy reasons,
in order to avoid linking specific public Yahoo! Answers askers to
their search queries.

keeping only templates that are associated with at least 10 different
queries. At the end of this process we generated a database of about
40, 000 templates together with their associated queries.

3. AUTOMATIC QUESTION SUGGESTION

We described in the previous section how the question template
database is constructed. We now explain the second step of our
process, how given a new query we generate and rank template-
based questions.

The two previous works in question generation from queries [24,
25] proposed each their own scoring functions for ranking candi-
dates. Given the complexity of the task, we preferred here using
a learning-to-rank approach. This enables us to employ a much
larger set of features that capture different aspects of the quality of
each question.

Our approach requires to first generate all possible candidate
questions for a given input query, then represent each generated
question as a rich feature vector, and finally, rank them using a dis-
criminative model. Since the number of candidates can be very
large (in the order of thousands) and our features are computation-
ally expensive to generate, we propose to first generate a smaller
pool of candidates, generate the richer features for these candidates,
and only afterwards apply our learning-to-rank mechanism on this
pool. This type of two-step ranking has often been applied in In-
formation Retrieval in the past [2, 5], as well as in natural language
generation tasks [10, 13]. In order to generate this pool, we first
rank questions using a reimplementation of Zhao et al. [24] algo-
rithm, which also serves as our baseline in our experiments. We
refer to this as the baseline step. Our reranking algorithm is then
applied on the top- K candidates of the baseline output. We refer to
this second step as the reranking step.

We next detail the different parts of our algorithm. We first de-
scribe how question candidates are generated for a given query. We
then present the different features induced from each question, fol-
lowed by a description of our learning-to-rank model.

3.1 Generating Question Candidates

The first part of the baseline step consists of generating all the
candidate questions for a given query. To this end, each template in
our template database is considered, and templates that are found
relevant are instantiated with words from the query.

As we intend to compare ourselves to Zhao et al. as baseline,
we use the same methodology in order to select relevant templates.
Namely, a template is considered relevant to the query only if the
query is similar enough to one of the queries associated with the
template in the database. Specifically, two queries are considered
similar if they count the same number of terms and share at least
one term in the same query position. For example, the queries “fix
old car” and “buy old records” are considered similar since both
have three terms and share the word ‘old’ in the second position.
On the other hand, “fix old car” and “old car repair” are not con-
sidered similar, even though they share two words, since they have
no shared word in the same position.

We identify similar queries in an efficient manner by indexing
all queries in the template database by their words and positions
of each word in the query. Thus, given a new query ¢, we fetch
all similar previous queries from the template database to produce
a set {g;}. Then, for each ¢;, we fetch the templates ¢; that were
associated with it in the template database, and instantiate each ¢;
with the words of ¢. This process produces as many candidate syn-
thetic questions as the ¢;’s. We emphasize that the instantiation of
templates with new queries may result in candidate questions that
may have never been asked before by users.

393

3.2 Question Feature Representation

To rank the different question candidates, for both completing
our baseline step as well as conducting our reranking, we transform
each question into a feature vector. Each feature captures various
semantic and syntactic aspects of the question as described next.

3.2.1 Baseline Features

The first two features we generate for each question are the ones
suggested by Zhao et al. [24]. These features are also the only
features we use in the baseline step to generate a pool of candidate
questions.

The first feature is the likelihood score for the query to instantiate
the template behind the generated question, referred to as likelihood.
It is computed for a pair of query/template (g;, t;) by averaging the
similarity scores sim(q, q;) between the new query ¢ and the n
similar queries g;, that are associated with template ¢;. Each sim-
ilarity score is computed as the product of the term similarity be-
tween terms in the same position in the two queries, i.e. sim/(q, ¢;)
1L sim(q”, qF), where ¢® and ¢F are the k'™ terms of queries ¢
and g; respectively. Finally, each term is associated with a context
vector that includes all the terms that co-occur with it in the query
set, weighted by tf-idf. The similarity sim(g*, ¢F) between two
terms is measured by the cosine similarity between their context
vectors. In our specific dataset, we used a sampled Yahoo! query
log consisting of 18 million queries to compute the context vectors
of all terms.

The second baseline feature is a trigram language model score
for the question. This feature reflects the grammatical correctness
of the question. In our implementation, we trained this language
model on a random sample of 15 million English questions from
Yahoo! Answers using the berkeleylm® package [21]. We only
considered questions that start with one of the words in our question
white list, as done in the template extraction stage (see Section 2).

These two baseline features (and only those) are used in the base-
line step to provide a baseline score for each question, as per the
following linear combination:

baseline—score = X - likelihood(Query, Template)
+(1 = \) - Language M odel (Question)

Zhao et al. learn only a single parameter, A, in order to tune the
influence of the two features. This concludes the baseline step
that generates a pool of K candidates that achieved the highest
baseline—score values. We detail below the additional features
that are needed for proceeding to the reranking step.

3.2.2 Reranking Features

We parse each candidate question at two granularity levels: each
word is tagged with a part of speech (POS) tag, and the dependency
parse tree of the question is generated. For both POS tagging and
dependency parsing, we use the Stanford NLP tools® [8]. We next
describe the reranking features extracted per question, which are
mainly extracted from this syntactic parse information.

Question POS language models.

We compute the five-gram language model scores for the ques-
tion POS tags and for the coarse-POS’ (CPOS) tags. This provides
a high level syntactic fluency assessment of the question. The POS

Shttp://code.google.com/p/berkeleylm/
®http://nlp.stanford.edu/software/

"The Coarse-POS tag consists of only the first letter of the stan-
dard POS tag, such as N for nouns, without distinguishing between
singular/plural and common/proper nouns (NN, NNS, NP, NPS).

and CPOS language models were trained on the POS tags for the
same 15 million question dataset used for training the trigram lan-
guage model above.

Query POS sequences.

