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ABSTRACT
In this paper we analyze a crowdsourcing system consisting of a
set of users and a set of binary choice questions. Each user has an
unknown, fixed, reliability that determines the user’s error rate in
answering questions. The problem is to determine the truth values
of the questions solely based on the user answers. Although this
problem has been studied extensively, theoretical error bounds have
been shown only for restricted settings: when the graph between
users and questions is either random or complete. In this paper we
consider a general setting of the problem where the user–question
graph can be arbitrary. We obtain bounds on the error rate of our
algorithm and show it is governed by the expansion of the graph.
We demonstrate, using several synthetic and real datasets, that our
algorithm outperforms the state of the art.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
Crowdsourcing, mechanical turk, spectral methods

1. INTRODUCTION
Ever since Amazon launched its Mechanical Turk in 2005, crowd-

sourcing and human computing have become part and parcel of
the World-Wide Web experience (en.wikipedia.org/wiki/
Crowdsourcing). The topic frequently hits popular media, rang-
ing from plaudits1 to all-round skepticism2. Crowdsourcing has
also attracted the attention of the research community at large, as
evinced by the number of workshops and tutorials in many recent
conferences dedicated to this topic: WWW3, WSDM4, SIGIR5,
CHI6, KDD/AAAI7.

1sfgate.com/business/prweb/article/
Crowdsourced-mobile-fraud-intervention
-solution-4009930.php
2www.technologyreview.com/view/416966/
how-mechanical-turk-is-broken/
3crowdsearch.como.polimi.it/
4ir.ischool.utexas.edu/csdm2011/
5ir.ischool.utexas.edu/cse2010/
6crowdresearch.org/chi2011-workshop/
7www.humancomputation.com

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

As its name suggests, crowdsourcing taps into the wisdom of
crowds. In its most basic version, it involves posing a presumably
hard question to a set of users and aggregating their individual re-
sponses in order to deduce the answer to the question. This simple
paradigm is useful in two scenarios where human labeling offers
some version of the ground truth. First, it can be used to generate
large quantities of labeled examples for algorithms that are based
on machine learning. Second, it can be used for large-scale human
evaluation and comparison of different algorithms for a problem.

Even this simplest version of crowdsourcing already poses an in-
teresting research challenge: how to aggregate the responses of the
users in order to obtain the true answer to each question? Metic-
ulous users can be more accurate than the others in answering the
questions, whereas unreliable/lazy (or spammy) users can provide
random (or even adversarial) answers. To further complicate the
problem, in many such systems, the reliability of a user may not be
known a priori; indeed, a large fraction of the users may even be
new recruits. These issues entail a holistic approach to the problem:
rather than aggregate the answers for each question in isolation, it
becomes necessary to look at the global matrix of user provided
answers to all the questions in order to simultaneously elicit both
the user reliabilities and the true answers.

There have been several approaches [5, 10, 19, 2, 14, 3, 15, 11]
to formalizing this problem. These approaches posit a set of items
with binary qualities, and a set of users indicating the qualities of
items. Not all users necessarily rate all items. A bipartite graph G
between items and users captures the set of items rated by each user.
Typically, a simple model is assumed for users: each user is asso-
ciated with a reliability measure, which is used to independently
“corrupt” her perception of the true quality of the item. Given a set
of user ratings, the problem is to collectively determine the reliabil-
ity of each user and the true quality of each item. These approaches
fall into two broad categories: machine-learning based and linear-
algebraic based. The machine-learning approaches are based on
variants of EM, which work on any graph G, but offer no guaran-
tees as to how well they perform (see Section 2).

Algebraic approaches, on the other hand, can provide theoreti-
cal guarantees on the error in estimating item qualities, but so far
have been limited to either complete assignment graphs (when each
user rates all items) or to random graphs (when the assignment of
users to items is random). One of the first algebraic approaches
was proposed by Ghosh et al. [5], who present an algorithm with
the following guarantee: for a random user–item assignment graph
with n users, where in expectation each user ratesD items and each
item receives ∆ ratings, the fraction of incorrectly estimated items
bounded by O(

√
n
D3 ). This bound is vacuous for sparse graphs

where each user rates o(n1/3) items. Karger et al. [10] show that
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for random graphs, in the limit when number of items is going to
infinity, the error in item qualities can be asymptotically bounded
by e−O(∆), where ∆ is again the expected number of users rating
an item. Thus their bound is stronger than [5] and holds for sparse
random graphs as well, but only asymptotically.

Our work is motivated by the fact that the user–item graph G
is in practice neither random nor regular. Often, users determine
both the number as well as the set of items they want to rate. The
former is a function of their motivation level while the latter is de-
termined by their expertise and familiarity with the items. Under
such circumstances, it is not obvious how the techniques developed
in [5] and [10] generalize—e.g., [5] depends crucially on the fact
that the “expected” item–item agreement matrix is low-rank and
hence recoverable under random perturbations, which the assumed
generative mechanism posits as the model for user mistakes. Sim-
ilarly, the performance of [10] depends crucially on whether belief
propagation converges in arbitrary graphs. Thus it remains an open
question to develop a strategy for aggregating user ratings when
we do not have too much control in deciding which users choose
what set of items to rate—whether there are characteristics of the
user–item rating graph that make it amenable to good aggregation.

Main results. Our main contribution is an eigenvector-based tech-
nique to estimate both the user reliabilities and the item quali-
ties that works for arbitrary user–item assignment graphs G. We
bound the error rate as a function of the expansion gap, i.e., the
gap between the first and second eigenvalues of the graph GtG.
The essence of our technique is to look at the user–user agreement
matrices—measuring agreement between pairs of users—that are
normalized by the number of items they decided to co-rate, and to
then extract its topmost eigenvector. A key element of our approach
is to show a concentration result for structured random matrices, us-
ing the matrix version of McDiarmid’s inequality. We then present
two algorithms that are based on matrix completion; for each of the
algorithms, we prove that the estimated user reliabilities are close
to the truth if the graph GtG has some expansion properties. If
the assignment graph is random, our estimate for user reliabilities
translates into an approximation for the item qualities as well.

In particular, for a (D,∆)-regular graph with a large eigengap,
our bounds translate into a user reliability estimation error of Õ( 1√

D
+

1
∆

). On the other hand, even if we knew the true answer to each
of the D questions that a user responds to, the estimated user reli-
ability would still have a variance of 1/D, resulting in an estima-
tion error of Ω(1/D) in the user reliabilities. Our error bound of
O(D−1/2) is not too far off from this lower bound. For (D,∆)-
random assignment graph our algorithm makes mistakes on only
e−O(∆) fraction of the items. Our bound generalizes both the re-
sults of [5] and [10], since this result holds for sparse graphs (un-
like [5]) without requiring the asymptotic argument of the number
of items going to infinity (unlike [10]).

