
Optimal Hashing Schemes for Entity Matching

Nilesh Dalvi
Facebook

1601 Willow Rd
Menlo Park, CA, USA

nileshdalvi@gmail.com

Vibhor Rastogi
Google

1600 Amphitheatre Pkwy
Mountain View, CA, USA

vibhor.rastogi@gmail.com

Anirban Dasgupta
Yahoo

701 1st Ave
Sunnyvale, CA, USA

anirban.dasgupta@gmail.com

Anish Das Sarma
Google

1600 Amphitheatre Pkwy
Mountain View, CA, USA

anish.dassarma@gmail.com

Tamás Sarlós
Google

1600 Amphitheatre Pkwy
Mountain View, CA, USA

stamas@gmail.com

ABSTRACT
In this paper, we consider the problem of devising blocking schemes
for entity matching. There is a lot of work on blocking techniques
for supporting various kinds of predicates, e.g. exact matches,
fuzzy string-similarity matches, and spatial matches. However,
given a complex entity matching function in the form of a Boolean
expression over several such predicates, we show that it is an im-
portant and non-trivial problem to combine the individual blocking
techniques into an efficient blocking scheme for the entity match-
ing function, a problem that has not been studied previously.

In this paper, we make fundamental contributions to this prob-
lem. We consider an abstraction for modeling complex entity match-
ing functions as well as blocking schemes. We present several re-
sults of theoretical and practical interest for the problem. We show
that in general, the problem of computing the optimal blocking
strategy is NP-hard in the size of the DNF formula describing the
matching function. We also present several algorithms for comput-
ing the exact optimal strategies (with exponential complexity, but
often feasible in practice) as well as fast approximation algorithms.
We experimentally demonstrate over commercially used rule-based
matching systems over real datasets at Yahoo!, as well as synthetic
datasets, that our blocking strategies can be an order of magnitude
faster than the baseline methods, and our algorithms can efficiently
find good blocking strategies.

Categories and Subject Descriptors
H.2 [Database Management]: Physical Design; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance mea-
sures

General Terms
Algorithms, Theory, Performance

Keywords
Entity Matching, Hashing, Blocking

1. INTRODUCTION
Entity Matching [27, 13, 6, 28, 24, 31], also referred to as dedu-

plication, record linkage or co-reference resolution, is the ubiqui-

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

tous problem of determining whether two entities in a dataset refer
to the same real-world object. In order to avoid the quadratic com-
plexity of all-pairs comparison, techniques are used that rely on
blocking [29, 23, 14, 1, 20, 8]. Blocking methods try to group en-
tities together so that matching entities fall under the same group.
Thus, one needs to only look at pairs of entities within each block,
rather than all pairs of entities.

Blocking techniques have been devised for a suite of matching
predicates that range from simple value-based hashing for exact
matches, to n-gram based indexes for fuzzy joins [14, 1, 24] to
space-partitioning techniques for spatial joins [20]. However, given
a complex matching function involving multiple predicates, it is
unclear what’s the best blocking strategy. We illustrate with an
example.

EXAMPLE 1.1. Consider a simple instance of the entity match-
ing problem for restaurants entities. Let us assume that en-
tities have four attributes, name, address, phone and cuisine. Let
n, a, p and c denote exact matches on name, address, phone and
cuisine attributes respectively. Consider the following two entity
matching systems:

EM1 : (n ∧ a) ∨ (a ∧ p) ∨ (a ∧ c)
EM2 : (n ∧ c) ∨ (a ∧ c)

The first entity matcher, EM1, says that two entities are same if
they have same name and address, or same address and phone
(since a restaurant might have multiple names), or same address
and cuisine1. Consider blocking strategies for efficiently running
this entity matcher. One possible strategy is to create three hash
functions : one that hashes name and address, i.e. which groups
together all entities having same name and address, second that
hashes name and phone and third that hashes address and cuisine.
Together, they cover all pairs of entities that EM1 matches. How-
ever, pairs that match on all the attributes will appear three times
together in the three functions. Another strategy is to create a single
hash function on address. Since EM1 implies a match on address,
this scheme will also not miss any pairs. Further, each pair only ap-
pears once, though we might get some additional pairs compared to
the three hash functions (i.e., pairs that match on address but differ

1This example is only for illustration. A real entity matching sys-
tem on this domain will use fuzzy matches for names and ad-
dresses, and much more complex set of rules, and our techniques
are designed for these more realistic scenarios.

295

(name ∧ contact ∧ street ∧ street-# ∧ state ∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ city ∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ city ∧ zip)∨
(name ∧ street∧ street-# ∧ city ∧ state ∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ state ∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ distance ∧ state ∧ zip)∨
(name ∧ contact ∧ street-# ∧ city ∧ state ∧ zip)∨
(name ∧contact ∧ street ∧ street-# ∧ state ∧ status∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ city ∧ status∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ distance ∧ state∧ zip)∨
(name ∧ contact ∧ street ∧ street-# ∧ city)

Table 1: De-duping for Yahoo! Local: Each line is a clause in
the matcher, with each attribute denoting a fuzzy string match
requirement. An attribute appears in bold for fuzzy matches
with high confidence, and in plain for medium confidence.

(name ∧ street-#)∨
(contact ∧ zip)

Table 2: Optimal Hashing Strategy: (contact∧zip) appears in
all but two clauses, and (name ∧ sureet-#) cover the remaining
two. Moreover both hash clauses are highly selective, and hence
this hashing strategy can be shown to compare least number of
pairs among all covering hash functions. (Our algorithm find
the same strategy).

in all other attributes). A cost analysis might reveal that number of
additional pairs is small (since address almost uniquely identifies
restaurants) and hence, the first strategy is 3 times more expensive
than the second in terms of the number of pairs compared.

For the second entity matcher, EM2, again we have a choice be-
tween two strategies : create two hashes, on name and cuisine, and
address and cuisine, or a single hash function on cuisine. However,
in this case, the single hash function strategy can have arbitrarily
bad precision than the first strategy, as several non-matching enti-
ties will have the same cuisine. 2

In general, there can be several possible blocking strategies for a
given entity matching problem. The above example shows that the
choice of a given strategy can have a huge effect in the efficiency
of the matching, and requires a careful cost analysis. A real entity
matching system is much more complex than the toy example we
described, often with a large number of rules over several attributes,
including fuzzy matches, spatial matches and so on. For example,
Table 1 describes the rules used in the production system at Yahoo!
for de-duplicating local businesses, and Table 2 describes a hash-
ing strategy composed of two hash functions that covers all pairs
matched by the rules. The hashing strategy is also optimal in terms
of the total number of pairs compared.