We tag the query words with POS by copying the tags that were
assigned to the query words in the question, which was built as an
instantiated template. For example, for the query “fix old car”, the
candidate question “should I fix my old car?” induces the query
POS tags “VB JJ NN, while the candidate question “how much is
a fix for an old car?” induces the query POS tags “NN JJ NN”.

Given the induced POS and CPOS tagging of a query, we gener-
ate binary features representing all the position dependent unigram,
bi-gram and tri-gram subsequences within the query tag sequence.
For example, for the POS tag sequence “VB JJ NN” we generate
the features ‘/-VB’, ‘2-JJ°, ‘3-NN’, ‘1-VB-JJ’, ‘2-JJ-NN’, and ‘-
VB-JJ-NN’. Overall, there are about 39,000 such possible features,
which capture the a-priori tendency of queries to map into specific
tag sequences, and attest to the validity of placing them in the cor-
responding template slots.

Dependency Relations.

We generate binary features that correspond to the lexical and
to the POS/CPOS head-dependent pairs that appear in the top level
of the parse tree. As an example, the parse tree for the question
“should I fix my old car?” is shown in Fig. 1. The head-dependent
binary features ‘should — fix’, ‘I — fix’, ‘car — fix’, ‘MD — VB’,
‘PRP — VB’, ‘NN — VB, ‘M — V’, ‘P — V’ and ‘N — V’ are
derived from this parse tree. These features capture semantic co-
herence such as verb selection preferences. The strength of these
features lies in their ability to capture relations between words that
are too far away to be assessed using a standard n-gram language
model. We focus only on the relationships between the root word
and its dependents, as we empirically noticed that the validity of
the main theme of the question, as captured by the top elements
of the parse tree, reflects the overall quality of the question, espe-
cially since our questions are usually quite short. There are about
2.6 million such features in our training set.

Parse Tree Score.

An additional feature we consider here is the score provided by
the parser to the generated parse tree. Lower scores indicate less
probable parse tree. The parse tree score has been previously shown
as useful for reranking in natural language generation [10, 13].

Template Word Order.

Independently of the parse information, we also extract a binary
feature that indicates the slot order in the template that generated
the question. For example, for the template “should I T4 my T1 T2
T3?”, we generate the feature ‘7T4-T1-T2-T3’. This feature captures
a prior indication of whether a specific word order is likely to be
useful for a query. For example, ‘T1-72-T3-T4 is more likely to be
useful than ‘T4-73-T2-T1".

3.3 Learning-to-Rank model

We detail below the learning-to-rank model that we apply on the
pool of K candidate questions generated for each query during the
baseline step. In this step, each candidate question is represented
by a vector containing all the features described in Section 3.2. We
use a linear model for scoring each question vector in the candidate
pool: 1 - ®(Q), where p is the model weight vector and ®(Q)
is the feature vector of question (). The weights are trained using
the averaged variant of the Passive-Aggressive (PA) online learning

394

<root>
)

/'/__; fix\

Should | (VB) /—> car
>

(MD) (PRP) my old (NN)
(PRPS) (1))

Figure 1: POS tagging and dependency parse tree for the ques-
tion “should I fix my old car?”

algorithm [6], which showed competitive results for large feature
spaces [18, 7]. This learning procedure is summarized in Alg. 1. At
each step, a training pair® consisting of a query and a correspond-
ing clicked question, which we denote the target question, is con-
sidered for updating the current model y:. Given the K question
candidates for the query in the training pair, if the target question is
not found among them, the current pair is skipped. Otherwise, the
full feature vectors are computed for all K candidates, which are
then scored according to the current reranking model p;. At this
stage, if the scores of some questions are not lower by a sufficient
margin from the target question’s score, the model weights are up-
dated accordingly to promote the score of the target question with
respect to these other questions, resulting in a new model fi¢41.
The algorithm iterates T times over the entire training set of M ex-
amples and the average of the weights at each step in the algorithm
are set as the final model.

For training and evaluating our ranking model, we use a subset of
our query/question pairs dataset generated in Section 2.This subset
consists of queries that are associated with only a single template
among the set of templates we extracted, resulting in about 1.6 mil-
lion pairs. Thus, in each training step, it is guaranteed that only one
question out of all candidate questions is considered the “correct”
one. This is the question that was generated from the single associ-
ated template above. This training set allows us to tune the model
towards real user choices of questions related to their queries. We
split the subset of queries to training, development and testing sets,
respectively as 80%, 10% and 10% of the data. We refer to this
data set as our gold standard.

One important point to note here is that this subset of the data
that we use consists of the query/question pairs that were also used
to populate the template database. So, we could have easily se-
lected the correct target template for each of the queries. To avoid
this, when processing a specific query, we ignore this query in the
database. Specifically, in the stage of matching a query to other
similar queries in the database in order to collect candidate tem-
plates, we do not match a query to itself. We can thus simulate the
situation in which every query is a new unseen query.

4. RANKING EVALUATION
4.1 Experimental Setup

To evaluate our reranking model, we compared it to our reimple-
mentation of Zhao et al. algorithm [24], which serves as baseline,
via two experiments: a manual and a large-scale automated one, as
detailed below.

Several parameters need to be tuned both for the baseline and
reranking steps. Parameter tuning was conducted using the devel-
opment dataset we put aside (see Section 3.3). We set the value
of A, which tunes the two features used in the scoring function in

8The extraction of these pairs is detailed in Section 2.

