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ABSTRACT
With the availability of cheap location sensors, geotagging
of messages in online social networks is proliferating. For
instance, Twitter, Facebook, Foursquare, and Google+ pro-
vide these services both explicitly by letting users choose
their location or implicitly via a sensor. This paper presents
an integrated generative model of location and message con-
tent. That is, we provide a model for combining distribu-
tions over locations, topics, and over user characteristics,
both in terms of location and in terms of their content pref-
erences. Unlike previous work which modeled data in a flat
pre-defined representation, our model automatically infers
both the hierarchical structure over content and over the
size and position of geographical locations. This affords sig-
nificantly higher accuracy — location uncertainty is reduced
by 40% relative to the best previous results [21] achieved on
location estimation from Tweets.

We achieve this goal by proposing a new statistical model,
the nested Chinese Restaurant Franchise (nCRF), a hierar-
chical model of tree distributions. Much statistical structure
is shared between users. That said, each user has his own
distribution over interests and places. The use of the nCRF
allows us to capture the following effects: (1) We provide
a topic model for Tweets; (2) We obtain location specific
topics; (3) We infer a latent distribution of locations; (4)
We provide a joint hierarchical model of topics and loca-
tions; (5) We infer personalized preferences over topics and
locations within the above model. In doing so, we are both
able to obtain accurate estimates of the location of a user
based on his tweets and to obtain a detailed estimate of a
geographical language model.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; [I.2.6] [Artificial Intelligence]:
Learning – Parameter Learning; I.2.7 [Artificial Intelli-
gence]: Natural Language Processing
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1. INTRODUCTION
Micro-blogging services such as Twitter, Tumblr and

Weibo have become important tools for online users to share
breaking news, interesting stories, and rich media content.
Moreover, they are widely used for disseminating informa-
tion in emergencies, such as the Tsunami in Japan or Hur-
ricane Sandy in New York. Moreover, Twitter was used
extensively in elections and played an instrumental role in
facilitating the Arab Spring.

In addition to its use as a content sharing platform,
micro-blogging services like Twitter, along with other lo-
cation sharing services such as Foursquare, Gowalla, Face-
book Places or Google+ are nowadays supporting location
services. That is, users are able to specify their location
in messages, either explicitly, by letting users choose their
place, or implicitly, by enabling geo-tagging functionality.
Such pervasive geotagging is facilitated by the availability
of cheap GPS sensors and improved location based services,
e.g. via the use of WiFi fingerprinting in mobile devices.

1.1 Related Work
This wealth of data presents an exciting opportunity for

statistical modeling. For instance we may analyze the re-
lationship between content creation and sharing and con-
versely, this allows us to infer geographic location purely
based on user-generated content. These issues have at-
tracted significant attention [23, 28, 17, 13, 12], however, in-
corporating geographical information, language models and
user preferences simultaneously is nontrivial. Many mod-
els only cover some aspects of the problem described above
while ignoring the remainder. For instance, [30] partition
the earth into equally sized grids and learn language models
per area. This approach has two important shortcomings:
the size or the number of grids is pre-defined and cannot be
adapted efficiently according to the underlying distribution.
Secondly, the model loses the ablity to uncover global top-
ics shared across areas. On the other hand, [24] use uneven
grids. However their work ignores shared interests among
users. Moreover, the hidden structure inherent in the distri-
bution over regions is ignored.

Another line of research [17, 16, 21] takes regional lan-
guage variations and global topics into account by bridging
finite mixture Gaussian models and topic models. Unlike
pre-defined grids or regions, these models usually employ
a flat clustering model of locations. This flat structure is
unnatural in terms of the language model: while it is rea-
sonable to assume that New Yorkers and San Franciscans
might differ in terms of the content of the tweets, it is also
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reasonable to assume that as a whole American tweets are
more similar to each other, than to tweets from Egypt, China
or Germany. As a side effect, location prediction is not al-
ways satisfactory. For instance the languge model of some
big regions can degenerate to stopwords [17] while smaller
regions might correspond to airports [21].