Finally we also demonstrate our algorithms on real world datasets
and show how they improve upon the state of the art in terms of ac-
curacy of estimates in both item qualities and user reliabilities.

2. RELATED WORK
Crowdsourcing, using the global marketplace to perform micro-

tasks in a scalable way, is a topic that has generated much excite-
ment [8, 12]—labeling and rating items consists of a large fraction
of such tasks. A key problem in here is to decide how to aggregate
the labels from multiple labelers of varying reliabilities such that
the effect of the underlying noise is mitigated. The extensive empir-
ical work by Sheng et al. [15] shows that getting more noisy labels
per item and then aggregating them is more accurate than getting

more expensive, and hence allegedly more “accurate", labels; their
work uses only majority voting to aggregate labels from multiple
users, and is primarily concerned with identifying the items that
will benefit from more labels. Dekel et al. [4] show that such ag-
gregation can be improved if the bad raters are pruned.

A more general analysis of the user reliabilities was done by
Dawid et al. [3], who are the first to model the obfuscation of la-
bels by judges, and use the EM algorithm in order to derive the true
labels. Unfortunately, the EM technique suffers from lack of theo-
retical guarantees and has issues regarding convergence and initial-
ization. Since then, there has been a host of followup work modi-
fying this approach using a Bayesian technique [2, 11], studying it
in the context of learning a specific classifier [14], and modifying it
by finding out spammers, i.e., labelers deliberately giving incorrect
responses [13]. Other related results in applying machine learning
techniques to cleaning user labels include [19, 16, 14, 18].

Much of the above work does not come with theoretical guaran-
tees on the inferred user reliabilities or the item labels. Both Ghosh
et al. [5] and Karger et al. [10] study this problem independently in
the same generative setting, where each user rates a random set of
items, and has an inherent probability of identifying the correct la-
bel, or flipping it. Our model is essentially a generalization of their
setting to arbitrary user–item assignment graphs. Ghosh et al. [5]
present a spectral algorithm that provably learns the true item qual-
ities, with bounded error. However, as pointed out, these bounds
are useful only when each user performs a large number of rat-
ings. Karger et al. [10] uses belief propagation8 to derive both a set
of user reliabilities and an estimate for item qualities for a sparse
random graph. Their convergence analysis uses techniques from
density evolution and hence critically depends on the fact the graph
is both sparse and random. Liu et al. [11] extend the BP algorithm
of [10] via a Bayesian approach by choosing a suitable prior for
item qualities and user reliabilities, and uses clever techniques to
make the message passing more efficient.

An orthogonal question to ours, and one that has received much
attention, is how to design incentives such that each user performs
to the best of his abilities and provides truthful ratings [6, 9].

3. PROBLEM DESCRIPTION
Let m be the number of items and n the number of users. Let

qi ∈ {−1, 1} denote the quality of the ith item. Let q denote
the column vector of length m with qi as the ith entry. Each user
rates a subset of items. Let G ∈ {0, 1}m×n denote the item–user
assignment matrix, i.e., Gij = 1 if item i is rated by user j.

3.1 Rating generation model
The ratings given by n users on m items is represented by a

stochastic matrix U generated by the following random process
(similar to [5]). Each user j is associated with a probability pj ∈
[0, 1] that captures how correct is her rating. Independently, for
each item i she rates (as dictated by G), she tosses a coin with bias
pj : with probability pj , she rates item i (correctly) as qi and with
probability 1 − pj , she rates item i (incorrectly) as −qi. Thus, the
random matrix U ∈ {−1, 0, 1}m×n can be described as

Uij =


qi if Gij = 1, w.p. pj ,
−qi if Gij = 1, w.p. 1− pj ,
0 if Gij = 0.

(1)

8Belief Propagation (BP) operates on the user–item bipartite graph,
and like any standard BP algorithm, excludes the message from the
node when computing the outgoing message to that node—if this
message is included, then the algorithm reduces to that of [5].
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We call this random process as rating generation. Let wj = 2pj −
1; we call wj the reliability of user j. Thus, the user reliabilities
are in the range [−1, 1], where a reliability of 1 indicates a user
who always answers correctly, a reliability of−1 indicates one who
always answers incorrectly, and a reliability of 0 indicates one who
answers uniformly at random. Let w ∈ <n denote the vector of
user reliabilities.

3.2 Problem definition
The algorithm is given as input a realization of the stochastic

rating matrix U , assumed to be generated from the set of latent
parameters q and w, which are unknown. The aim is to estimate
both the user reliabilities and the item qualities simultaneously,
i.e., an estimate ŵ ∈ [−1, 1]n for the user reliabilities and an
estimate q̂ ∈ {−1, 1}m for the item qualities. The performance
of the algorithm is measured by the distance to the underlying
reliability vector and the quality vector. The errors for the es-
timates ŵ and q̂ provided by the algorithm will thus be defined
by the following quantities: error(ŵ) = 1

n
E(||ŵ − w||22) and

error(q̂) = 1
m
E(||q̂ − q||22) = 4

m
1[q̂i 6= qi].

4. TECHNIQUES
We review some definitions from linear algebra before present-

ing our algorithms.

4.1 Background
Throughout the paper, we represent (column) vectors using low-

ercase letters (a, b, w, . . .) and matrices by uppercase letters (M,N, . . .).
Let x · y denote the innerproduct of x and y and let xt denote
the transpose of x. For a matrix M , the spectral and Frobenius
norms are denoted by ‖M‖ = ‖M‖2 = max‖x‖2=1 ‖Mx‖2 and
‖M‖F = (

∑
ijM

2
ij)

1/2 respectively. For two matrices M and N
of matching dimensions, we define the following Hadamard prod-
ucts:

(M ⊗N)ij = MijNij ;

(M �N)ij =

{
Mij/Nij if Nij 6= 0,

0 otherwise.

For any matrixM ∈ <m×n, we define the indicator matrix I(M) ∈
{0, 1}m×n such that I(M)ij = 1[Mij 6= 0], i.e., I(M)ij is 1 if
and only if the corresponding entry of M is nonzero. We will also
denote the (scaled) top eigenvector of a matrix M as v1(M) =

arg minx ‖M − xxt‖2, x(1) ≥ 0.
We use the convention that indices i always denote items and

indices j, k, . . . denote users. Let δi denote the number of ratings
that item i gets, i.e., the number of non-zero entries in row i in G.
Similarly, let dj denote the number of ratings that user j supplies.
Define D = maxj dj and ∆ = maxi δi.