In this paper, we consider the following problem : given a com-
plex entity matching system, how do we choose a “good” blocking
strategy in a principled way? While there has been a lot of re-
search on devising good hashing functions for specific predicates
like fuzzy matching, the problem of choosing a blocking strategy
has been relatively unaddressed. To quote William Winkler [32],
“most sets of blocking criteria are found by trial-and-error based
on experience”. There have been works on learning blocking func-
tions [30, 7, 16, 25]. The difference between their problem setting
and ours is that we take an entity matching function as input, and
they take a set of labeled pairs. There are two shortcomings of
these approaches. First, they do not have a rigorous formulation
of the cost of a blocking scheme, and use heuristics like reduction

ration [25]. Second, and more fundamentally, it is a hard problem
to generate good training data for these algorithms, as a randomly
chosen pairs of entities result in a non-match, and using heuris-
tics to generate matching pairs introduces a bias and itself requires
some blocking techniques. Generating training data for automat-
ically learning entity matching rules is itself a subject of ongoing
research [2]. In contract, we separate out the problem of obtaining
entity matching rules, either through training data or human ex-
perts, from the problem of generating efficient blocking schemes.

We make several fundamental contributions to this problem. First,
we define an abstraction to model entity matching as well as block-
ing strategies which allows us to analyze their cost. We define
an entity matcher as a Boolean expression over predicates on at-
tributes, which we represent as a DNF formula. Our abstraction
treats a predicate as a generic blackbox along with a supporting
blocking function, which allows us to support various kinds of
predicates like exact matches, fuzzy matches and spatial matches.
Note that our objective is not to invent a new blocking technique,
but to combine the blocking techniques for individual predicates to
obtain an optimal blocking strategy for a complex entity matching
function.

We present several results of theoretical and practical interest for
the problem. We show that in general, the problem of computing
the optimal blocking strategy is NP-hard in the size of the DNF for-
mula. We also present several algorithms for computing the exact
optimal strategies (with exponential complexity, but often feasible
in practice) as well as fast approximation algorithms. We experi-
mentally show, using both real datasets and entity matching rules
used in our production system, as well as synthetic datasets, that
our blocking strategies can be an order of magnitude faster than
the baseline strategies, and our algorithms can efficiently find these
blocking strategies.

Organization In Section 2, we formally introduce our problem set-
ting. In Section 3, we consider the problem for exact match predi-
cates, show hardness of the problem, and present several exact and
approximate algorithms. In Section 4 we show how to use our tech-
niques to support arbitrary predicates, as well as other extensions.
In Section 5, we present the results of the experimental evaluation
of our algorithms. In Section 6, we present related work, and we
conclude in Section 7.

2. PROBLEM DEFINITION
Let E = {e1, e2, · · · } be a set of entities. An entity matching

function is a Boolean predicate on pairs of entities in E, given by
the functionmatch : E×E → {t,f}. A blocking function is any
function h : E → 22

E

that maps entities to sets of sets of entities.
We call each set of entities a bucket of the blocking function. Our
objective is to construct a set of blocking functions, which we call
blocking scheme, such that each pair of entities that have a match
lie in the same bucket of some blocking function. We define this
notion formally below:

DEFINITION 2.1 (COVERING). Let H = {h1, h2, · · · } be a
set of blocking functions over set E of entities. We say that H
covers a match function match if

match(e1, e2)⇒ ∃h ∈ H.∃B ∈ h(E) s.t.e1, e2 ∈ B

2

We define the total cost of entity matching using a given block-
ing scheme H as the total number of pairs in all the buckets in all

296

blocking functions in H . In other words, cost of a blocking func-
tion h is defined as

cost(h) =
∑
B∈h

|B|2

and cost of a blocking scheme H is defined as

cost(H) =
∑
h∈H

cost(h)

Intuitively, cost(H) captures the number of pairwise comparisons
that need to be performed given the blocking schema. Note that
we can refine our cost model slightly by counting the number of
unordered pairs in a bucket, which is |B|(|B| − 1)/2, rather than
|B|2. However, this refinement neither affects the theoretical com-
plexity of the problem, nor makes any practical difference in the
performance of our algorithms. Hence, for simplicity, we take the
cost of a bucket as the square of its size.

Our objective is to construct, given an entity matching function,
a blocking scheme H with minimum cost that covers it.

The abstract formulation above enables us to analyze blocking
schemes for any concrete problem setting. In this paper, we as-
sume that the match function is given by a Boolean formula, in
disjunctive normal formal, over predicates on attributes. We define
this formally in the next section.

2.1 The DNF Blocking Problem
We assume entities have a set of attributes A = {A1, · · · , Ak}.

Given an entity e and attribute A, we use e.A to denote the value
of the attribute for the entity. Let match(A) denote a Boolean
predicate on pairs of entities that denotes a match on the attribute
A according to some user-defined function, e.g. an exact match, a
fuzzy match based on string similarity, a match based on distance,
etc. We assume that the entity matching function is given by a
predicate φ which is a DNF formula over such predicates.

We start in Section 3 by assuming that match(A) always de-
notes exact match. This assumption lets us simplify the presen-
tation of our technical results and algorithms. Our framework is
general, and can incorporate arbitrary predicates. We present the
general setting in Sec. 4.

When clear from the context, we simply use A to denote the
predicate match(A). As an example, given entities with attributes
{n,a,p,c}, corresponding to name, address, phone and cuisine,
an example of a DNF formula is:

(n ∧ p) ∨ (n ∧ a) ∨ (p ∧ a ∧ c), (1)

which states that two entities match if they have the same name
and phone, or same name and address, or same phone, address and
cuisine.

Since we are looking at exact matches, we will consider a family
of blocking functions that partition entities according to the values
of a set of attributes. Given S ⊆ A, let hash(S) denote the block-
ing function such that two entities are in the same bucket if they
agree on all attributes in S. Thus, the buckets partition the set of
entities. We call any blocking function with this property a hash
function. When clear from context, we will simply use S to denote
the hash function hash(S). Thus, we will represent a blocking
scheme H by a set of subsets of A. The DNF hashing problem
with exact predicates can be formulated as follows.

PROBLEM 2.1 (DNFHASHING). Given a match function ex-
pressed as a DNF formula φ, construct a blocking scheme H ∈
22

A
with minimum cost that cover φ.

3. BLOCKING WITH EXACT PREDICATES
In this section, we analyze the complexity of finding the optimal

blocking schemes for DNF matching functions, and give exact and
approximate algorithms for the problems.

First, we start with a syntactic necessary and sufficient condition
for a blocking scheme to cover a DNF formula. Let φ be a DNF
formula with clauses C = {c1, · · · , ct}, i.e.

φ =
∨
c∈C

∧
A∈c

A (2)

LEMMA 3.1. Let H ∈ 22
A

be a blocking scheme. Then, H
covers φ for any set of entities E iff

∀c ∈ C∃h ∈ H s.t.h ⊆ c (3)

PROOF. Suppose Eq. (3) holds. Consider any e1, e2 ∈ E such
that φ(e1, e2) is true. Then, there must be a clause c such that c is
true, i.e., ∀A ∈ c : e1.A = e2.A. By Eq. (3), there is a hash h
such that h ⊆ c. For this hash, h(e1) = h(e2). Thus, H covers φ.