Algorithm 1 Ranking model PA training
Input:
e) training examples, each with K question candidates
e N number of updates at each round
e Feature mapping function ®(Q) € R?
Initialize:
* Hy=0
Fort=1,2,.... M
e Get question candidates for query ¢:: {Q1,...,Qx}
e Get correct question Q) ;
e Rank all candidates by g1, _; - ®(Q;),i=1,2,..., K
e Fori:=1,2,..., N top candidates

— Define A ; = ®(Q;) — ®(Q:)

— Compute

max {O, 1—p, ;- Aj,i}
14,4117

o=

- Set: py, = py_y +

Qutput: Averaged weight vector u = ﬁ Zivil It

the baseline step, to 0.2. This value maximized the Mean Recipro-
cal Rank (MRR) score for the known target question of each query
in the development set. Note that setting this value results in giv-
ing some extra weight to the language model score in the formula.
This value is slightly different from the value that was assigned by
Zhao et al. in their original algorithm, but we believe that using
exactly the same value, rather than the one that performs best on
our data, would have been unfair to the baseline, as we are dealing
with different languages.

The second parameter to tune is K, the number of top question
candidates to keep from the baseline step as the pool of candidate
questions to be reranked. There is a clear trade-off between ef-
fectiveness, which will increase with recall when there are more
candidates, and efficiency, which decreases when more candidates
need to be processed. We define as recall @K the percentage of
queries, for which the known target (or gold-standard) question is
ranked among the top K candidates. Table 2 shows the recall@K
values obtained on the development set for different values of K.
As per the table, we decided to set K = 100, as a good balance be-
tween the processing load and the probability of having the target
question among the top candidates.

Finally, we tuned the hyper-parameters of the ranking model
training procedure, specifically 7', the number of training iterations,
N, the number of updates at each round, and whether or not to use
parameter averaging. We chose 7' = 3, N = 5 and decided to use
parameter averaging, as it maximized the MRR score with respect
to the target questions in the development set.

4.2 Manual Evaluation

For the manual evaluation, we randomly sampled 1,000 queries
from the prepared test dataset (see Sec. 3.3). For each query we col-
lected the top three question suggestions as ranked by the baseline
and the reranking steps. We limited ourselves to the 3 best sugges-
tions as this seems to be a reasonable size of a list to be shown to
users, be it on the search result page or on the CQA site itself. We
asked professional judges, also known as editors’, to assess each

These judges are members of Yahoo! “editorial team” and have
a long experience of assessing relevance, and quality in general,
across multiple Yahoo! products.

395

K
Recall@K

25
76%

50
84%

100
91%

200
93%

Table 2: Recall @K for several values of K in development set

| Question | Relevance | Grammar |
where can i rent a villa in italy? good good
where to rent villa in italy? good poor
why can you rent a villa in italy? poor good
is italy rent a villa? poor poor

Table 3: Examples of questions for the query "italy rent villa"
together with their relevance and grammar scores

question by two metrics: (a) relevance — which reflects whether the
question’s content is reasonable and relevant to the query (ignoring
grammar mistakes); (b) grammar — which reflect the grammatical
correctness, our second requirement. The editors where asked to
provide a binary good/poor score for to each metric. Table 3 shows
an example question for each of the possible assessment combina-
tions of the query "italy rent villa". Three human editors evalu-
ated the test set, and the final assessment for each question sugges-
tion was set to be the majority choice. While we separately evalu-
ated the relevance and grammatical correctness of each algorithm,
a question cannot be shown if it does not excel in both. Therefore,
we also computed a combined metric, which is ‘good’ only if both
grammar and relevance are ‘good’.

Table 4 presents the results of the manual evaluation. The num-
bers represent the percentage of questions that were assessed as
‘good’ under each metric. With respect to relevance, both algo-
rithms show very high performance, as 94-96% of the top 3 sug-
gestions were found relevant by the judges. We think that this is
due to the fact that all query words appear in each of the questions,
and thus most questions seem somewhat relevant. It is thus not
surprising that the reranking algorithm did not improve over the
baseline, as there was not much to improve on from the start.

Compared to relevance, the grammar metric results are much
lower. Only 70% of the highest ranking questions generated by
the baseline were considered grammatically correct by the editors,
and this value decreased to 60% for the suggestions in the second
and third ranks. It is here that our reranking algorithm showed its
benefit, achieving an increase of 14% in correct questions for the
best suggestion and an increase of 10% for the second best sug-
gestion. These improvement ratios remain stable for the combined
metric, since it is almost a duplicate of the grammar metric. We
note that Zhao et al. [24] also conducted a manual evaluation for
Chinese generated questions, which considered both the relevance
and the fluency of the question. Under their evaluation, the baseline
algorithm achieved a score of 67%, which is not far from the 71%
it achieved under the combined metric, in our manual evaluation
conducted by different people on a different language/dataset.

4.2.1 Error Analysis

As evident from the manual evaluation, most incorrect questions
are due to grammatical mistakes. While the reranking algorithm
reduced the number of grammatically invalid questions by more
than 30%, still about 19% of the top suggestions contain gram-
matical mistakes. Examples of such mistakes are shown in Table 5.
The most common mistake is the misuse of the singular/plural form
that leads to the incorrect selection of is/are with a/some, and less
frequently to a conjugation mistake, such as do/does. Another rel-

Baseline Rerank
relev. | gram. | comb. | relev. | gram. | comb.
Q1| 96.6% | 711.3% | 711.2% | 96.4% | 81.5% | 81.2%
Q2 | 96.0% | 60.1% | 59.9% | 95.9% | 66.4% | 66.1%
Qs | 942% | 59.6% | 58.9% | 94.3% | 59.5% | 59.1%
Table 4: Manual evaluation baseline vs reranking: Relevance,

grammar and combined results, for the top 3 questions, Q1 3,
expressed as the percentage of questions that received a “good”
score

Question Mistake type
what are some good party music Singular/Plural
how do the world get smaller Do/Does

what does the free chat lines Be/Do

what a good nickname for me Missing a verb
what is the french word for the bread Determiner
who is the best mp3 player today

what is the best basketball player today Subject type
what was the force of gravity? Question tense
what is the correct way to die in an accident | Sentiment

Table 5: Examples of incorrect questions, with query terms
highlighted in bold

atively common mistake type involves the incorrect usage of deter-
miners, such as a mixup between a/the, missing a determiner, or
the superfluous addition of an article. It may be possible to design
additional features to target some of these specific cases.