4.2 Algorithms
Recall that we are only presented with a realization of the ratings

matrix U (and hence its indicator, the assignment matrixG as well)
and we need to estimate both the item qualities and the user relia-
bilities. Before describing the algorithms, we present the intuition
behind them.

The main idea is to work with the two user–user matrices U tU
and GtG. The entry (GtG)jk is the number of common items
rated by users j and k. The entry (U tU)jk is the difference be-
tween the number of agreements and disagreements of the users
j and k. Let E denote the matrix which contains itemwise ex-
pected values of the random matrix U , i.e., Eij = E[Uij ] =
(pjqi + (1− pj)(−qi))Gij = qiGijwj .

1: Input: U ∈ {−1, 0, 1}m×n, G ∈ {0, 1}m×n.
2: Output: w̃ ∈ <n, q̂ ∈ <m.
3: ŵ = v1(U tU)� v1(GtG)
4: Define w̃j = sgn(w̃j) max(|ŵj |, 1)
5: Define q̂i = sgn(

∑
j Uijw̃j).

6: Output ŵ, q̂.

Algorithm 1: Ratio of eigenvectors.

It is easy to see that

EtE = (GtG)⊗ (wwt),

EtE �GtG = I(GtG)⊗ wwt. (2)

Suppose we knew the expected matrix E. We could then estimate
the user reliabilities by solving the following problem

F (A,B) = arg min
w
‖A−B ⊗ (wwt)‖F ,

s.t. ∀j , w2
j ≤ 1. (3)

with (A,B) as either (EtE,GtG) or (EtE � GtG, I(GtG)). It
is easy to see why this approach works if the graph G is complete:
the expected matrix E = qwt and solving (3) would give us back
the user reliabilities w exactly. This approach, however, has a few
problems when the graphG is arbitrary. First, the above program is
computationally intractable for arbitraryG (e.g., [7]). But more im-
portantly, we show that for arbitrary assignment graphs the matrix
EtE might not be informative, as shown in the following example.

Suppose there were two disjoint user groups A and B, and a
user x 6∈ A ∪ B. All users in A have reliability 1, those in B have
reliability −1, and user x has reliability 0. The items have two
disjoint groups S and T of size m/2. All users in A rate all items
in S, all users inB rate all in T , and user x rates all items in S∪T .
It is clear that by looking only at the matrix EtE, it is not possible
to distinguish the highly reliable users from the non-reliable ones.
It is easy to extend this construction to k + 2 user partitions such
that we cannot distinguish the high and low proficiency users even
if we are explicitly given, in addition to EtE, the names of k users
who answer all the questions. Thus, we want to characterize the
class of graphs G that allows us to recover w with small errors 9.

One of our main contributions is to identify the expansion of
the graph G as a sufficient property that enables us to estimate
w both efficiently and with low errors— the resulting algorithms
are presented in Algorithm 1 and 2. Since the matrix E is not
observable, we instead work with the matrix U . Algorithm 1 is
inspired by the observation that when GtG has rank one, (3) has
an exact solution ŵ where ŵ ⊗ v1(GtG) = v1(EtE) and hence
ŵ = v1(EtE) � v1(GtG). We will show that when the graph
G has sufficiently high expansion, this solution, even when using
U tU in place of EtE, is a reasonable approximation. Algorithm 2
is inspired by (2) and uses the same intuition that (3) is approx-
imable when I(GtG) is close to a rank one matrix. Hence, in this
case, we first compute the rank one approximation v1(I(GtG)) and
then use it to compute the final estimate ŵ.

We next show an error bound on the estimate ŵ for user reliabil-
ity obtained from Algorithm 1. (Similar bounds can be shown for
Algorithm 2, which we defer to the full version.) Our error bound
holds for arbitrary graphs having expansion properties. However,

9Previous approaches have looked at the matrix UU t (as a proxy
forEEt) [5]; by augmenting the above construction it is possible to
show that such approaches will also incur a constant fraction error
for arbitrary assignment graphs.
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1: Input: U ∈ {−1, 0, 1}m×n, G ∈ {0, 1}m×n.
2: Output: w̃ ∈ <n, q̂ ∈ <m.
3: Define ŵ = v1(U tU �GtG� v1(I(GtG))
4: Define w̃j = sgn(ŵj) max(|ŵj |, 1)
5: Define q̂i = sgn(

∑
j Uijw̃j).

6: Output ŵ, q̂.

Algorithm 2: Eigenvectors of ratio.

in order to illustrate our bounds, we state the results for (D,∆)-
regular graphs. The more general result is stated and proved in

Section 5 (See Theorem 5.12). Let w̄ =

√∑
i w

2
i

n
denote the aver-

age reliability of users.

THEOREM 4.1 (USER ERROR BOUND). Let ε, δ < 1 be a fixed
positive constants. If G is a (D,∆)-regular graph such that ∆ >

1
8εw̄2 , D > 256 log(n/δ)

ε2w̄2 and the second eigenvalue of GtG, de-

noted by µ2, satisfies the condition µ2 <
εw̄2D∆

16
, then with proba-

bility 1− δ, Algorithm 1 returns an estimate ŵ, such that

error(ŵ) = Õ

(
1

∆
+

1√
D

)
.

When the item–user assignment graph is random, this error bound
translates into a bound for error in item estimates. The question of
whether such a bound holds for fixed graphs, under some assump-
tions, remains open.

THEOREM 4.2. LetG be a random (D,∆)-regular graph. With
high probability, Algorithm 1 returns estimates q̂, such that

error(q̂) ≤ exp

(
−O

(
∆

(
w̄2 − 1

∆
− 1√

D

)2
))

.

When the average reliability w̄ is some constant bounded away
from 0 (i.e., users are good on average), then error(q̂) scales as
exp(−O(∆)). This matches the bound in [10]. However, the
bound in [10] requires that the limit of number of items goes to
infinity, an assumption we no longer require.

4.3 Alternate projections
So far we have considered the case when G has a large expan-

sion gap, i.e., when the second eigenvalue is much smaller than
the first. We propose a heuristic, without any theoretical guaran-
tees, that improves the performance of both Algorithms 1 and 2 for
low expansion graphs. This heuristic is based on the standard alter-
nating projections technique [1] for solving the weighted low rank
approximation problem.