1.2 Key Contributions
In this paper we describe a joint hierarchical model of

location and content, both personalized to the individual
preferences of a user. That is, we build a generative hier-
archical model for topics occurring in tweets. That is, we
assume that topics occurring at lower levels of the tree are
more specific versions of the topics found closer to the root
level. We perform a similar approach when dealing with
global topics. There their distribution is assumed to follow a
corresponding hierarchical structure. Moreover, we assume
that these topics are location specific, that is we adorn this
tree with locations at which such topics could be observed.
Finally, we represent users by modeling distributions over
leaves within the overall tree. That is, we encode location
specific generative models for each user.

Bayesian nonparametrics is rich in structured and hier-
archical models. Nonetheless, we found that no previously
proposed structure was a good fit for our needs, hence the
need the model proposed in this paper — the nested Chinese
Restaurant Franchise (nCRF). It addresses the following key
problem: we want to model each user’s tweets in a hierar-
chical tree-like structure akin to the one described by nested
Chinese Restaurant Process or the hierarchical Pachinko Al-
location Model. At the same time we want to ensure that we
have sharing of statistical strength between different users’
activities by sharing the hierarchical structure.

Our model allows us to discover a hidden tree structure
with unbounded width and depth while allowing users to
have different distributions over this structure. The num-
ber of regions and their hierarchical structure are learned
from data, and language models as well as topic distribu-
tions are cascaded over the tree structure, resulting in more
natural clustering of tweets and locations. We develop an
efficient algorithm to perform posterior inference and apply
the framework to organize tweets into a hierarchical struc-
ture and show that this tree structure can be used to better
predict locations of unlabeled tweets, resulting in significant
improvements to state-of-the-art approaches. In addition,
we show some interesting hidden patterns that are revealed
through this hierarchical modeling. These experiments pro-
vide theoretical validation of the model.

This model is experimentally validated by demonstrat-
ing significantly better accuracy (39% and 45% respectively
on two benchmark datasets relative to the best prior work
[21]) in inferring the location of a tweet without having ac-
cess to its geographical location. Secondly, we are able to
annotate locations with topics without suffering from any
of the degeneracies inherent in [17, 21]. These topics form
a human-understandable hierarchy, generated automatically
from data without the need for manual intervention. This
can be used, e.g. for improved content targeting and repre-
sentation. It also provides improved information regarding
the locations and topical preferences of individual users.

2. BACKGROUND
Given the considerable amount of prior work both on

Bayesian Nonparametrics and on the analysis of user gen-
erated content it is worth while to discuss these issues in
further detail before introducing the nested Chinese Restau-
rant Franchise and its application to Tweets. We begin with
a summary of key aspects when modeling microblogs.

2.1 Modeling Microblogs
There is a substantial body of research on geographical

language modeling. We review some key threads:
[23] propose a model based on Probabilistic Latent Se-

mantic Indexing (PLSA) [20]. It assumes that each word
is either drawn from a universal background topic or from
a location and time dependent language model. However,
the mixture coefficients between the background topic and
other spatio-temporal topics ones is tuned manually. Since
the model uses PLSA, no prior distribution is (or could be)
assumed. Evaluation is performed via anecdotal results.

[28] introduce a fully Bayesian generative model. Rather
than working with actual locations, they fixed a number of
region labels and assume that each term is associated with
a location label. For each word in a document, a topic as-
signment is first generated according to a multinomial dis-
tribution. Then the term and the location are generated
dependent on this topic assignment. Again the evaluation is
limited to anecdotal results.

[25] propose a similar model. For evaluation they measure
Deviation Information Criteria (a model complexity crite-
rion similar to BIC), as well as classification accuracy using
manually labeled data. One of the drawbacks of the work is
that they only use data from Flickr restricted to the greater
London area. [19] extend [28] by introducing the notion of
global and local topics. Inference uses Gibbs Sampling.

[17] propose a model utilizing the correlations between
global and local topics. In their model, each author is as-
signed a latent region variable and an observed GPS loca-
tion. Terms and the actual GPS location are both condi-
tioned on the latent region variable. The topics to generate
terms are local topics, which are derived from global top-
ics. For inference [17] use Variational EM. For evaluation
purposes the accuracy of predicted location is used.

[31] propose a model similar in spirit to [17]. The terms
and the location of a particular document are generated by
a latent region. The location is generated from a region by a
normal distribution and the region is sampled from a multi-
nomial distribution. However, inference is performed using
MAP-style EM rather than a fully Bayesian approach. [30]
use an even simpler approach where documents are assigned
to geodesic grids and thus a supervised learning method is
utilized, essentially via a näıve Bayes classifier on the grid.