Conversely, suppose Eq. 3 is false. Then, there is a clause c such
that ∀h.h 6⊆ c. Construct two tuples, e1 and e2, such that they agree
on all attributes in c and disagree on every other attribute. Then,
φ(e1, e2) is true because clause c is satisfied. However, h(e1) 6=
h(e2) for any h. Thus, H does not cover φ.

As an example, given the DNF expression in Eq. (1). Any of the
following blocking schemes cover it:

H1 = {{n,p}, {n,a}, {p,a,c}
H2 = {{n}, {p}}
H3 = {{n,p}, {a}}

Next, we look at the problem of computing the blocking scheme
with optimal cost.

3.1 Independent Attributes Case
We start from the case when all the attribute values come from

independent distribution. We show that, even for this special case,
the problem of computing the optimal blocking scheme is NP-hard.
First, we start from a result on the cost of hash functions when the
attributes are independent, and then show the hardness.

Suppose we have a set of entities E of size n, and the values for
each attribute come from an independent probability distribution.
For A ∈ A, let PA denote the probability that two values drawn
from the distribution of A collide. Similarly, for S ⊆ A, let PS
denote the probability that two tuples have the same value for all
attributes in S. Since, the attributes are independent,

PS =
∏
A∈S

PA (4)

Given a set S ⊂ A, recall that cost(S) is the cost of hashing on
attributes S, i.e., number of entity pairs that match on all attributes
in the set S. Define α(S) = cost(S)/n2.

LEMMA 3.2. Given S ⊆ A, α(S) =
∏
A∈S α(A).

PROOF. We have cost(S) =
∑
e,f∈E PS = n2PS . Thus, α(S)

is precisely PS , and the lemma follows from Eq. (4).

Thus, we can cast the DNFHASHING problem for independent
attributes as follows: given a set A, a function α from A to real
numbers, and a DNF φ overA, findH that covers φ and minimizes

α(H) =
∑
h∈H

∏
A∈h

α(A)

297

Note that α and cost only differ by a scaling factor of n2, and
thus, minimizing cost(H) is equivalent to minimizing α(H).

Complexity

Now, we will show the hardness of computing the optimal block-
ing scheme. We further restrict the DNFHASHING problem to 2-
DNFs, i.e. when every clause in φ has only two attributes. In this
case, we can represent φ using a graph G = (V,E), with V = A
and E consisting of the clauses. Also, we restrict the function α to
be a constant for all vertices, which we simply denote by a.

Given such a DNFHASHING instance, the optimal solution will
also have hash functions of size at most 2, since larger hash func-
tions cannot cover any clause. Let V1 denote the set of hash func-
tions in H consisting of a single attribute and E1 denote the hash
functions with two attributes.

The α of this blocking scheme is

α(H) = a|V1|+ a2|E1|

Further, H covers φ iff (1) H is empty, or (2) V1 forms a vertex
cover for the graph G − E1. The α of empty solution is 1 by
definition.

Now, with this characterization, we will use a reduction from
the problem of finding the smallest vertex cover to this problem.
Let G′ = (V ′, E′) be a graph for the vertex cover problem with
|V ′| = t.

We construct another graph G as follows. Let Mt be the empty
graph on t vertices. Let G contain one copy of G′, one copy of Mt

and all possible cross edges between their vertices. Thus, G has
2t vertices. Let α = 1/(t + 0.1). Consider the DNFHASHING
problem with this G and α. Consider the optimal solution H =
V1 ∪ E1.

LEMMA 3.3. H is non-empty.

PROOF. If H is empty, its α is 1. On the other hand, observe
that H consisting of all the vertices of G′ is a valid solution, since
vertices of G′ form a vertex cover of G. The α of this solution
is t.a = t/(t + 0.1) < 1. Hence, empty set is not the optimal
solution.

LEMMA 3.4. The set of vertices contained in H form precisely
the smallest vertex cover of G′.

PROOF. We know that optimal H is non-empty. Let H = V1 ∪
E1, where V1 is a set of vertices and E1 is a set of edges.

First, we will show thatMt∩V1 = ∅. If not, consider any vertex
v ∈ Mt ∩ V1. Construct a new solution H ′ by removing v from
H and adding all the t edges adjacent to v, which are not already
contained inH , toH . We see thatH ′ is still a valid solution. Also,
α(H ′) − α(H) ≤ −a + a2t = a(−1 + t/(t + 0.1)) < 0. This
contradicts the optimality of H .

Next, we will show that if v1, v2 ∈ G′ are two vertices which are
adjacent, they cannot both be absent from H . If they are, then add
both of them to H . This lets us remove (2t+1) edges from H : 2t
edges between v1, v2 andMt, and 1 edge between them. LetH ′ be
the resulting solution. Then, α(H ′)−α(H) = 2a− (2t+1)a2 =
a(2−(2t+1)/(t+0.1)) < 0. This again contradicts the optimality
of H .

Thus, the set of vertices inH form a vertex cover ofG′. Further,
H does not contain any edge in G′, since they are covered by the
vertices in H . However, for each vertex in G′ − H , H contains t
edges that go across toMt. Thus, ifH contains β vertices, α(H) =
aβ + a2(t − β). This is minimized when t is minimized, i.e., the
set of vertices in H form the smallest vertex cover of G′. This

Algorithm 1 EXACT DNF HASHING (Hdp)
Require: φ: entity matching function. C: set of clauses in φ.
1: if DP[φ] 6= null then
2: return DP[φ]
3: end if
4: if C = {} then
5: return {}
6: end if
7:

smin = argmin
s6=∅

(cost(h(s)) + cost(DP(φ(s))))

8: DP[φ] = {h(smin)} ∪ DP(φ(smin))
9: return DP[φ]

Algorithm 2 GREEDY MERGE (Hmerge)
Require: φ: entity matching function. C: set of clauses in φ.
1: H ← C
2: start
3:

(h, h′) = arg max
h1,h

′
1∈H

cost(h1) + cost(h′1)− cost(h1 ∩ h′1)

4: s(h, h′) = cost(h) + cost(h′)− cost(h ∩ h′)
5: if s(h, h′) > 0 then
6: H ← H ∩ {h ∩ h′} \ {h, h′}
7: end if
8: done s(h, h′) > 0
9: return H

completes the reduction from the vertex cover problem, and proves
the hardness of DNFHASHING.