Recall that we are trying to find a user reliability vector w as a
solution to the problem F (A,B) = arg minw ‖A−B⊗(wwt)‖F .
When B and I(B) satisfy expansion properties, Algorithm 1 and 2
both give good approximations to this problem. Consider a slight
generalization of this problem that instead finds two vectors u and
v to minimize arg minu,v ‖A − B ⊗ (uvt)‖F . When one of the
vectors, say u, is known, the other can be computed by solving a
simple least squares problem. Thus, this gives an EM-style alter-
nating projections algorithm to iteratively compute u and v. On
convergence, we are guaranteed to achieve a local optimum, which
for symmetric matrices A and B implies that u = v. This common
converged value can thus be used instead of w.

One problem with this approach is that since the original prob-
lem is not convex, the convergence can happen at a local minima.
Thus, both the rate of convergence and the quality of converged

solution depends on the initialization for u and v. In practice we
observed that when u = v = ŵ, where ŵ is the estimate obtained
by either Algorithm 1 or 2, then both rate of convergence and qual-
ity of converged solution is good. Intuitively, this is because Al-
gorithm 1 and 2 already try to minimize the objective function (at
least in the case of graphs with good expansions) and hence provide
a very good seed for the alternating projections heuristic.

5. ANALYSIS
In this section we prove guarantees on the performance of our

algorithms both in terms of the error incurred in estimating user
reliabilities as well as for item qualities. The underlying intuition
behind the proof is as follows. First we show that the response ma-
trix U tU is close to the expectation matrix EtE. In order to prove
this concentration bound, we need to use machinery aimed towards
giving Chernoff-like tail bounds for sums of random matrices. We
then use the expansion (and corresponding eigenvalue gap) of the
user–user co-rating graph GtG to show that the gap between the
first and second eigenvalues of GtG translates to a corresponding
gap between the first and second eigenvalue of EtE as well. Using
this, we then characterize the top eigenvector of EtE in terms of
the top eigenvector ofGtG and the reliability vector w; the error in
this characterization depends, among other quantities, on the ratio
between the top two eigenvalues of the graph GtG. This enables
us to use the eigenvalues of GtG and U tU to create ŵ, an estimate
of w. After creating an estimate ŵ of the user reliabilities, we can
then use it to create an estimate of the item qualities q̂—the error in
q̂ will depend on the error in ŵ.

5.1 Matrix tail bounds
We start with a statement of the matrix McDiarmid inequality

that we will use as a tool. The underlying intuition behind this con-
centration result from [17] is that a random matrix is close to its
expectation in terms of the spectral norm, if it can be expressed as
the output of a function having bounded sensitivity over its input
variables. Note that A � B denotes the usual semidefinite order-
ing, i.e., B −A is semidefinite.

THEOREM 5.1 (MATRIX BOUNDED DIFFERENCE [17]). Let
{Zk}nk=1 be an independent family of random variables, and let
H be a function that maps n variables to a self-adjoint matrix of
dimension d. Consider a sequence {Ak} of fixed self-adjoint ma-
trices that satisfies

(H(z1, . . . , zk, . . . , zn)−H(z1, . . . , z
′
k, . . . , zn))2 � Ak2,

where zi and z′i range over all possible values of Zi for each index
i. Compute the variance parameter σ = ‖

∑
k Ak

2‖2. Denote the
random vector z = (Z1, . . . , Zn). Then, for all t ≥ 0,

Pr[‖H(z)− E[H(z)]‖ > t] ≤ d · e−t
2/8σ2

.

We will use Theorem 5.1 to show that the user–user agreement ma-
trixU tU is close to its expectationEtE in the following sense. For
a user j, denote ρj =

∑m
i=1 Gijδ

2
i , i.e., ρj is the sum of squared

degrees of items that j responds to, and denote ρ = maxnj=1 ρj .
We first define the functionH(·). Lemma 5.2 then characterizes the
structure of the difference matrices when any of the random vari-
ables is perturbed. Using this structural characterization Lemma 5.3
shows that functionH(·) satisfies the sensitivity conditions of The-
orem 5.1, and Lemma 5.4 shows the final bound that we get using
the sensitivity condition derived in Lemma 5.3.

We abuse notation and define the sequence of random variables

U = {U11, . . . , U1n, U21, . . . , U2n, . . . , Um1, . . . , Umn}.
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The functionH(·) is then defined asH(U) = U tU , which is a self-
adjoint matrix in<n×n. We also define the sequence of self-adjoint
matrices {Aij ∈ <n×n, i ∈ [m], j ∈ [n]} where each Aij is a
diagonal matrix with kth diagonal entry as

√
8GikGij(δi − 1) for

all k ∈ [n]. Lastly, we define column vectors ej and rij of length
n as following: ej is the unit vector with 1 as the jth element, and
rij [k] = −2UijUik if k 6= j, and 0 otherwise.

The following Lemma shows the structure of the sensitivity ma-
trices.

LEMMA 5.2. For any response matrixU , denote ∆ij = H(U)−
H(U ′), whereU ′ is the response matrix identical toU in all entries
except with the (i, j)th entry switched, i.e., U ′ij = −Uij and U ′kl =

Ukl for (k, l) 6= (i, j). Then ∆2
ij = rijr

t
ij + 4(δi − 1)Gijeje

t
j .

PROOF. Recall that H(U) = U tU is an n × n matrix with the
(j, j)th diagonal entry dj , where dj is the number of items rated
by user j. Also H(U)kl = akl − bkl where (bkl) akl denotes the
number of (dis-) agreements between users k and l in rating the
items that they have in common.

Now since ∆ij = H(U) − H(U ′), where U ′ differs from U
only in the (i, j)th entry, ∆ij is again an n× n matrix with all but
the jth row and column as 0. To see why, consider (k, l)th entry
of ∆ij such that k 6= j and l 6= j. Both users k and l have same
responses in both U and U ′. Thus the number of agreements and
disagreements between k and l is same in U and U ′. Hence the
(k, l)th entry of ∆ij is zero.

Since H(U) = U tU and H(U ′) = U ′tU ′ are symmetric matri-
ces, so is their difference ∆ij . Thus, the jth row and column for
∆ij are identical. We will show that the column is precisely the
vector rij (and hence row is rtij). Consider the kth element of this
row. If user k has rated item i, and k and j agree according to U ,
then they will disagree according to U ′. Similarly, if they disagree
according to U , then they will agree according to U ′. Thus, kth
element of rij , which is the difference in agreements and disagree-
ments of users k and j will change by either 2 or −2. These cases
can be summarized succinctly as −2UijUik = rij [k], by defini-
tion. Only exception is rij [j], which is always 0, since no user
disagrees with himself on the same item i. Thus the jth column of
∆ij is precisely rij .