Finally [13] studied human mobility in location sharing
services. They found that users tend to appear in a very lim-
ited number of places (e.g., office and home). They demon-
strated that it might be effective enough to use a two com-
ponent Gaussian mixture model to estimate users’ locations.

2.2 The Chinese Resturant Process
We now proceed to reviewing some key components of the

statistical toolkit we employ for content modeling. One of
the prototypical ingredients for nonparametric modeling is
the Dirichlet Process DP (H, γ) [18, 8, 10]. It allows for a
discrete distribution of observations drawn from an arbitrary
base measure H. We write G0 ∼ DP (H, γ) to denote a draw
from a DP where γ controls the variance of the draws around
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the base measure. G0 is itself a distribution over an infinte
number of components. We then draw parameters θi ∼ G0.
Placing this prior on top of a mixture model we get the
Drichlet process mixture model (DPM). In DPM we extend
the aforementioned generative process to finally draw the
observed data points xi from θi: xi ∼ f(θi).

A useful view of the Dirichlet Process is the Chinese
Restaurant metaphor. In it each data point is considered
as a customer in a restaurant with an infinite number of ta-
bles. Initially all tables are empty. Customers pick existing
tables in proportion to their popularity. In it the probability
for customer i to pick table j is

Pr {zi = j} =

{
Nj∑

k Nk+α
for an existing table

α∑
k Nk+α

for a new table.
(1)

Here zi encodes the choice of customer i. Nj denotes the
current number of customers sitting at table j and

∑
kNk

is the total number of customers so far. This makes the
Chinese Restaurant Process a single parameter distribution
over partitions of the integers. The ‘dish’ xj ∼ H chosen at
table j is drawn iid from H, the base measure. i

2.3 Franchises and Hierarchies
A key ingredient for building hierarchical models is the

Hierarchical Dirichlet Process (HDP). It is obtained by cou-
pling draws from a Dirichlet process by having the reference
measure itself arise from a Dirichlet process [26, ]. In other
words, rather than

G ∼ DP (H, γ) we now have Gi ∼ DP (G0, γ
′) (2)

and G0 ∼ DP (H, γ) (3)

Here γ and γ′ are appropriate concentration parameters.
This means that we first draw atoms from H to obtain G0.
This is then, in turn, used as reference measure to obtain
the measures Gi. They are discrete and share atoms via G0.

The Hierarchical Dirichlet Process is widely used in ap-
plications where different groups of data points would share
the same settings of partitions, such as [26, 9]. In the con-
text of document modeling the HDP is used to model each
document as a DP while sharing the set of atoms (mixtures
or topics) across all documents. This is precisely what we
also want when assessing distributions over trees — we want
to ensure that the (partial) trees attached to each user share
attributes among all users.

Integrating out all random measures, we arrive at the
Chinese Restaurant Franchise (CRF). In it each restaurant
maintains its set of tables but shares the same set of mix-
tures. A customer at restaurant k can sit at an existing table
with a probability proportional to the number of customers
sitting on this table, or start a new table with probability α
and chose its dish from a global distribution. In this global
distribution, a dish (mixture) is chosen proportional to its
use across restaurants, however, a new global dish can be
chosen with probability proportional to γ.

2.4 The Nested Chinese Restaurant Process
CRPs and CRFs allow objects, such as documents, to be

generated from a single mixture (topic). However, they do
not provide a relationship between topics. One option to
address this issue is to introduce a tree-wise dependency.
This was proposed in the nested Chinese Restaurant Pro-
cess (nCRP) by [11]. It defines an infinite hierarchy, both

in terms of width and depth. In the nCRP, a set of top-
ics (mixtures) are arranged over a tree-like structure whose
semantic is such that parent topics are more general than
the topics represented by their children. A document in this
process is defined as a path over the tree, and it is generated
from the topics along that path using an LDA-like model. In
particular, each node in the tree defines a Chinese Restau-
rant Process over its children. Thus a path is defined by
the set of decisions taken at each node. While this provides
more expressive modeling tool, it is still only allows each
document to have a single path over the tree – a limitation
that our model in Section 3 will remedy.