Derandomizing the hardness proof : Note that the hardness
proof presented above works with the expected costs of hash func-
tions for attributes generated randomly from independent distri-
butions. However, in the strictest sense, we need to show that
DNFHASHING problem is hard for a specific instance of entity set
E. We cannot simply construct an entity set for which the exact
cost of a hash function equals the expected cost of the function un-
der independent distribution: such a construction will be exponen-
tial in the number of attributes, since it will need to generate all pos-
sible combinations of attribute values. However, we observe that
in the proof, we only require pairwise independence of attributes,
since we never consider hash functions with more than 2 attributes.
Thus, we can use the derandomization techniques [22] to construct
a polynomially sized database where attributes are pairwise inde-
pendent. We omit the technical details.

3.2 General Case
As we showed in the previous section, computing optimal block-

ing scheme is NP-hard, even when the attributes are independent.
Here, we look at approximation solutions to the problem, for the
general case when attributes are not necessarily independent. We
also look at (exponential time) exact solutions, which can be used
in practice when the size of the DNF is small.

Throughout this section, we will assume φ is a DNF formula
with t clauses C = {c1, · · · , ct} as given by Eq. (2). We do not
assume any independence relationship between attributes.

298

3.2.1 Baseline Solution
First, we look at the baseline solution, which we call Hbase,

where we create a hash function corresponding to each clause, i.e.
Hbase = C. It is easy to see that Hbase covers φ.

Also, if Hopt is the blocking scheme with minimal cost, then we
have,

LEMMA 3.5. cost(Hbase) ≤ t · cost(Hopt)

PROOF. Let P ⊆ E ×E be the set of matching pairs according
to the match function φ. Then, |P | ≤ cost(Hopt), since the union
of the pairs in all buckets in all hashes of Hopt contain P .

In Hbase, every pair in every bucket is contained in P , since two
entities are in the same bucket in Hbase if they agree on a com-
plete clause, which means they satisfy φ. Further, each pair in P
can occur at most t times in Hbase, since each of the t hash func-
tions partition E. Thus, cost(Hbase) ≤ t|P |. The two inequalities
together prove the lemma.

It is also easy to see that the bounds in the above lemma are
tight, i.e., one can construct a database when Hbase is indeed t
times worse than Hopt. As the number of clauses in DNF increase,
the gap between the baseline and the optimal can be really large.

3.2.2 Optimal Solution
Now let us look at the problem of constructing the optimal block-

ing scheme. We can reduce this to a weighted set covering problem.
The elements are the clauses, and the sets are the hash functions. A
hash function h covers an element c if h ⊆ C. The weight of each
hash function is its cost. We want to find the set of hash functions
with minimum cost that covers all the clauses.

In this reduction to set cover, the number of elements we have
is t and number of sets we have is 2|A|. To compute the cost of
each hash function, we need one scan of the data. Further, an exact
algorithm for set cover is exponential in the number or sets. Thus,
the total complexity is 22

|A|
+ n2|A|. Note that when t ≤ |A|,

we can modify the algorithm slightly to achieve a running time of
22

t

+ n2t.
The double exponential complexity makes this solution infea-

sible even for very small DNFs. However, we can use dynamic
programming to reduce the double exponential complexity.

Before we describe the algorithm, we need some notations. Given
a subset s ⊆ C, let φ(s) denote the DNF formula obtained from
φ after removing all clauses in s. Also, let h(s) denote the hash
function that hashes all the attributes in the intersection of s, i.e.
h(s) = ∩c∈sc. Using this notation, the pseudocode for the dy-
namic programming algorithm is given in Algorithm. 1.

The correctness of the algorithm is easy to see. Consider any
hash function in the optimal solution, and suppose it covers set of
clauses s 6= ∅. Then, the line 7 in the algorithm considers this s in
its search space and DP(φ(s)) recursively finds the optimal solution
for the remaining clauses.

To compute the running time of the algorithm, notice that line 7
is executed at most once for all possible subsets of C, and for any
given subset, the time taken by line 7 is exponential in the size of
the subset, ignoring the time to compute cost(h(s)). Thus, the total
running time of the algorithm, ignoring the cost computation, is∑

S⊆φ

2|S|

which, by a standard combinatorial argument, can be shown to be
equal to 3t. For costs, we can compute the cost of each hash func-
tion once and reuse it in the algorithm. Since the algorithm iterates

through 2t possible hash functions, and we need to scan the data
once to compute the cost of each hash function, the total time for
cost computation is n2t. Thus, the total complexity of the algo-
rithm is 3t + n2t.

3.2.3 Speeding Up Cost Computation
We can use the sampling algorithm of Bar-Yossef, Kumar and

Sivakumar [4] to speed up the cost computation of hashing func-
tions. Bar-Yossef et al. consider the following problem : given
a sequence of integers X , estimate the k-th frequency moment,
Fk(X) =

∑n
i=1(fi(X))k, where fi(X) is the number of times

i appears in the sequence X . They give a (1 + ε) approximation
algorithm for the problem using O(n1− 1

k) samples.
Given a hash function h, consider a sequenceX(h) consisting of

the values of the hash function on the input database. Observe that
cost(h) is the number of entity pairs in all the buckets of h, which
is the sum of squares of the bucket sizes of h, which is precisely
F2(X(h)). Thus, we can use the sampling algorithm to approxi-
mate the cost of the hash function usingO(

√
n) samples. Thus, we

can reduce the complexity of the exact algorithm toO(3t+2t
√
n).

Alternately, if the entity attributes are independent, we can compute
the costs of individual attribute hashes, and use Lemma 3.2 to com-
pute the cost of any hash function.

For DNFs with small number of clauses, say t ≤ 10, the com-
plexity of the exact solution makes it feasible to use in practice.
However, for more complex entity matching systems, we need faster
algorithms.

3.2.4 Greedy heuristics
In this section, we present two different greedy heuristics for the

DNFHASHING problem. As we described in Sec. 3.2.2, we can
view our problem as a weighted set cover problem. Thus, we can
use the greedy set cover algorithm [9] to find an approximate solu-
tion. In greedy set cover, at each step, we pick the hash function that
maximizes the number of additional clauses covered, divided by its
cost. However, since the number of hash functions themselves is
2t, even the greedy algorithm is exponential in complexity. The
exact complexity is t2t + 2t

√
n, since we look at 2t candidates in

each of t iterations, and we need to compute the cost of all 2t hash
functions. We call this strategy Hgreedy . The greedy set cover re-
sults in a log(t) approximation of the optimal. While the algorithm
is still exponential, it is much faster than the exact algorithm, and
can easily handle DNFs with 20 clauses in practice.

We also present another variant of the greedy algorithm, which
we call Hmerge, which runs in polynomial time, but does not guar-
antee a log(t) approximation. The pseudocode for the algorithm is
given in Algorithm 2. The algorithm starts bottom-up, with a sep-
arate hash function for each clause. At each step, it checks if there
exists two hash functions which, when replaced with a single hash
function, result in cost savings. It picks the best pair at each step,
and repeats until there is no merge which improves the cost.