The fact that ∆ij is the matrix with jth row and column equal to
rij and rest elements as zero can be written as

∆ij = rije
t
j + ejr

t
ij ,

which yields that

∆2
ij = (rije

t
j)(rije

t
j) + (rije

t
j)(ejr

t
ij)

+(ejr
t
ij)(rije

t
j) + (ejr

t
ij)(ejr

t
ij)

= rij(e
t
jrij)e

t
j + rij(e

t
jej)r

t
ij

+ej(r
t
ijrij)e

t
j + ej(r

t
ijej)r

t
ij

= 0 + (1)rijr
t
ij + 0 + 4(δi − 1)Gijeje

t
j .

Here, the last equation follows from using the following values of
the four innerproducts highlighted in penultimate equation: rtijej =
etjrij is 0 (since ej has only jth entry as non-zero, which is zero
in rij), etjej is 1, and rtijrij is 4Gij(δi − 1) (since

∑
k rij [k]2 =∑

k 6=j(−2UikUij)
2 =

∑
k 6=j 4GijGik = 4(δi − 1)Gij). The

proof follows.

Let Aij ∈ <n×n be defined as a diagonal matrix where the kth
entry equals

√
8GikGij(δi − 1). Using the above lemma, we can

show that ∆2
ij is bounded by the matrix Aij .

LEMMA 5.3. ∆2
ij � A2

ij .

PROOF. From Lemma 5.2, ∆2
ij = rijr

t
ij + 4(δi − 1)Gijeje

t
j .

Now if we show that rijrtij � A2
ij/2, then the proof of lemma is

complete, since trivially, 4(δi − 1)Gijeje
t
j � A2

ij/2.
To show rijr

t
ij � A2

ij/2, consider the (k, l)th element, denoted
by Rkl, of rijrtij . If k, l 6= j, then we have

Rkl = (−2UijUik)(−2UijUil) = 4GijUikUil,

and hence

|Rkl| = 4Gij |Uik||Uij | = 4GijGikGil.

If either k = j or l = j, then the (k, l)th element is 0. Hence for
the kth row, the sum of the absolute values of (k, l)th entries is∑

l

|Rkl| =
∑
l

4GijGikGil = 4GijGik(δi − 1),

since each user l 6= j who rated item i contributes exactly 1 to the
sum.

Thus the diagonal matrix with 4GijGik(δi − 1) as the kth diag-
onal entry, diagonally dominates rijrtij . Now A2

ij/2 by definition
is precisely such a diagonal matrix. Hence rijrtij � A2

ij/2.

The next statement shows that U tU is close to the expectation ma-
trix EtE. Recall that ρ = maxj

∑m
i=1 Gijδ

2
i .

LEMMA 5.4. Suppose the matrix U is generated by the rating
generation process described above. Then, for every δ ∈ (0, 1),

Pr
[
‖U tU − E[U tU ]‖2 ≤ 8

√
ρ log (n/δ)

]
≥ 1− δ.

PROOF. Using the statement of Lemma 5.2, we get that the sen-
sitivity ofH(·) with respect to each variableUij is bounded byA2

ij .
Thus, from the statement of Theorem 5.1, the variance parameter σ
is given by

σ2 =

∥∥∥∥∥
m∑
i=1

n∑
j=1

A2
ij

∥∥∥∥∥ .
Since each A2

ij is diagonal, so is this sum. The kth diagonal entry
of A2

ij is 8GikGij(δi − 1) and hence the kth diagonal entry of the
sum is given by

m∑
i=1

n∑
j=1

8GikGij(δi − 1) =

m∑
i=1

8(δi − 1)Gik

n∑
j=1

Gij

=

m∑
i=1

8(δi − 1)Gikδi ≤ 8

m∑
i=1

Gikδ
2
i = 8ρk.

Hence the spectral norm, which is the largest diagonal entry for a
diagonal matrix, is simply 8 maxk ρk = 8ρ and hence σ2 = 8ρ.
Using this value for σ, setting d = n, and t2 = 8σ2 log(n/δ) =
64ρ log(n/δ) in Theorem 5.1 completes the proof.

Finally, this implies the following result.

LEMMA 5.5. For a matrix U generated by the random rating
generation process, with probability 1−δ, andE = E[U ], ‖U tU−
EtE‖ ≤ 8

√
ρ log (n/δ) + D, where D is the maximum number

of ratings done by a person.

PROOF. Assuming the result of Lemma 5.4 holds, we only need
to bound the norm of EtE − E[U tU ]. This is a diagonal matrix,
with the jth diagonal entry to be dj(1 − w2

j ). Hence, ‖EtE −
E[U tU ]‖ ≤ maxj d

2
j = D.
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5.2 Analysis of estimators
In this section we show that the estimators for user reliabilities

and item qualities have a small error. For notational simplicity, we
assume that the event in Lemma 5.4 holds, i.e., the matrix U tU is
close to its expectation.

5.2.1 Algorithm 1: Ratio of eigenvectors
We first show the proof for Algorithm 1, which takes the ratio of

the top eigenvectors of U tU andGtG. The proof strategy is to first
show that under a suitable set of assumptions forG, the matrixEtE
has a large gap between the first and second eigenvalues, and hence
can be represented accurately using only the topmost eigenvector—
this will ensure that the eigenvector-based Algorithm 1 has small
error.

Let the first and second eigenvalues of GtG be denoted by µ1

and µ2 respectively, and the top two eigenvalues ofEtE be denoted
by λ1 and λ2. Let g denote the first eigenvector of GtG, and e be
that of EtE. Let gmin denote the minimum entry of g; by Perron–
Frobenius theorem, gmin > 0. Recall w̄2 = 1

n

∑
j w

2
j . Define

κ = ‖U tU − EtE‖2 and W ∈ n × n to be the diagonal matrix
with wj for the jth diagonal entry.

LEMMA 5.6. λ1 ≥ µ1‖Wg‖2 − µ2.

PROOF. Recall that EtE = (GtG) ⊗ (wwt). Since µ1 and
g are the first eigenvalue and vector of GtG, we have that GtG =
µ1gg

t+A, whereA is the matrix defined as the difference between
GtG and µ1gg

t. Thus, ‖A‖ = µ2.

EtE = (GtG)⊗ (wwt) = (µ1gg
t +A)⊗ (wwt) (4)

= µ1(Wg)(Wg)t +A⊗ (wwt).

Hence we can write using the triangle inequality:

‖EtE‖ ≥ ‖µ1(Wg)(Wg)t‖ − ‖A⊗ (wwt)‖
≥ µ1‖Wg‖2 − ‖A‖ = µ1‖Wg‖2 − µ2,

where we use ‖A ⊗ (wwt)‖ = ‖WAW‖ ≤ ‖W‖2‖A‖ ≤ ‖A‖.
This completes the proof.