3. THE NESTED CHINESE RESTAURANT
FRANCHISE PROCESS

We are now in a position to introduce the Nested Chinese
Restaurant Franchise (nCRF). As its name suggests, it bor-
rows both from the Chinese Restaurant Franchise, thus al-
lowing us to share strength between groups, and the Nested
Chinese Restaurant Process, thus allowing us to obtain a
hierarchical distribution over observations. Although the
Nested Chinese Restaurant Process, introduced in [11], pro-
vides a convenient way to impose a distribution over tree-like
structures, it is difficult to apply it directly in our settings
due to the reason that the nCRP-induced distribution over
the hierarchy is a global distribution shared across all data
partitions, such as documents. Instead, in our case, we wish
to have a personalized distributions over the same hierar-
chy for each user. Subsequently, we adorn each vertex in
the tree with a generative model to represent language and
topic cascades. In the context of spatial modeling of user
generated content, for instance, each node in the tree rep-
resents a geographical region. In the context of document
modeling, we will associate each document with an nCRP
and tie together documents using the franchise. Details of
the nCRF, as applied to these problems are given in later
sections. For now we focus on the generative process itself.

3.1 Basic Idea
Our goal is to design a non-parametric model over trees,

where each user has its own tree, but the set of nodes in the
trees, and their structure, such as parent-child relationships,
are shared across all users. This process is illustrated in
Figure 1. In a nutshell, we achieve this by associating an
nCRP process with each user.

In Figure 1 each node in all processes (global and user
processes) defines a distribution over its children. This dis-
tribution is represented by the histograms attached to the
vertices A,A1, A2 and B,B1, B2 respectively. A user first
selects a node. Subsequently the generative model for the
data associated with this particular vertex is invoked. For
instance, user 1 first selects a sibling of node A1 based on
the local distribution or with probability proportional to α
he creates a new child. In the latter case the child is sampled
according to the global distribution associated with node A.
Then user A continues the process until a path is fully cre-
ated. For instance, if the selected node isB1 then the process
continues similarly. Thus Nodes A,A1 and A2 constitute a
CRF process. In general, isomorphic nodes in the global
and user processes are linked via a CRF process. Since the
user selects a path by descending the tree, we call this pro-
cess the nested CRF process. An equivalent representation
is the nHDP process, where the base measure at nodes A1
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and A2 is sampled from the base measure at node A. The
base measure at node A is in turn sampled from a global
base measure over the integers. Note that the global tree is
just a superset of all user trees, and each user only places
some probability mass in selected regions he visits. Once the
trees are generated, we define a cascading process of node
attributes over the tree.

3.2 A Chinese Restaurant Metaphor
Consider the case where we want to generate a path for a

tweet written by user u. We first start at the root node in
the process of user u. This root node defines a CRP process
over its children. Thus we can select an existing child (in
this user’s tree) or create a new child. In the later case, the
global CRP associated with the root node is consulted. A
child in the global tree is selected with probability propor-
tional to its global usage across all users. Alternatively a
new child node is created (and thus made accessible to all
other users). All selection probabilities are governed using
the standard CRF’s rich-gets-rich mechanism. Once a child
node is selected, the process recurses with that node until a
full path is defined.

We need some notation regarding the structure of the trees
over different topics. We denote by i a vertex in the tree.
level(i) denotes the level of node i, C(i) denotes the chil-
dren and π(i) its parent. Moreover, nij is the number of
times child j is selected at node i when generating data
and ni :=

∑
j nij is the number of (non-unique) children of

i. Moreover, we use the superscript u to index the above
quantities for each user. That is, nui , nuij , C

u(i) are match-
ing user-specific quantities. Clearly πu(i) = π(i) since the
user trees are mapped to the common tree. Also note that
usually Cu(i) ⊂ C(i), i.e. we only select a subset of nodes
in the user tree.