It is easy to check that the algorithm is sound, i.e. the blocking
scheme it produces covers the set of input clauses. The number
of iterations in line 2 is bound by t, and each iteration considers
t2 possible hash functions. Thus, we consider t3 possible hash
functions, and hence, the running time of the algorithm is t3

√
n.

The running time can be further improved by observing that in each
iteration, after a pair of hashes is merged, we only need to consider
t new pairs of hash functions, namely, the new hash function paired
with all the existing functions. Thus, we can maintain a heap of cost
savings for all pairs of hashes, and at each iteration, add O(t) new
pairs to the heap. Thus, the complexity of the algorithm reduces to
t2
√
n.

299

Algorithm Complexity Approximation
(General setting) (Independent Attributes Setting)

Hbase O(t) O(t) O(t)
Hdp O(3t + 2t

√
n) O(3t + t

√
n) O(1 + ε)

Hgreedy O(t2t + 2t
√
n) O(t2t + t

√
n) O(log t)

Hmerge O(t2
√
n) O(t2 + t

√
n) O(t) (much better in practice)

Figure 1: Summary of the various algorithms

Since the algorithm starts from Hbase and iteratively improves
the solution, it guarantees a O(t) approximation to optimal. In the-
ory, we cannot show a better approximation bound. However, as we
show in the experiments, Hmerge performed really well, and in all
instances, either matched or exceeded the performance of Hgreedy
in terms of the solution cost.

THEOREM 3.6. Fig. 1 lists the time complexity and approxima-
tion guarantees of all the three solutions described above.

4. THE GENERAL FRAMEWORK
In Section 3, we considered blocking schemes for exact match

predicates using simple value-based hashing functions. In this sec-
tion, we present our general framework that can incorporate any ar-
bitrary matching predicate that comes with a corresponding block-
ing function.

We assume that we are given an entity matching function given
by a Boolean expression in DNF form over arbitrary attribute pred-
icates. E.g. consider the expression,

(n ∧ p) ∨ (n ∧ a) ∨ (p ∧ a ∧ c)

where each literate is now an arbitrary predicate. E.g. a may refer
to a fuzzy match on address according to some string-similarity
function, say Jaccard similarity on k-grams.

We assume that each predicate a comes with a blocking function,
h(a). E.g. we may use Prefix Filtering [8] to create buckets for
fuzzy matching on addresses. We say that h(a) covers the predicate
a if for all pairs of entities that match on the predicate, there is a
bucket in h(a) that contain both the entities. We will assume that
our blocking primitives cover the corresponding match predicates 2.

The general DNF blocking problem can be stated as follows:
given a DNF expression φ over a set of predicates A, along with
a blocking function h(a) that covers a for all a ∈ A, device a
blocking scheme with least cost that covers φ.

In order to solve the general DNF blocking problem in our frame-
work, we need to design two components : (1) a method for com-
posing primitive blocking functions to define composite blocking
functions for a set of attributes, and (2) a method for estimating
costs of blocking schemes. We discuss both the problems below.

4.1 Composing Blocking Functions
Recall that a blocking function is a function from E to a set of

buckets of E. Given two blocking functions f and g, we define the

2Some blocking techniques, e.g. LSH [19], do not cover exactly,
but come with probabilistic guarantees. We can still use such tech-
niques in our framework, by running them at a precision that is
tolerable, and then approximating them as deterministic functions
that cover the match predicate. When composing multiple blocking
functions, each having probabilistic guarantees, it is an interesting
problem to analyze the probabilistic guarantees of the composite
function in terms of the individual guarantees, but this problem is
beyond the scope of this work.

Algorithm 3 COMPOSE BLOCKING FUNCTIONS

Require: f, g: blocking functions.
1: apply f and g on E
2: for e ∈ E do
3: Lf ← list of buckets of e in f
4: Lg ← list of buckets of e in g
5: for (lf , lg) ∈ Lf × Lg do
6: add e to bucket (lf , lg)
7: end for
8: end for

composite blocking function, f ⊗ g as follows:

f ⊗ g = {B | ∃B1 ∈ f,B2 ∈ g s.t.B = B1 ∩B2}

The following properties are easy to check.

LEMMA 4.1. ⊗ is associative and commutative. Further, if f
is a blocking function that covers predicate a and g is a blocking
function that covers b, then f ⊗ g covers a ∧ b.

As an example, consider the case when f and g are hash func-
tions over attributes a and b, i.e., they partition the set of entities
based on the values of attributes a and b respectively. Then, f ⊗ g
is simply the joint hash function over the two attributes.

We can compute f ⊗ g efficiently over E by taking f and g as
input black boxes. The pseudocode for this procedure is given in
Algorithm 3. The implementation is optimal in the sense that the
running time of the algorithm is linear in the size of the output,
which is the sum of the sizes of buckets of f ⊗ g.

Given a set of predicates S ⊆ A, define

h(S) = ⊗a∈Sh(a)

When clear from context, we will simply use S to denote the block-
ing function h(S). A blocking scheme H is a set of blocking func-
tion that together cover φ. Thus, H ∈ 22

A
. With this definition,

we see that Lemma 3.1 applies to the general setting. Thus, we can
use all the algorithms that we developed in the previous section in
this general setting.

4.2 Estimating Costs of Blocking Functions
All the algorithms in Section 3 use cost(h) as a subroutine. For

simple hash functions, as we described in Section 3.2.3, we can use
the sampling algorithm of Bar-Yossef et al. to estimate the costs
with

√
n samples. In this section, we give techniques to estimate

the costs of composite blocking functions.
Consider a composite blocking function h = (f1 ⊗ · · · ⊗ fk).

Let X be the sequence whose entries are buckets of h, and the
number of times a bucket appears is exactly equal to the size of the
bucket. We call this the bucket sequence of h. Then, cost(h) is
precisely the second frequency moment of X , f2(X), as defined
in Section 3.2.3. If we can draw uniform random samples from X ,
we can estimate cost(h) using O(

√
N) samples from X , where N

300

Algorithm 4 RANDOM SAMPLE

Require: f1, f2, · · · , fk: blocking functions.
Ensure: random sample from bucket sequence of f1 ⊗ · · · ⊗ fk
1: pick e ∈ E uniformly at random
2: for i ∈ [1, k] do
3: Li ← list of buckets of e in fi
4: with probability 1− |Li|

B(fi)
go to Step 1.

5: li ← a random bucket from Li
6: end for
7: return (l1, · · · , lk)

is the length of X , i.e. the sum of the sizes of buckets of h. We use
a simple trick to draw random samples from X without explicitly
constructing X . The pseudocode for this is given in Algorithm 4.
Given a blocking function f , let B(f) denote the maximum num-
ber of buckets an entity can map under by f . Algorithm 4 picks
a random entity. It accepts it with probability proportional to the
number of buckets it belongs to under each blocking function, and
rejects it otherwise. If accepted, it outputs a random bucket from
each individual blocking fuction.