LEMMA 5.7. (etWg)2 ≥ ‖Wg‖2 − 2µ2
µ1
.

PROOF. From (4), we know thatEtE = µ1(Wg)(Wg)t+A⊗
(wwt), where ‖A‖ ≤ µ2. Also eEtEet = λ1 and

etEtEe = et(µ1(Wg)t(Wg) +A⊗ (wwt))e

= µ1(etWg)2 + et(A⊗ (wwt))e

≤ µ1(etWg)2 + µ2,

where the last inequality again follows from ‖A ⊗ (wwt)‖ ≤
‖A‖‖W‖2 ≤ µ2 maxj w

2
j ≤ µ2. Thus, we have

λ1 = etEtEe ≤ µ1(etWg)2 + µ2.

LEMMA 5.8. λ2 ≤ 3µ2.

PROOF. Let x be the second eigenvector ofEtE. Then xEtExt =
λ2. Also x is perpendicular to the largest eigenvector e of EtE.
So, we know (etWg)2 + (xtWg)2 ≤ ‖Wg‖2. From Lemma 5.7,
we know (etWg)2 ≥ ‖Wg‖2 − 2µ2/µ1. Hence, (xtWg)2 ≤
2µ2/µ1. Thus, we can write

λ2 = xtEtEx = xtµ1(Wg)(Wg)t +A⊗ (wwt)

= µ1(xtWg)2 + x(A⊗ (wwt))x

≤ µ1 ·
2µ2

µ1
+ µ2 = 3µ2.

LEMMA 5.9. Let κ = ‖U tU − EtE‖2 and τ = ‖Wg‖. If
λ2+3κ
λ1

< 1 and 2µ2
µ1τ2 < 1, then∥∥∥∥u− Wg

τ

∥∥∥∥ ≤
√

2
λ2 + 3κ

λ1
+

√
4µ2

µ1τ2
.

PROOF. Since u and e are the top eigenvector of U tU and EtE
respectively, and κ = ‖U tU − EtE‖, by applying a standard ma-
trix perturbation bound [5, Lemma 3.2],

(e · u)2 ≥ 1− λ2 + 3κ

λ1
.

We write the bound derived in Lemma 5.7 as follows: (et Wg
τ

)2 ≥
1 − 2µ2

µ1τ2 . From the condition stated in the Lemma, since 2µ2 ≤
µ1τ

2, and
√

1− x ≥ 1 − x for 0 < x < 1, we have et Wg
τ
≥√

1− 2µ2
µ1τ2 ≥ 1− 2µ2

µ1τ2 . Hence ‖e−Wg
τ
‖2 = 2−2 e

tWg
τ
≤ 4µ2

µ1τ2

Similarly, etu ≥
√

1− λ2+3κ
λ1

≥ 1− λ2+3κ
λ1

and thus ‖e−u‖2 ≤
2λ2+3κ

λ1
. The proof follows from the triangle inequality.

LEMMA 5.10. Denote τ = ‖Wg‖ and let ŵ be the vector with
the ith element τui/gi. If λ2+3κ

λ1
< 1 and 2µ2

µ1τ2 < 1, then

error(ŵ) =
‖ŵ − w‖2

n
≤ τ2

ng2
min

(
2
λ2 + 3κ

λ1
+

4µ2

µ1τ2

)
.

PROOF. From Lemma 5.9, we know that∥∥∥∥u− Wg

τ

∥∥∥∥ ≤
√

2
λ2 + 3κ

λ1
+

√
4µ2

µ1τ2
.

Hence

‖ŵ − w‖2 = ‖(τu−Wg)� g‖2 ≤ τ2‖u−Wg/τ‖2

g2
min

.

Since (
√
x+
√
y)2 ≤ 2(x+ y), we have

‖ŵ − w‖2 ≤ τ2

g2
min

(
2
λ2 + 3κ

λ1
+

4µ2

µ1τ2

)
,

and hence the proof.

LEMMA 5.11. Let w̄ =

√∑
i w

2
i

n
be the average reliability of

users; let τ = ‖Wg‖ and r = gmax/gmin. Then,

τ ≥ w̄/r.
PROOF. This follows from considering the weighted graph cor-

responding to GtG. Then∑
i

w2
i g

2
i ≥ nw̄2g2

min ≥ w̄2n(g2
max/r

2) ≥ w̄2/r2,

which completes the proof.

Combining the above lemmas, we get the final theorem about the
error bounds.

THEOREM 5.12. For a fixed assignment graph G and a rating
matrix U that is generated by the random rating generating pro-
cess, if the graph G satisfies

µ2 <
µ1w̄

2

4r
− 6
√
ρ log (n/δ)−D (5)

then with probability 1− δ, Algorithm 1 returns estimates ŵ, such
that

error(ŵ) <
10

µ1ng2
min

(
µ2 +D + 5

√
ρ log (n/δ)

)
.
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PROOF. From Lemma 5.5, with probability 1− δ,

‖U tU − EtE‖2 ≤ 8
√
ρ log (n/δ) +D.

Assume that the above event holds. Also, for Lemma 5.10, we need
the following bounds:

λ2 + 3κ

λ1
< 1,

2µ2

µ1τ2
< 1. (6)

Using the bounds on λ1, λ2 and κ, the above bounds are satisfied
if

µ2 <
µ1τ

2

4
− 6
√
ρ log (n/δ)−D

<
µ1w̄

2

4r
− 6
√
ρ log (n/δ)−D. (7)

Conditioned on this and Lemma 5.10, we have that

error(ŵ) =
‖ŵ − w‖2

n
≤ τ2

ng2
min

(
2
λ2 + 3κ

λ1
+

4µ2

µ1τ2

)
,

where κ = ‖U tU−EtE‖2. Plugging in this value, and the bounds
on λ2 and λ1 from Lemma 5.6 and Lemma 5.8, we have that

error(ŵ) ≤ τ2

ng2
min

(
3µ2 + 3D + 24

√
ρ log (n/δ)

µ1τ2 − µ2
+

4µ2

µ1τ2

)
.

We simplify this by using µ1τ
2 − µ2 ≥ µ1τ

2/2 to give

error(ŵ) ≤ τ2

ng2
min

(
6µ2 + 6D + 48

√
ρ log (n/δ)

µ1τ2
+

4µ2

µ1τ2

)

≤ 10τ2

ng2
min

1

µ1τ2

(
µ2 +D + 5

√
ρ log (n/δ)

)
.