This allows us to specify the collapsed generative proba-
bilities at vertex i. As per the Chinese Restaurant metaphor
the probability of selecting an existing child node is

Pr {child j at i} =


nuij
nui +α

if j ∈ Cu(i) is from the user tree
α

nui +α
otherwise

(4)

Whenever we choose a child not arising from the user tree
we fall back to the distribution over the common tree. That
is, we sample as follows:

Pr {child j at i} =

{
nij
ni+β

if j ∈ C(i)
α

ni+β
if this is a new child

(5)

Combining (4) and (5) we have the full probability as

Pr {child j at i} =


nuij
nui +α

+ α
nui +α

nij
ni+β

if j ∈ Cu(i)
α

nui +α

nij
ni+β

if j ∈ C(i)\Cu(i)
α

nui +α
β

ni+β
if j 6∈ C(i)

Note here that we used a direct-assignment representation
for the CRF at each node to avoid overloading notations
with maintaing different tables for the same child at each
node. This is correct due to the coagulation / fragmentation
equivalence in Dirichlet Processes [22]. In other words, in all
CRPs, each child node is represented by a single table, hence

A	  

B

Global	  process	  

A1	  

B1	  

User	  1	  process	  

A2	  

B2	  

User	  2	  Process	  

Figure 1: An illustration of the nested Chinese
Restaurant Franchise involving a common tree over
components (left) and two subtrees representing
processes for two separate subgroups (e.g. users on
Twitter). Each user samples from his own distri-
bution over topics, smoothed by the global process.
Thus each user process represents a nested Chinese
Restaurant Process. All of them are combined into
a common franchise, hence the name nCRF.

table and child become synonymous and we omit the notion
of tables. During inference, an axillary variable method is
used to link the local nuij and global counts nij using the
Anotoniak distribution as described by [26].

Once a child node is selected, the process is repeated until
a full path is defined. To ensure that the path terminates we
need to add the notion of an ‘exit child’. We use sequence
notation to index a vertex in the tree (e.g. 2:5:3:1 means
choosing a path which uses the second, fifth, third and then
first vertex in the path respectively) we define child 1 to be
the terminator. In other words, whenever we select child 1
anywhere on the path, sampling terminates. At this point
the observation is generated using the global parameters as-
sociated with node i.

Two important notes are in order here: We keep a global
index of the children under each node across all users and
track which of them are materialized under each user’s tree
using the list Cu(.). Hence giving a special semantic to child
1 under each node is valid. Second, we stress that indices
are only unique under each parent node, that is, we need
to specify the entire path when implementing the inference
routines. However, when referring to a generic node in the
tree we simply refer to node i, ignoring the fact that i is in
fact, a slightly more complex data structure tracing the path
from root to a particular vertex. Note that by construction
this sequence must end in a 1, i.e. the exit child. Also note
that we could use a different smoothing probability for the
first vertex as was done in [1].

4. GENERATING MICROBLOGS
Microblogs are a rather unique form of expression. They

are concise, often very situation and context specific, and
they exhibit characteristics unique to to their authors. We
want to capture this in a generative model. More to the
point, we are given collections of tweets with timestamps,
location information, and information regarding the author
of the tweets. We want to use this to form a joint generative
model of both location and content. We use tweets and
documents interchangeably to mean the same object.

A natural assumption is that locations come with their
own location specific topics, such as airport names, local
sports teams, politicians, companies, festivals, language id-
iosyncrasies, foreign languages, etc.; That said, it is rea-
sonable to assume that some topics are globally popular.
Nonetheless, their relative degree of popularity is likely to
be location specific. One would assume that these prefer-
ences correlate hierarchically. That is, quite likely tweets in
California are more similar to those in Oregon than, say, in
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Bavaria. This suggests that it might be possible to arrange
content and location preferences in a tree.

The above reasoning leads to a tree for arranging loca-
tions, local topics, and general topic preferences in a struc-
tured fashion. In statistical terms this means that we will
model locations in a hierarchical tree-wise fashion. That
is, we will assume that locations drawn from the leaves of
a vertex are more similar between each other than on an-
other vertex of the tree. Likewise, we assume hierarchical
dependence of the language model, both in terms of content
of the region specific language models and also in terms of
prevalence of global topics.

While these steps are useful in their own right, they do
not yet resolve the issue of user specific preferences. That
is, users commonly only frequent a small number of places.
Moreover, they only tend to write about a relatively small
subset of topics. Hence, a global tree-based hierarchical
model is unlikely to be a good fit for the tweets generated
by individuals. A better approach is to assume that users
only select a subtree of the global topic and location distri-
bution and generate news based on this. By intertwining
location and topical distributions into a joint model we are
able to dynamically trade off between improved spatial ac-
curacy and a better content description. This leads to an
improved model of both content and location. In fact, we
find that our model is significantly beter than any previous
location estimator using Tweets. We now map the above
intuitive description of the process to a concrete model of
data generation.