LEMMA 4.2. Algorithm 4 outputs a random bucket of f1⊗· · ·⊗
fk with probability proportional to the size of the bucket.

Thus, we can use the sampling algorithm of Bar-Yossef et al. In
line 3, we need to compute the list of buckets for a given entity for a
given primitive blocking function. Several blocking functions lets
us perform this computation without actually running the blocking
function on the entire data. For instance, Arasu et al. [1] show that
a wide range of blocking functions for fuzzy string matching are
based on signatures : these techniques compute multiple signatures
for each entity and create a bucket for each signature. Thus, for
these range of blocking functions, we can pick a random signature
from the set of these signatures in line 5 of Algorithm 4. Further,
these functions map each entity to same number of buckets, which
eliminates Step 4 of the algorithm. This allows us to draw a random
sample in constant time independent of the size of the entity set.
Also note that if some of the blocking functions that we are using
do not let us compute the set of buckets for entities directly, we can
first run those blocking functions on the data once. Subsequently,
for any composite function consisting of any subset of blocking
function, we can compute the cost efficiently using Algorithm 4.

4.3 Going beyond DNF Matching Functions
Our choice of modeling an entity matching function using a Boolean

formula in DNF form was primarily motivated from a rule-based
setting, where human experts typically write multiple rules for match-
ing. However, given other forms of matching functions, we can of-
ten convert them into a DNF expression approximately. We give
here examples of two non-DNF matching functions, those based
on Markov Logic Network [31] and Random Forest Classifier [18].
For the latter, the method presented in this section is generic, and
can potentially be used against any blackbox pairwise entity matcher.

Markov Logic Network Markov Logic Network (MLN) is a
state-of-the-art entity matching framework proposed by Singla et
al. [31]. It is a collective entity matcher, where pair-wise deci-
sions are made jointly, rather than independently. In MLN, one
also specifies a set of rules, but the rules are not hard constraints,
and are given weights by the system. The system tries to find a joint
assignment of matches that violates the least amount of rules. The
rules in MLNs use two kinds of predicates, extensional predicates,
which are based on attribute-matches and can be computed directly

from the data, and intensional predicates, which the system infers
based on the weights of the rules. To use a MLN matcher in our
framework, we can simply take the restriction of rules to the exten-
sional part. For instance, a simple rule system might say:

R1 : Sim(x.n, y.n) ∧ Sim(x.p, y.p)⇒ Match(x, y)

R2 : Sim(x.n, y.n) ∧ Sim(x.a, y.a)⇒ Match(x, y)

R3 : Match(x, y) ∧Match(y, z)⇒ Match(x, z)

where Sim is an extensional predicate involving string similarity
and Match is an intensional predicate. We can use the first two
rules (in general, all rules that have extensional predicates in the
left side) to generate match pairs, and then feed it to MLN to infer
the extensional predicates. The rules with extensional predicates
can be handled very naturally in our framework.

Random Forest Classifier In our production entity matching
system, we sometimes use a Random Forest Classifier (RFC) [18]
for entity matching. We describe here a technique to approximate
the matcher by a DNF expression. The technique is general, and in
fact, can be applied to any blackbox pair-wise matching function.
A random forest is an ensemble classifier that consists of many de-
cision trees, each giving a match decision for a pair of entities, and
outputs the final decision by performing the majority voting over
all individual trees. In our system, we learn around 100 decision
trees, using human editors, each on a random subspace of data. The
nodes of each decision tree containing a predicate, which could ei-
ther be an exact match on an attribute, or an approximate predicate
like JaroWinklerDistance(n1, n2) > 0.6. Different trees may have
different thresholds for the same predicates, and can use different
matching functions on the same attributes.

To convert a random forest into a DNF, we first convert the space
of predicates into a discrete space. For example, we can divide the
range of values of JaroWinklerDistance into three bins, and call
them high, medium and low match. Once we have a discrete set of
values for each attribute match, we want to model the matcher as a
Boolean expression over all combination of attribute match values.
We further assume that the matching function is monotonic3 in the
matching space, i.e., given a pair of entities which have a match de-
cision, if an additional attribute matches, or some attribute match
changes from medium to high, it cannot result in a non-match de-
cision. Given monotonicity, we start from singleton combinations
of attributes, and use the random forest as a blackbox to find all
minimal combinations that result in a match. The disjunction of
all the combinations gives an approximation of the blackbox as a
DNF. This is an approximation because the random forest uses the
actual scores of matches in the decision. However, we can use the
DNF to efficiently generate the candidate pairs, and then run the
real matcher on each pair. In theory, this conversion may generate
a DNF with exponentially many clauses. We found that for the ran-
dom forest that we learnt, the conversion resulted in a DNF formula
with 10 clauses. This is a generic technique which we can apply in
practice to any arbitrary pair-wise matching function.

5. EXPERIMENTS
In this section, we experimentally analyze the cost performance

of the proposed hashing algorithms.

Datasets:
To illustrate the properties of our algorithms we use two real datasets.

3We cannot impose monotonicity constraint in a random forest, but
a typically learned random forest will be monotonic (or close to
monotonic), since the data will support it.

301

(name ∧ directed-by ∧ produced-by ∧ release-date)∨
(name ∧ genre ∧ directed-by ∧ produced-by)∨
(name ∧ genre ∧ directed-by ∧ produced-by)∨
(name ∧ directed-by ∧ genre ∧ personal-appearances)∨
(name ∧ produce-by ∧ genre ∧ personal-appearance)∨
(name ∧ produced-by ∧ genre)∨
(name ∧ directed-by ∧ genre)∨
(name ∧ produced-by ∧ release-date)∨
(name ∧ directed-by ∧ release-date)

Table 3: ProductionMovie Matcher: Each line is a clause in
the matcher. An attribute in bold denotes a fuzzy match
with high confidence, while plain attribute predicates de-
note a medium confidence match.

• Movie: The movie dataset has movie listings collected from
Freebase4 and DBpedia5, with a total of 620, 117 movie list-
ings. Each movie listing has over 30 attributes including
details like: name, release-date, directed-by, produced-by,
written-by, cinematography, edited-by, music, language, rat-
ing, estimated-budget, etc. Not all movie listings have all
attributes.

• Biz: The biz dataset has business listings coming from two
overlapping feeds that we use in our production system, with
100, 971, 025 (nearly 100.9M) business listings. Each busi-
ness listings has 12 attributes consisting of business-name,
contact, street, street-#, city, state, phone, zip, latitude, lon-
gitude, etc.

Many of the attributes in the listings for above datasets are often
missing or have slight differences across the different sources. Thus
an entity matching algorithm has to consider several combinations
of attributes to make a duplication decision. Our DNF model for a
matcher captures them succinctly.

DNF Matching Function:

To illustrate the properties of our algorithms we use several differ-
ent kind of DNF matchers, using for real rules as well as synthetic
rules, as described below.