In order to illustrate our bounds better, we also state a corol-
lary for (D,∆)-regular graphs. This is also a restatement of Theo-
rem 4.1 and thus completes its proof.

THEOREM 5.13 (THEOREM 4.1). If G is a (D,∆)-regular
graph such that ∆ > 1

8εw̄2 , D > 256 log(n/δ)

ε2w̄2 and the second
eigenvalue µ2 satisfies the condition

µ2 <
εw̄2D∆

16
,

then with probability 1 − δ, Algorithm 1 returns estimate ŵ, such
that

error(ŵ) = O

(
µ2

D∆
+

1

∆
+

√
log(n/δ)√

D

)
= O(ε).

The proof is straightforward, after noting that gmin = 1√
n

and

nD = m∆, and using a bound on µ1 ≥ m∆2

n
, the average de-

gree in GtG.
Asymptotically, this gives error(ŵ) = Õ( 1

∆
+ 1√

D
). Finally, we

show that estimating the set of user reliabilities accurately enables
us to estimate the quality of each item with small error. We show
that for a random (D,∆)-regular graph the total error in estimating
item quality falls exponentially with the maximum item-degree, as
well as with the average reliability. This is also a restatement of
Theorem 4.2 and thus completes its proof.

THEOREM 5.14 (THEOREM 4.2). LetG be a random (D,∆)-

regular graph. Let w̄ =

√∑
i w

2
i

n
. Let ŵ be an estimate with

error(w, ŵ) ≤ ε. Then, error(q̂) ≤ e−∆(w̄2−ε)2/64. In particu-

lar, for q̂ obtained by Algorithm 1, error(q̂) ≤ e−O(∆(w̄2− 1
∆
− 1√

D
)2)
.

The proof of this theorem is based on the following lemma.

LEMMA 5.15. Denote α = ∆
n

(w · ŵ). Then (i) ∆ ≥ α ≥
∆(w̄2 − ε)/2 and (ii) if w̄2 > ε, the probability that the ith item is
wrong is at most e−α

2/16∆ ≤ e−∆(w̄2−ε)2/64.

PROOF. For (i), note that ε = error(w, ŵ) = ‖w − ŵ‖2/n =
|w|2+|ŵ|2−2w·ŵ

n
. Thus w · ŵ/n = (|w|2 + |ŵ|2 − nε)/2n ≥

(w̄2 − ε)/2, which yields the result.
For (ii), define zi =

∑
j Uijŵj . Then

E[zi] =
∑
j

qiE[Gij ]wjŵj = qi(∆/n)w · ŵ = qiα.

Then from (i) and assuming w̄2 > ε, we get α > 0. Thus,
sgn(E[zi]) is same as qi. Thus sgn(zi) 6= qi implies that |zi −
E[zi]| > E[zi]. Thus the probability that sgn(zi) 6= qi is at most
Pr[|zi − E[zi]| > E[zi]].

For computing this probability, we will use Bernstein’s inequal-
ity. Define yij = Uijŵj . Then zi =

∑
j yij . Also E[yij ] =

qi(∆/n)wjŵj . Denote xij = yij − E[yij ]. Now we will apply
Bernstein’s inequality over xij for a fixed i but j from 1 to n. Note
that −1− |E[yij ]| ≤ xij ≤ 1 + E[yij ]. Thus, it is safe to say that
−2 ≤ xij ≤ 2. Also

E[x2
ij ] = E[y2

ij ]− E[yij ]
2 = (∆/n)ŵ2

j − (∆/n)2w2
j ŵ

2
j .

Thus, E[x2
ij ] ≤ (∆/n)ŵ2

j (1 − (∆/n)w2
j ) ≤ ∆/n. Applying

Bernstein’s inequality for t = α/2, we get

Pr

[∣∣∣∣∣∑
j

xij

∣∣∣∣∣ ≥ α/2
]
≤ e

−α2/8∑
j E[x2

ij
]+2(α/2)(1/3)

≤ e
−α2/8
∆+α/3 ≤ e−α

2/16∆.

Now
∑
j xij =

∑
j yij−E[

∑
j yij ] =

∑
j yij−E[zi] =

∑
j yij−

qiα
Thus |

∑
j yij | ≥ |qiα| − |

∑
j xij | ≥ α−α/2 with probability

e−α
2/16∆, which yields the result.

Analysis for Algorithm 2. The proof for Algorithm 2 follows a
similar route. We first show a similar matrix concentration inequal-
ity and then use it to follow the the proof outline in Section 5. We
postpone the details to the final version.

6. EXPERIMENTS
In this section we experimentally analyze the accuracy of the

proposed algorithms in estimating both item ratings and user relia-
bilities. We implemented both Algorithm 1 and 2, which we denote
by ALGORITHM 1 and ALGORITHM 2 respectively. We compare
them with the following algorithms: the simple majority voting al-
gorithm denoted by MAJORITY, the iterative EM algorithm denoted
by EM, the spectral algorithm from Ghosh et al. [5] denoted by
GKM, and the belief propagation algorithm from Karger et al. [10]
denoted by KOS. We also implement LOWERBOUND which uses
ground truth to compute the user reliabilities, and then uses the re-
liabilities to infer item ratings. Since it uses ground truth, it is not
a true algorithm, but provides a benchmark to compare the perfor-
mance of other algorithms.

Our implementation of ALGORITHM 1 and ALGORITHM 2 in-
clude the alternating projections heuristic described in Section 4.3.

Datasets. To illustrate the properties of our algorithms we use both
synthetic and real datasets as described below.
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Figure 1: Error analysis on real datasets: (a) and (b) measure error in item ratings estimates as % of incorrect items, and (c) and
(d) measure error in user reliabilities using correlation coefficient. Lower % means better item estimates, while higher correlation
coefficient means better user estimates. In all cases, ALGORITHM 2 is either best or second best. In terms of aggregate error,
ALGORITHM 2 is best in both the item rating estimates and one user reliability estimate.

Name m labels n responses
TREC.stage2 3568 3568 181 10,751
TREC.task1 3297 3297 120 12000
TREC.task2 19033 2275 762 88385

NLP.rte 800 800 164 8000
NLP.temp 462 800 76 4620

NLP.emotions 600 600 228 6000

Table 1: Statistics for the real datasets used in our experiments.

(1) TREC10: this dataset is a collection of topic-document pairs
labeled as relevant or non-relevant by mechanical turks. Several of
the labels have ground truth assigned as well. There are three dis-
tinct datasets corresponding to different competitions of the work-
shop: namely, TREC.stage2, TREC.task1, and TREC.task2.
The number of items, labeled items, users, and user responses for
these datasets have been summarized in Table 1.