The rare cases of relevance mistakes are more subtle and harder
to mitigate. One type of such mistakes is a mismatch between the
question type and the subject of the question, such as the selection
of who vs. what for questions addressing ‘mp3 player’ vs. ‘basket-
ball player’. A second type of mistakes relates to question tense.
While it is fine to use the past tense for a question such as “what
was the trigger for ww2?”, it is inappropriate for the question “what
was the force of gravity?”. Finally, some mistakes rise due to senti-
ment polarization, such as in the question “what is the correct way
to die in an accident?”, where the qualifier correct might be seen
as awkward or cynical.

4.3 Automatic Evaluation

While the manual evaluation we conducted provides valuable in-
sights, it is nevertheless limited. First, like most manual evalu-
ations, it is of small scale, using only 1,000 questions. Second,
estimating the relevance of a question suggestion can only be an
approximation, without evidence of the actual query intent. In-
deed, for our editors, almost every question that contained the query
words seemed to be a priori relevant, yet we had no guarantee that
they were indeed reflecting the user’s implicit needs. We there-
fore conducted a complementary large scale automatic evaluation
over the query/question pair test set. For this purpose, we lever-
aged the gold-standard dataset defined in Section 3.3, in which a
query/question pair, (g,Q), is built by pairing the unique gold-
standard question () that the user clicked on, after issuing the query
g. For an algorithm to perform best, question () should be ranked
first in the list of suggested questions for query g. While this evalu-
ation cannot provide an absolute quality assessment for the sugges-
tions, we believe it provides a better indicator of which algorithm
suggests questions that real users could have clicked on.

396

Method Avg. rank MRR Recall | Recall
(lower better) | (higher better) @l @3

Baseline 8.98 0.54 42% 62%

Rerank 4.45 0.65 52% 73%

Table 6: Performance of rerank vs baseline on several metrics
derived from the rank of the gold-standard question

The test set we use counts 160,000 queries. However, we chose
to generate pools of 100 candidates at the baseline step, for a recall
of 91%, as per Table 2. Therefore, we only use 147,000 queries
from this dataset (namely 91% of 160,000) in our experiment. In-
deed, only these queries have their associated unique target ques-
tions appear in the candidate pools generated by the baseline com-
ponent. Table 6 compares the performance of our reranking model
to the baseline, for various measures, over this gold-standard test
set. The rerank algorithm shows a substantial improvement in all
metrics compared to the baseline. Namely, the average rank of the
target question is halved, from 8.98 to 4.45. In addition, we ob-
serve an improvement of recall@1 of 24% and an improvement of
recall@3 of 17%, as compared to the baseline. In other words,
the reranking algorithm is better at promoting the question with the
specific intent of the user at query time.

4.3.1 Features Analysis

We employed the automatic evaluation framework to analyze the
contribution of each of the features used for the reranking step.
We evaluated both the contribution of each feature family on its
own (on top of the baseline features), and its contribution on top
of all the other reranking features (via an ablation test). Table 7
summarizes the feature families used, the number of features in
each family and their impact on the Recall @1 measure.

From the table, we first notice that the dependency-tree features
contribute the most. At the top stands the lexical head-dependent
feature family, which achieves alone a 15% improvement over the
baseline. This is a significant effect, considering that the full rerank-
ing algorithm achieved 24% improvement. Compared to this fam-
ily, which consists of more than a million features, the single fea-
ture of the dependency tree score managed to gain 6% on its own
over the baseline, and also contributed nicely on top of the rest
of the features. This demonstrates the value of examining the parse
tree at different granularity levels. Indeed, the family head-dependent
POS pairs is shown to capture information that complements the
fine-grained lexical and overall views of the dependency tree.

Encoding sequential syntactic information did not contribute much
to the reranking step. The POS language model did provide some
useful information on top of other features. However, using the pat-
terns generated by POS mapping on query terms actually hurt the
reranking performance, hinting that the order of query words does
not generally indicate any specific user intent. Finally, while the
template type by itself is not useful for improving ranking, it does
help a little on top of everything else as a weak prior.

S. DIVERSIFYING SUGGESTIONS

As queries are typically underspecified, they can easily represent
different intents. Let us consider our previous query example “italy
rent villa”, it may be associated with very distinct questions, each
representing a different intent, e.g., “where should i rent a villa in
italy?”, “how much does it cost to rent a villa in italy?” or “would
you recommend to rent a villa in italy?”. We refer to these as di-
verse intents and argue that questions need to be diversified to al-

Table 7: Influence of the feature families used for reranking.
The two right-most columns represent the changes (in percents)
of Recall @1, due to respectively adding (column Addition) and
removing (column Ablation) a single feature family

low for the occurrence of diverse intents. While diversification was
shown to be beneficial to traditional recommender systems [26, 23,
9, 4, ?], to the best of our knowledge, it has not been considered
yet in question generation for queries.

To validate the need for diverse questions, we manually inspected
dozens of queries and their associated question recommendations.
We noticed that the top questions are often simple variations of one
another. For example, for the query “fix old car”, we generate sev-
eral questions that all carry the same intent, “how do [fix my old
car?”, “how can I fix an old car?” and “how could you fix your
old car?”. Interestingly, while these questions are not formally
paraphrases, they do represent exactly the same intent, and differ
only by some terms being exchanged, such as I/you and an/my
in the above examples. We also observed variations of qualifiers
or verbs that also carry the same intent, such as in “where can I
{find/buy/get} a TV for a good price?”. In general, we found that
the top-5 recommended questions represent on average only 2-3
different intents.

Motivated by the above, we integrate diversification into our al-
gorithm as a post-process filtering step. In this step the algorithm
scans the ranked recommendation list, and applies one of the two
filtering methods described below.