• RandomExact: This matcher was generated by randomly
sampling k clauses, each of size s, where k and s are param-
eters that we vary. To generate a single clause, we sample
s attributes at random. For each of the attributes, we add
an exact equality predicate in the clause. We then randomly
reject or retain the clause depending on its cost, i.e. the frac-
tion of pairs in the database that satisfy the clause. Lower
cost clauses are retained with higher probability as they are
more likely to occur as a rule in some matcher. We repeat
this procedure to select k distinct clauses.

• RandomFuzzy: This matcher is again generated by ran-
domly sampling k clauses, each of size s, as in the above
procedure. However, for a set of attributes like name, street,
or directed-by, we add a fuzzy (instead of exact) equality
predicate in the clause. The fuzzy distance metric we use is
hamming distance on the set of all 4-grams in the attribute
string.

4http://www.freebase.com
5http://dbpedia.org/

• ProductionBiz: This is the actual matcher used in the pro-
duction system for matching the Biz dataset. The matcher is
random forest classifier, which was learnt by labeling 1000
randomly chosen pairs of listings from the Biz dataset. We
convert the random forest classifier into a DNF formula as
explained in Section 4.3. The obtained DNF formula has 9
clauses that we list in Table 1. For each of the fuzzy matches,
we bin them into two categories : high and medium confi-
dence.

• ProductionMovie: This is a hand-written matcher that was
written for matching the Movie dataset. The matcher is a
collection of 7 hand-written rules, that directly translate into
a DNF formula with 7 clauses, which is listed in Table 5.

Blocking Schemes:
We evaluate each of the blocking schemes that we have proposed
: NaiveCover(Hbase), ExactCover(Hdp), GreedyCover(Hgreedy),
and MergeCover(Hmerge) on the matchers described above. For
each of the blocking scheme, we study the cost of using the block-
ing scheme, which is the total number of pairs of entities in the
blocking scheme.

5.1 Evaluation
The goal of this experiment is to evaluate and compare of the cost

of different blocking schemes as a function of the properties of the
underlying matcher. For this purpose, we use both RandomExact
and RandomFuzzy matchers and varied the number of clauses (k)
and size of each clause (s) parameters. There were twenty random
trials for each of the k, s parameter setting. The evaluation is done
by computing cost ratios of each of the blocking scheme with the
optimal cost (# of pairs found by the matching algorithm).

Fig 2(a) to 2(c) describe the result of this evaluation on the Biz
dataset and RandomExact matcher. The three graphs are for three
different settings of s (the number of clauses) ranging in the set
{3,6,9}. We notice first that baseline approach of NaiveCover has
cost that increases almost linearly with k, the number of clauses,
while other blocking schemes are roughly constant. In fact, for
large values of k, the cost of NaiveCover is almost 20 times worse
than the other schemes. Also surprisingly, MergeCover, despite its
smaller computation cost as compared to GreedyCover and Set-
Cover, outperforms GreedyCover and completely simulates Set-
Cover. This can be seen from the overlapping graphs of Merge-
Cover and GreedyCover. Finally, due to the exponential complex-
ity of GreedCover and SetCover, they finish within allotted time
only when # of clauses and clause sizes are small, respectively.

Fig 2(d) to 2(f) describe the cost comparison for the Random-
Fuzzy matcher, where we see an almost identical behavior as in the
case of RandomExact matcher.

Fig. 3(a) and Fig. 3(b) show a zoomed in version of Fig 2(b) and
Fig 2(e) for small values of k (the number of clauses). The graph
clearly shows that MergeCover exactly matches the performance of
ExactCover despite its lower complexity. GreedyCover is slightly
worse than the other two.

Fig. 4(a) and Fig. 4(b) compare the absolute costs of the four
blocking schemes for the ProductionBiz and ProductionMovie
matcher. Fig. 4(a) is in log scale, and the costs of NaiveCover is
approximately 80 times more than the other schemes for the Pro-
ductionBiz matcher. For ProductionMovie matcher, this differ-
ence is less stark, NaiveCover is only three times worse the other
methods. Still this difference is considerable. The costs of Set-
Cover and MergeCover are identical, but the cost of GreedyCover
is slightly worse, but that difference is not noticeable in the graph
because of the high NaiveCover costs.

302

(a) Exact clauses, each over 3 attributes (b) Exact clauses, each over 6 attributes (c) Exact clauses, each over 9 attributes

(d) Fuzzy clauses, each over 3 attributes (e) Fuzzy clauses, each over 6 attributes (f) Fuzzy clauses, each over 9 attributes

Figure 2: Random DNF on Biz: Cost comparison of different hashing algorithms for randomly chosen DNF clauses with exact and
fuzzy predicates. Cost is measured as ratio with lower-bound. ExactCover and GreedyMerge have best cost ratios, with GreedyCover
slightly worse. ExactCover and GreedyCover finish within allotted time only when # of clauses and clause sizes are small, respectively.

(a) Exact clauses, each over 6 attributes (b) Fuzzy clauses, each over 6 attributes

Figure 3: Zoomed view: Random DNF on Biz

!"##$%#&'

!"##$%#('

!"##$%#)'

*+,'

-.+/012/03'

$4.5612/03'

73008912/03'

730089:03;0'

(a) Biz

!"!!#$!!%

&"!!#$!&%

'"!!#$!(%

'"&!#$!(%

)*+,-%

./,+-0*+-1%

#2/340*+-1%

51--670*+-1%

51--67)-18-%

(b) Movie

Figure 4: Cost comparison for ProductionBiz and ProductionMovie matchers

303

6. RELATED WORK

Entity Matching Problem

The Entity Matching problem (EM) has a long and rich history.
Initial approaches to EM focused on pair-wise attribute similarities
between entities. Newcombe [27] and Fellegi and Sunter [13], gave
the problem a probabilistic foundation by posing EM as a classifi-
cation problem (i.e., deciding a pair to be a match or a non-match)
based on attribute-similarity scores. The bulk of follow up work
on EM then focused on constructing good attribute-similarity mea-
sures (e.g., using approximate string-matching techniques) [26, 10,
3].

Recently, several collective entity matching techniques have been
developed that use the relational information between entities to
make all the matching decisions collectively. They have been shown
to significantly outperform the conventional approaches in terms of
accuracy. They either use an iterative procedure to use the set of
current matches to trigger further match decisions [6, 12], or rely
on sophisticated Machine Learning (ML) tools, e.g. Conditional
Random Fields (CRFs) [24, 11], relational Bayesian networks [28],
latent Dirichlet models [5, 15], and Markov Logic Networks [31].