(2) NLP: this dataset [16] is a collection of three human judged

10sites.google.com/site/treccrowd/home

datasets, all having ground truth labels, as summarized in Table 1.
(3) Synth: this is a synthetically generated dataset to help us

analyze various algorithms in a controlled setting as a function of
the numbers of responses by users and user reliabilities.

6.1 Real datasets
We compare the different algorithms over the TREC and NLP

datasets. We evaluate both item rating estimates and user reliabil-
ity estimates. Error in item ratings is measured in terms of % of
incorrect item rating. Thus lower the value, better is the estimate.

Figure 1(a) shows the error for the three TREC datasets. We also
show the overall aggregate error, which is the % of total items in-
correctly predicted over the three datasets. For the first two datasets,
the best algorithms are ALGORITHM 2 and EM, with MAJORITY
much worst than the rest. This is perhaps because as we will see in
synthetic datasets, MAJORITY is very sensitive to presence of spam-
mers. In the third dataset, MAJORITY is in fact the best, along with
ALGORITHM 2. Thus overall, ALGORITHM 2 is the most robust
algorithm and has lowest aggregate error for the TREC dataset.11

11Surprisingly, LOWERBOUND for TREC.task1 is worse than some
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Figure 2: Item errors on synthetic data. User degrees are drawn according to a power law. First row considers equal number
of spammers, hammers, and random users, while second considers only hammers and random users. First two columns consider
user reliabilities positively correlated with their degrees, while third and fourth considers negative correlation. We break each
scenario into two graphs to better visualize the differences. In all graphs as max degree increases, so does the degree skew, and then
ALGORITHM 2 performs consistently better than GKM and KOS. In presence of spammers (first row), MAJORITY and EM deteriorate.
ALGORITHM 2 performs well across the spectrum.

Figure 1(b) shows the item errors for the three NLP datasets.
Again we see a similar story here, ALGORITHM 2 is best in two
out of the three datasets. For the third, MAJORITY is best, with
ALGORITHM 2 not far behind. Overall, ALGORITHM 2 has the
lowest aggregate error in NLP.

Next we analyze the error in user reliability estimates. Since
some of the algorithms like KOS give user reliabilities only up to a
constant normalization factor, we cannot directly measure user re-
liability estimates by comparing them to the ground truth (as they
could be off by a constant factor). Thus we use Pearson’s corre-
lation coefficient to measure the accuracy of user reliability esti-
mates, which is always a number between −1 and 1, and measures
the correlation between two vector quantities. A value of 1 means
complete positive correlation (up to some affine transformation), 0
means the two quantities are independent of each other, and −1
means they are negatively correlated. Larger the value, more the
positive correlation, and therefore lower the error.

Figure 1(c) and 1(d) show that ALGORITHM 2 is either the best or
close to the best in estimating user reliabilities for all the datasets,
while other algorithms significantly underperform in at least one of
the datasets.

6.2 Synthetic data
To better understand the performance of the algorithms with re-

spect to the different parameters, we perform experiments over syn-
thetic datasets. We generate synthetic datasets using the following
steps. The number of items and the number of users is fixed to
1000 and 100 respectively. For the items, their binary ratings are
generated as i.i.d. Bernoulli variables with p = 1/2.

algorithms. This is because many of the users are close to random,
as evident in high % errors for this dataset. Thus having a true
estimate for these random users is not helpful, and LOWERBOUND
is in fact worse than some of the other algorithms.

For generating the bipartite graph between the items and users,
we use powerlaw sequences for user degrees, where the number of
items rated by users follow a powerlaw distribution with an expo-
nent of 2.5. In each case, we generate a random graph satisfying
the given degree sequence. We study the accuracy of different al-
gorithms as a function of the maximum degree.

We define three types of users: hammers, which have reliability
0.8, spammers, who have reliability −0.8, and random, who have
reliability of 0. We study the performance of algorithms as a func-
tion of the fraction of spammers, hammers and random users in the
dataset. We consider two configurations: equal spammers, consist-
ing of equal number of hammers, spammers and random users, and
no spammers, consisting of equal number of hammers and random
users.

To model real-life scenarios we consider cases when the user re-
liabilities are correlated with degrees. For e.g., reliable users could
be more expensive, and hence offer less number of labels. Thus we
consider the case of negative correlation where reliabilities are neg-
atively correlated to the user degrees. For the sake of completeness,
we also consider the case of positive correlation where reliabilities
are positively correlated to user degrees.

This gives us four combinations: equal vs. no spammers and
positive vs. negative correlations. Figure 2 shows the performance
of all the algorithms for the four combinations. We explain the
results below.

Figures 2(a) and 2(b) contains the results of the dataset with
equal spammers and positive correlations. We break the graph into
two parts to focus on the low and high degree parts separately. Be-
cause of a large number of spammers, MAJORITY has an error rate
close to 50%, which is so large that it does not even appear in the
plot. EM also has a very large error for low max degree, but be-
comes competitive for high max degree. As the maximum user de-
grees become larger, the skew in degrees also becomes larger, and
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we notice that ALGORITHM 2 performs consistently better than the
spectral methods of GKM and KOS for high maximum degree. This
difference, although slight in synthetic data, manifests as a large
one in real datasets, where the degree sequences are even more
non-uniform. We see a very similar trend in Figures 2(c) and 2(d).

For Figures 2(e) and 2(f), which have no spammers and positive
correlation, MAJORITY and EM do better than before. In fact, EM
does slightly better than the spectral algorithms. Among the spec-
tral algorithms, ALGORITHM 2 outperforms everyone else because
of the non-uniform degree sequence. Figures 2(g) and 2(h) show
as a similar trend for negative correlations as in the case of positive
correlation, but the effect is less pronounced with all the algorithms
bunched together more closely.

In summary, KOS and GKM perform well when the degrees are
uniform (maximum degree is small and close to the minimum),
but deteriorate when there is a skew in the degrees. EM performs
well when there are no spammers, but deteriorates with the in-
troduction of spammers. ALGORITHM 2 works well across the
spectrum, and is robust to spammers and non-uniform degree se-
quences. This helps ALGORITHM 2 perform well on most synthetic
and real datasets.

7. CONCLUSIONS
We studied the problem of aggregating user ratings when the

user–item rating graph is arbitrary. We formulated a matrix com-
pletion problem and presented two eigenvector-based algorithms
that have guaranteed error bounds when the resulting user–user co-
rating graph satisfies expansion properties. It would be interesting
to see if one can say anything directly about the alternate-projection
based technique under a similar set of assumptions. In practice not
all items need similar effort to rate; incorporating this difficulty is
also an interesting open direction.
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