5.1 Imposing a Different Question Form

A very simple heuristic method for promoting diversification is
to impose a different question form, represented by a different in-
terrogative word, namely (e.g. what, when, where, etc.). We extend
this approach by forcing each question in the suggestion lists to
start with a different word, in order to also cover questions that be-
gin with an auxiliary verb ‘Should I ...?, Does the ...?". If the first
word of each question is different, intuitively there is a good chance
that the question form, and therefore the underlying intent, differ.
Our heuristic works as follows, we examine the suggested ques-
tions starting from the top and eliminate a candidate if it starts with
the same word as a previous question. For many queries there are
only a few top ranked questions that use a different first word. As a
result, this method typically has to examine questions far down the
list, in order to find enough candidates that pass the test. We refer
to this method as the “first-word” filter in the rest of this paper.

397

Recall@1 Recall@1 can/could | could/should can/do a/the
Family Count | Feature Addition | Feature Ablation term/word type/kind get/download buy/get
POS/CPOS cool/cute fun/good ok/normal possible/legal
lang. model 2 1.7% 2.3% u/you computer/pc okay/ok site/website
Query do/don’t bad/ok girls/guys my/your
POS/CPOS 39K 1.1% 0.5% really/- exactly/- often/- always/-
Dependency-tree
score 1 6% -3.8% Table 8: Sample of automatically identified interchangeable
Dependency-tree terms
lexical pairs 2.6M 15.7% -5.3%
Dependency-tree
POS/CPOS pairs | 68K 6.6% -3.2%
Template 5.2 Eliminating Redundant Questions
word order 242 -1.3% -0.8% An additional way to ensure diverse questions is to eliminate re-

dundancy. We consider as redundant, questions that differ by only a
few “interchangeable” terms, namely terms that can be exchanged
without changing the intent of the question. Assuming we have at
our disposal a list of such interchangeable term pairs, we propose
to measure the redundancy between questions by a term-based edit
distance metric that inflicts nonuniform penalties for different edit
operations. An edit operation that involves replacement between
two interchangeable terms costs less than other operations. We note
that one of the interchangeable element in the pair can be an empty
string, thus representing a deletion operation. After some experi-
mentation and manual evaluation, we assigned cost = 1 to the low
cost operations and cost = oo to all other operations. We consider
two questions to be redundant if the edit distance between them is
lower than a threshold K (K=3 in our experiments). We refer to
this method as the “edit-distance” filter in the rest of this paper.

In order for this filter to work, we need to provide a list of in-
terchangeable term pairs. We extract such pairs in an automatic
way, based on the assumption that terms that appear in the same
context in many different questions are interchangeable. To this
end, we utilize a large dataset of 1.2 million queries and the top 50
questions generated for each of them by our recommendation algo-
rithm. For each query, we examine the top generated questions and
identify among them the pairs of questions that differ by exactly
one term. We then record the corresponding term pair in each such
occurrence, also allowing for one term to be replaced by a blank in
the case of a deletion operation. We finally consider two terms as
interchangeable if the pair they form was observed for a very large
number M of distinct queries (M=12,000 in our experiments). The
resulting database consists of 500 pairs of interchangeable terms,
some examples of which are shown in Table 8. Note that we do
not claim here to generate any general purpose kind of thesaurus,
we simply identify pairs of terms that seem not to bring any dis-
criminatory value in generating questions from our closed set of
templates.

A deeper examination of this set of interchangeable terms reveals
several types of pairs of interchangeable terms. First, we see some
of the terms that were involved in the questions that were identified
as redundant in our preliminary manual analysis, e.g. can/could,
could/should and a/the. Few of the pairs are typical synonyms, e.g.
typelkind, and abbreviations, e.g. u/you and ok/okay. Other pairs
correspond to delete operations and involve terms that can be re-
moved without changing the meaning of the question, e.g. really/-
and exactly/-. Most of the pairs are formed by terms that are re-
lated, yet are far from being considered synonyms. These pairs
include: (a) adjectives and adverbs that indicate different qualifier
strengths, and even opposite sentiments, e.g. cool/cute, okaylwrong
and bad/weird; (b) nouns and verbs, which under a certain ques-
tion context, address the same need, e.g. do/don’t, get/download,
girls/guys and definition/meaning; and (c) interchangeable deter-

| Filter | Top-3 | Top-5 |
first-word 1.20 2.51
edit-distance 1.02 2.13

Table 9: Average number of deleted questions among top sug-
gestions, for each filter

miners, prepositions and pronouns, e.g. what/which, if/when, or
althe. Finally, we noticed some incorrect pairs, inferred from tem-
plates derived from very domain-specific questions and whose ap-
plication in a more general context might significantly change the
intent of the asker e.g., legal/possible, bad/much. Yet overall using
such a list helps with diversification as demonstrated in the next
section.

6. DIVERSIFICATION EVALUATION

We first present a qualitative comparison between the first-word
and edit-distance filters introduced in the previous section. We then
review the results of the manual and automatic experiments we con-
ducted, by applying these filters on the candidate questions gener-
ated by the reranking component. As in our previous evaluations,
we focus our analysis on the top suggested questions, namely the
short list that should eventually be shown to users.

6.1 Filters Comparison

We applied the first-word and edit-distance filters to a set of
140,000 queries from our development set and measured how many
questions were filtered out. Table 9 presents the average number of
deletions in the original top-3 and top-5 questions.

Obviously, the top question is never deleted, yet deletions occurs
immediately afterwards. As shown in the table, both filters delete
on average at least one of the two questions in second and third
rank. Similarly, at least 2 questions are deleted on average out of
the four questions in second to fifth rank. In other words, at least
50% of the top questions are considered redundant by both filters.
The first-word filter is more aggressive, as expected, as it considers
only on a single word. For example, it may reject diverse questions
such as “is drinking hot coffee popular?” after seeing “is drinking
hot coffee healthy?”, or “where can I fix a wii game console?”
after seeing “where can I buy a wii game console”, in which a
different intent is captured by a single word (manually highlighted
in bold here.) On the other hand, the edit-distance filter depends on
the quality of its database of interchangeable pairs. For example,
the two questions “what are the {main/major} characteristics of a
pig?” were not considered redundant because main/major were not
identified as interchangeable terms.