Blocking

The quadratic complexity of all-pairs comparison in EM is a fun-
damental issue that has received lots of attention from the research
community. The techniques for addressing the problem rely on
blocking, i.e., grouping entities together so that matching entities
are very likely to fall under the same group. Early techniques in-
volved standard blocking [21], which partitions entities into blocks
that share the identical blocking key, e.g., name, phone, or a com-
bination of attributes. Subsequently, blocking schemes were de-
signed for fuzzy matches of attributes [29, 23, 14, 1, 8]. In addition
to a using a single hashing function, multi-pass hashing [17] has
been proposed that uses multiple hash functions such that the true
matches lie in the union of all the hashes.

Blocking Schemes

The problem of choosing the best hash function or the best set of
hash functions for a given entity-matching function has been rel-
atively unaddressed. To quote William Winkler [32], “most sets
of blocking criteria are found by trial-and-error based on experi-
ence”. The works that come close to ours are the works on learning
hashing functions based on a set of labeled pairs [16, 25]. The dif-
ference between their problem setting and ours is that their input is
not an entity matching function, but a set of labeled pairs. There are
two shortcomings of these approaches. First, they don’t have a rig-
orous formulation of the cost of a blocking scheme, and use heuris-
tics like reduction ration [25]. Second, and more fundamentally, its
a hard problem to generate good training data for these algorithms,
as a randomly chosen pairs of entities result in a non-match, and
using heuristics to generate matching pairs introduces a bias and
itself requires some blocking techniques. Generating training data
for automatically learning entity matching rules is itself a subject
of ongoing research [2]. In contract, we separate out the problem
of obtaining entity matching rules, either through training data or
human experts, from the problem of generating efficient blocking
schemes.

7. CONCLUSIONS
In this paper, we considered the problem of choosing a good

blocking strategy for a given entity matching function.
We made several fundamental contributions to this problem. First,

we define an abstraction to model entity matching as well as block-
ing strategies. We define an entity matcher as a Boolean expression
over predicates on attributes, which we represent as a DNF formula.
Our abstraction treats a predicate as a generic blackbox along with
a supporting blocking function, which allows us to support various
kinds of predicates like exact matches, fuzzy matches and spatial
matches.

We show that in general, the problem of computing the opti-
mal blocking strategy is NP-hard in the size of the DNF formula.
We also present several algorithms for computing the exact opti-
mal strategies as well as fast approximation algorithms. We experi-
mentally showed that our approximation algorithms achieve results
close to the optimal. Using both real datasets and entity matching
rules used in our production system, as well as synthetic datasets,
we showed that our blocking strategies can result in a 3 to 10 times
speed-up over baseline strategies.

8. REFERENCES
[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik.

Efficient exact set-similarity joins. In VLDB, pages 918–929,
2006.

[2] Arvind Arasu, Michaela Götz, and Raghav Kaushik. On
active learning of record matching packages. In SIGMOD
Conference, pages 783–794, 2010.

[3] Brian Babcock and Surajit Chaudhuri. Towards a robust
query optimizer: a principled and practical approach. In
SIGMOD, pages 119–130, 2005.

[4] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling
algorithms: lower bounds and applications. In STOC, pages
266–275, 2001.

[5] Indrajit Bhattacharya and Lise Getoor. A latent dirichlet
model for unsupervised entity resolution. In SIAM
Conference on Data Mining (SDM), 2006.

[6] Indrajit Bhattacharya and Lise Getoor. Collective entity
resolution in relational data. ACM Trans. Knowl. Discov.
Data, 1(1), 2007.

[7] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney.
Adaptive blocking: Learning to scale up record linkage and
clustering. In ICDM, 2006.

[8] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A
primitive operator for similarity joins in data cleaning. In
ICDE, 2006.

[9] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4:233–235, Aug 1979.

[10] William W. Cohen, Pradeep Ravikumar, and Stephen E.
Fienberg. A comparison of string distance metrics for
name-matching tasks. In IJCAI Workshop on Information
Integration on the Web, pages 73–78, 2003.

[11] Pedro Domingos. Multi-relational record linkage. In In
Proceedings of the KDD-2004 Workshop on Multi-Relational
Data Mining, pages 31–48, 2004.

[12] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference
reconciliation in complex information spaces. In SIGMOD,
pages 85–96, 2005.

[13] I. P. Fellegi and A. B. Sunter. A theory for record linkage. In
Journal of the American Statistical Society, volume 64,
pages 1183–1210, 1969.

304

[14] Rahul Gupta and Sunita Sarawagi. Creating probabilistic
databases from information extraction models. In VLDB,
pages 965–976, 2006.

[15] Rob Hall, Charles Sutton, and Andrew McCallum.
Unsupervised deduplication using cross-field dependencies.
In KDD, pages 310–317, 2008.

[16] Junfeng He, Wei Liu, and Shih-Fu Chang. Scalable similarity
search with optimized kernel hashing. In KDD, pages
1129–1138, 2010.

[17] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world
data is dirty: Data cleansing and the merge/purge problem.
Data Min. Knowl. Discov., 2:9–37, January 1998.

[18] Tin Kam Ho. A data complexity analysis of comparative
advantages of decision forest constructors. Pattern Anal.
Appl., pages 102–112, 2002.

[19] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, STOC ’98, pages 604–613, 1998.

[20] Edwin H. Jacox and Hanan Samet. Spatial join techniques.
ACM Trans. Database Syst., 32, March 2007.

[21] Matthew A. Jaro. Advances in Record-Linkage Methodology
as Applied to Matching the 1985 Census of Tampa, Florida.
Journal of the American Statistical Association,
84(406):414–420, 1989.

[22] Michael Luby and Avi Wigderson. Pairwise Independence
and Derandomization. Now Publishers Inc, 2006.

[23] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar.
Efficient clustering of high-dimensional data sets with

application to reference matching. In Knowledge Discovery
and Data Mining, pages 169–178, 2000.

[24] Andrew McCallum and Ben Wellner. Conditional models of
identity uncertainty with application to noun coreference. In
NIPS, 2004.

[25] Matthew Michelson and Craig A. Knoblock. Learning
blocking schemes for record linkage. In AAAI, pages
440–445, 2006.

[26] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, 2001.

[27] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P.
andJames. Automatic Linkage of Vital Records. Science,
130:954–959, October 1959.

[28] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In NIPS, 2002.

[29] P Christen R Baxter and T Churches. A comparison of fast
blocking methods for record linkage. In ACM SIGKDD03
Workshop on Data Cleaning, Record Linkage, and Object
Consolidation, 2003.

[30] Anish Das Sarma, Ankur Jain, Ashwin Machanavajjhala, and
Philip Bohannon. An automatic blocking mechanism for
large-scale de-duplication tasks. In CIKM, 2012.

[31] Parag Singla and Pedro Domingos. Entity resolution with
markov logic. In icdm, pages 572–582, 2006.

[32] William Winkler. Approximate string comparator search
strategies for very large administrative lists. In Technical
Report, Statistical Research Division, U.S. Bureau of the
Census, 2005.

305