We also measured how far down into the ranked question list
each of the filters needs to progress in order to find 5 questions
that are considered different. The first-word filter had to consider
on average 16.8 questions, while the edit-distance filter needed on
average only 10.9 questions. This distinction is important, since the
lower the rank gets, the fewer the chances are that the question is
both relevant and grammatically correct. This can be observed from
the difference in scores between the first and third ranked questions
in Table 4. Thus a higher average number of examined questions
will probably have a negative impact on the quality of the selected
questions.

6.2 Manual Evaluation

We conducted a small-scale manual evaluation on 50 queries.
For each query, we inspected the top 3 questions generated by the

398

Quality & Diversity
B Rerank O Edit-Dist' @ First-Word

90

80

70
60]
50 + _| T .

Quality Diversity

Figure 2: Percentage of good quality questions and of diverse
questions before (rerank) and after applying each filter

Quality
B Rerank O Edit-Dist’

Diversity
W Rerank O Edit-Dist’'

95 |
85
75
65
55
a5
35

95
85
5]
65
55
45
35

1

Q2

Qi1 Q2 Q3 Q1 Q3

Figure 3: Percentage of good quality questions and of diverse
questions at different ranks before (rerank) and after applying
each filter

reranking algorithm, and compared them to the 3 top questions ob-
tained after applying each filter. We assessed whether each question
is of good quality, i.e. whether it is both relevant to the query and
grammatically correct, as per Section 4.2. We also marked each
question as “diverse” if it was not redundant with a higher ranked
question.

Fig. 2 presents the percentage of good quality questions as well
as of diverse questions for a set of 150 evaluated questions (3 ques-
tions x 50 queries). The results confirm that the first-word fil-
ter, while increasing diversity by 59% over the basic reranking (a
growth from 59% to 94%), incurs a significant quality drop of 19%
(from 70% quality to 57%). On the other hand, the more conser-
vative edit-distance filter still substantially improves diversity by
32% (from 59% to 78%) with hardly any quality loss (from 70% to
67%).

We extended the manual evaluation to a larger set of 500 queries,
assessing only the edit-distance filter. The results, summarized in
Fig. 3 show that in the original list, only 45.3% of the questions
in ranks #2 and #3 were marked as diverse, but 81.8% of them
were found to be of good quality. Filtering for diversity incurred
a decrease in quality of 15% (from 82% to 70%). Yet, we believe
this is an acceptable loss given the large 66% increase in diversity
for the second and third questions (from 45% to 75%).

6.3 Automatic Evaluation

Similarly to our evaluation in Section 4, we wanted a comple-
mentary perspective, as provided by a large scale experiment. To
this end, we tested both diversification filters under the same au-
tomatic experimental setup presented in Section 4.3, in which the
algorithms need to rank as high as possible a known (gold-standard)
clicked question for each given query. As before, we used as met-
rics, Recall@1 and Recall@3, which correspond to the percentage
of queries for which the gold standard target question is respec-
tively ranked among the top-1 and top-3 questions.

The left plot of Fig. 4 shows the results obtained by each of the
diversification filters, as well as the results of the baseline and the
reranking components. As mentioned above, the filters have no
effect on the first question, therefore the Recall@1 scores are ex-
actly the same for rerank and both filters. The main Recall@3
results show that, while edit-distance performs a little better than
first-word, both diversification filters fall behind the reranking al-
gorithm, and their performance is similar to that of the baseline. To
better understand this puzzling behavior, we manually inspected
some of these suggestions for several queries. We found that in
many cases when the top suggestion is not exactly the target ques-
tion, it is still very similar to it, and conveys the same question
intent, e.g. “where can I sell used bikes” vs. “where can you sell
used bikes”. On several occasions, the reranking algorithm ranks
these two variations at the top, since they are similar and receive
similar scores. Hence, even if the target question is not the high-
est ranked question, it is likely to be found in the top 3 suggestions.
However, the diversification filters are designed to keep only one of
these variations. If they decided to keep the “wrong” variation (not
the one marked as target), they will be penalized in our evaluation,
even if, in practice, a user would not be bothered by small, intent
preserving variations.

Following this observation, we conducted a revised, more le-
nient, automatic experiment that avoids this pitfall. In this setup,
a suggested question is considered as matching the target question
if it is “similar enough” to the target question (as opposed to per-
fectly identical in the previous setup). To this end, we use the edit-
distance similarity measure introduced in Section 5.2. As before,
we evaluated both diversification filters as well as the reranking and
baseline algorithms.

The results of this revised setup are summarized in the right hand
side plot of Fig. 4. First, the performance of both the baseline and
the reranking algorithms substantially improved as compared to the
perfect match setup. Indeed, we see, for Recall@1, an increase of
48% for the baseline and of 37% for the reranking algorithm. For
Recall@3, we observe an increase of 26% for the baseline and 16%
for the reranking algorithm. Still, the reranking algorithm main-
tains its superior recall as compared to the baseline, which suggests
the improvements are not only due to better matching of small vari-
ations. Furthermore, the diversification filters present an impressive
boost in performance of 38% for Recall@3 compared to the exact
match evaluation. Under this more lenient setup, diversifying the
suggestion list via the edit-distance filters shows better results than
the reranking algorithm with an increase of 4%. These results indi-
cate that both the baseline and reranking algorithms promote vari-
ations of the same question at the top of the suggestion list. While
usually the suggestion matches the need of the user (Recall@3 of
85% for the reranking algorithm), adding diversity manages to ex-
pose other questions that are sometimes closer to the original intent.

We thus confirm that introducing diversification in the sugges-
tions, using a filter like our edit-distance filter, is beneficial. It in-
curs only a small decreases in relevance in the strict manual and
automatic evaluations, but increases relevance in a more lenient ex-
perimental setup.

7. RELATED WORK

The idea of automatically generating natural language questions
from queries was first suggested by Lin [14] for two main use
cases: improving ranking of search results in existing CQA sites,
and offering richer query expansion. Lin further suggested utiliz-
ing the existing large amounts of questions in CQA sites along with
query logs in order to build a system for question generation given
a query, yet without proposing an algorithm for this task. Addi-

399

Recall of target question Recall of target intent
W Baseline O Rerank M Baseline O Rerank
1 s - = 1
0g LM First-Word Edit-Dist’ 0.0 | BFirst-Word Edit-Dist'
0.8 0.8 —
0.7] 0.7 —
0.6 - 0.6 - —
0.5 0.5 = ==
0.4 7; 0.4 —
03 +) 0.3 -
Recall@1 Recall@3 Recall@1 Recall@3

Figure 4: Comparison of the baseline, reranking and diver-
sification methods. Left: Recall of the exact target question.
Right: Estimated recall of the target question’s intent.

tionally, Lin suggested an automatic evaluation approach based on
gold-standard mapping of queries to clicked questions, in the spirit
of the automatic evaluation method we applied here.

Zhao et al. [24] and Zheng et al. [25] took this idea further.
They developed methods for automatically generating questions
from queries. Both studies follow the same general template-based
approach. Zheng et al. extract templates from existing CQA ques-
tions, while Zhao et al. rely on query/question pairs, in which the
question is a clicked search result for the query. Then, for a given
query, these templates are instantiated and ranked in order to pick
the most relevant generated questions for the query. As discussed
in the paper, we adopted this approach as well. Our work differs
from the above in the candidate ranking method as well as our us-
age scenario, which imposes different constraints.

Zhao et al. [24] is the closest work to ours, and we indeed used
their generation algorithm as a starting point for improvement, as
well as our baseline for comparison. In their work, Zhao et al. pro-
pose several use cases for automatically generating questions, in-
cluding improving search in existing CQA archives, automatically
posting questions to a CQA site and enabling deeper analysis of
query intent. Yet, in none of the proposed scenarios, the questions
are intended to be shown to searchers. Our preferred use case pre-
cisely consists of serving a choice of suggested synthetic questions,
which can then be submitted in one click by the searcher. This sce-
nario imposes additional constraints on the quality of the proposed
question, namely higher grammatical correctness, as well as on the
diversity of questions, which was completely ignored in [24].

Zheng et al. [25] also use question templates, yet they only ex-
tract single-variable templates. This approach relies heavily on
existing questions, since new questions can be produced only by
replacing a single word in an existing question. It thus imposes
a strong limitation on the ability to generate a rich set of ques-
tions for new unseen queries, specifically for long tail queries that
are the typical candidates for question suggestion. On the other
hand, when replacing only a single content word, grammatically
correct questions are easier to generate. Therefore, no special ef-
fort was made to validate correctness on top of a basic language
model. In contrast, our extracted templates count three to five vari-
able slots, which enables far more flexibility in the generation of
synthetic questions, but increases the difficulty of achieving cor-
rectness. Zheng et al. describe a use case closer to ours, in which
a user supplies a few keywords (a query) and is then offered a
list of suggested questions. The similarity stops here though, as
Zheng et al. envision an interactive dialog, in which at each step
the system suggests additional refinement terms that the user may
select from. The process is repeated until the user is satisfied with
a specific question. While the set of refinement terms is intended
to represent a diverse set of user intents, the list of suggested ques-

tions is not explicitly diversified. In contrast, in our use case, the
system is allowed to serve a single short question list, and thus di-
versification considerations have to be incorporated already in this
initial (and final) list.

Besides question generation from queries, other question gen-
eration tasks were addressed in the literature. The main difference
between these tasks lies in the type of textual input from which nat-
ural language questions are generated, [22]. These input types in-
clude sentences [20, 11, 3], paragraphs [17], and discourse [1, 19],
with a variety of applications in mind, such as tutoring, question
answering or dialog systems. In contrast to our task of expanding a
few query terms into full questions, most of these efforts focus on
converting assertions identified in the text into question forms. In
addition, due to the differences in goals, none of this efforts consid-
ered diversity in a proposed question list, which is one of our key
contributions.

8. CONCLUSION

As of today, there is no easy way for searchers, whose needs
are not satisfied by Web search engines, to become askers in Com-
munity Question Answering sites. We propose here to facilitate
such a transition by suggesting to searchers a short list of automati-
cally generated synthetic questions, some of which may have never
been asked before, which aim to represent the question intent of the
query. Ideally, one of these questions would then be posted by the
user in one click, or after minimal editing, on a CQA site. While
a few previous studies have explored the automatic generation of
questions from queries, we believe that they did not pay enough at-
tention to the correctness of the generated questions. We argue here
that this is a prerequisite, if the questions are eventually shown to
users, as in our use case.

We introduce a new model for synthetic question generation that
pays special attention to the eventual grammatical correctness and
appeal of the suggestion list. We use a learning-to-rank framework
that leverages millions of features covering both relevance and cor-
rectness aspects, which are induced from various syntactic anal-
yses of the candidate questions. We start by extracting question
templates from millions of automatically generated query/question
pairs. For each input query, these templates are instantiated with the
query terms, and ranked in a two step procedure. Before display-
ing the ranked list to users though, we increase the overall appeal
of the suggested list by introducing a novel diversification com-
ponent. This component filters out “redundant” questions, namely
variations of questions representing the same intent, via the auto-
matic detection and utilization of context-sensitive interchangeable
terms.

We conducted several manual evaluations, as well as automated
large-scale evaluations, that showed that we improve both the rele-
vance and the grammatical correctness of the generated questions,
as compared to prior work. More specifically, we demonstrated
that the introduction of diversification can even slightly improve
relevance, as it increases recall by offering a choice of possible
intents to the user. Encouraged by the positive results of these ex-
tensive offline experiments, we intend, as our next step, to develop
a few use cases and associated treatments, and then investigate the
reactions of users in an extensive online experiment.

9. REFERENCES

[1] M. Agarwal, R. Shah, and P. Mannem. Automatic question
generation using discourse cues. In Proceedings of the 6th
Workshop on Innovative Use of NLP for Building
Educational Applications, IUNLPBEA 11, pages 1-9,

400

(2]

3

—_—

[4

—

(5

—_—

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics.

E. Agichtein, E. Brill, and S. Dumais. Improving web search
ranking by incorporating user behavior information. In
Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information
retrieval, SIGIR *06, pages 19-26, New York, NY, USA,
2006. ACM.

H. Ali, Y. Chali, and S. Hasan. Automation of question
generation from sentences. Boyer & Piwek (2010), pages
58-67, 2010.

R. Boim, T. Milo, and S. Novgorodov. Diversification and
refinement in collaborative filtering recommender. In
Proceedings of the 20th ACM international conference on
Information and knowledge management, CIKM ’11, pages
739-744, New York, NY, USA, 2011. ACM.

J. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR *98, pages
335-336, New York, NY, USA, 1998. ACM.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. Online passive-aggressive algorithms. JMLR,
7:551-585, 2006.

K. Crammer, R. McDonald, and F. Pereira. Scalable
large-margin online learning for structured classification. In
NIPS Workshop on Learning With Structured Outputs, 2005.
M.-C. de Marneffe, B. MacCartney, and C. D. Manning.
Generating typed dependency parses from phrase structure
trees. In LREC, 2006.

M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Rec., 39(1):41-47, Sept. 2010.

H. D. III, K. Knight, I. Langkilde-geary, D. Marcu, and

K. Yamada. The importance of lexicalized syntax models for
natural language generation tasks. In In Proceedings of the
2002 International Conference on Natural Language
Generation (INLG - 2002, pages 9-16, 2002.

S. Kalady, A. Elikkottil, and R. Das. Natural language
question generation using syntax and keywords. In
Proceedings of QG2010: The Third Workshop on Question
Generation, pages 1-10, 2010.

T. Lau and E. Horvitz. Patterns of search: analyzing and
modeling web query refinement. In Proceedings of the
seventh international conference on User modeling, UM *99,
pages 119-128, Secaucus, NJ, USA, 1999. Springer-Verlag
New York, Inc.

J. Lee and S. Seneff. Automatic grammar correction for
second-language learners. In INTERSPEECH. ISCA, 2006.
C. Lin. Automatic question generation from queries. In
Workshop on the Question Generation Shared Task, 2008.
Q. Liu, E. Agichtein, G. Dror, E. Gabrilovich, Y. Maarek,
D. Pelleg, and I. Szpektor. Predicting web searcher
satisfaction with existing community-based answers. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information
Retrieval, SIGIR ’11, pages 415424, New York, NY, USA,
2011. ACM.

Q. Liu, E. Agichtein, G. Dror, Y. Maarek, and 1. Szpektor.
When web search fails, searchers become askers:
understanding the transition. In Proceedings of the 35th
international ACM SIGIR conference on Research and

(17]

(18]

[19]

[20]

[21]

[22]

development in information retrieval, SIGIR *12, pages
801-810, New York, NY, USA, 2012. ACM.

P. Mannem, R. Prasad, and A. Joshi. Question generation
from paragraphs at upenn: Qgstec system description. In
Proceedings of QG2010: The Third Workshop on Question
Generation, pages 84-91, 2010.

R. McDonald, K. Crammer, and F. Pereira. Online
large-margin training of dependency parsers. In Proceedings
of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 91-98. Association for
Computational Linguistics, 2005.

A. Olney, A. Graesser, and N. Person. Question generation
from concept maps. Dialogue & Discourse, 3(2):75-99,
2012.

S. Pal, T. Mondal, P. Pakray, D. Das, and S. Bandyopadhyay.
Qgstec system description—juqgg: A rule based approach.
Boyer & Piwek (2010), pages 76-79, 2010.

A. Pauls and D. Klein. Faster and smaller N-gram language
models. In D. Lin, Y. Matsumoto, and R. Mihalcea, editors,
Proceedings of the 49th Annual Meeting of the Association of
Computational Linguistics, pages 258-267. The Association
for Computer Linguistics, 2011.

V. Rus, B. Wyse, P. Piwek, M. C. Lintean, S. Stoyanchey,
and C. Moldovan. The first question generation shared task
evaluation challenge. In J. D. Kelleher, B. M. Namee,

I. van der Sluis, A. Belz, A. Gatt, and A. Koller, editors,
INLG 2010 - Proceedings of the Sixth International Natural
Language Generation Conference. The Association for
Computer Linguistics, 2010.

401

(23]

[24]

[25]

[26]

C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia.
Recommendation diversification using explanations. In
Proceedings of the 2009 IEEE International Conference on
Data Engineering, ICDE *09, pages 1299-1302,
Washington, DC, USA, 2009. IEEE Computer Society.

S. Zhao, H. Wang, C. Li, T. Liu, and Y. Guan. Automatically
generating questions from queries for community-based
question answering. In Proceedings of 5th International
Joint Conference on Natural Language Processing, pages
929-937, Chiang Mai, Thailand, November 2011. Asian
Federation of Natural Language Processing.

Z.Zheng, X. Si, E. Chang, and X. Zhu. K2q: Generating
natural language questions from keywords with user
refinements. In Proceedings of 5th International Joint
Conference on Natural Language Processing, pages
947-955, Chiang Mai, Thailand, November 2011. Asian
Federation of Natural Language Processing.

C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In Proceedings of the 14th international
conference on World Wide Web, WWW °05, pages 22-32,
New York, NY, USA, 2005. ACM.