Tree distribution: This was discussed in the context of
the nested Chinese Restaurant Franchise above. Recall
that at each vertex i we assume that the distribution
over children follows a CRP process.

The first component corresponds to the probability
mass of observations remaining at the present vertex
whereas all other components correspond to proper
children of i. Note that this means that different ver-
tices may have different numbers of children. It also
means that with probability 1 any path in the tree
terminates after a finite number of steps. This greatly
simplifies inference since we never need to instantiate
an infinite hierarchy.

Hierarchical location model: In analogy to [1] we con-
sider a hierarchical multivariate Gaussian model. The
main distinction is that we need not instantiate a
shrinkage step towards the origin at each iteration (this
would be ill defined on the surface of the earth). In-
stead, we simply assume an additive Gaussian model.
We are able to achieve this simply since we assume
decreasing variance when traversing the hierarchy,
whereas [1] did not impose such a constraint. This
yields the following model:

µr ∼ N
(
µπ(r),Σπ(r)

)
and Σr =

1

level(r)
Σ0. (6)

Here Σ0 is the covariance matrix of the root node, and
µr,Σr are the mean vector and covariance matrix of
region r. and In other words, we obtain a tree struc-
tured Gaussian Markov Random Field. This is desir-
able since inference in it is fully tractable in linear time
by means of message passing.

Generic topics: In our model we assume that we have a
finite number of topics T (that this could easily be
alleviated but we found that this was unnecessary in
our experiments and it made it more difficult to pre-
dict well bounded memory footprint). We denote each
global topic by Πi. It is drawn from a Dirichlet distri-
bution over V words:

Πi ∼ Dir(η). (7)

Note that one could add hierarchical language models
over topics (or longer range n-grams as discussed e.g.
by [29]). This is likely to improve estimation quality
for longer and structured texts.

Location specific language model: Using the intuition
that geographical proximity is a good prior for simi-
larity in a location specific language model we use a
hierarchical Dirichlet Process to capture such correla-
tions. In other words, we draw the root-level language
model from

φ0 ∼ Dir(η). (8)

At lower levels the language model is drawn using the
parent language model as a prior. That is, we use

φr ∼ Dir
(
ωφπ(r)

)
(9)

In doing so, we will obtain more specific topics at lower
levels whereas at higher levels less characteristic tokens
are more prevalent.

Location specific mix of topics: A similar construction
can be used for hierarchically modeling distributions
over topics hierarchically. This acts as a mechanism
for mixing larger sets of words efficiently rather than
just reweighting individual words. θr is constructed
in complete analogy to the location specific language
model. That is, we assume the hierarchical model

θ0 ∼ Dir(β) (10)

θr ∼ Dir
(
λθπ(r)

)
(11)

User specific tree distribution: Again, this is as de-
scribed in Section 3. We use the distribution over the
common tree as a prior and draw a user specific tree
distribution over regions and associated topics.

In summary, the generative process is as follows: for each
tweet d by user u, we firstly use nCRF to choose a node
(latent region) r. Once this node is chosen, both the con-
tent of the document (words) and the geographical location,
i.e. latitude and longitude, are generated from corresponding
distributions of this node. For the geographical location, the
generative process is straightforward as it is drawn from the
regional dependent multivariate normal distribution. For
each word w in the document d, we firstly choose a topic
assignment z from the regional dependent topic distribu-
tion. Then, a word w is generated from the corresponding
language model.

We have two sets of language models: global topics en-
coded in a global matrix Π and regional language models φi,
one per latent region. Following the definition of the model
one would need to introduce a Bernoulli random variable
to determine which distribution might be the source for the
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word. However, this will introduce unnecessary overhead for
bookkeeping and sampling. Instead, we use a compact rep-
resentation exploiting the fact that a the mixture between
multinomials is multinomial. The idea is to augment the
global topic matrix with an additional topic (i.e. topic T+1)
and reserve this topic for the the regional language model
based on id. Every time this special index is sampled from
the topic distribution, we just refer to the Tweet’s regional
language model. More specifically, we use Π̄ to denote a
(T + 1)-row matrix, which combines the regional language
model and the original global topic matrix. Using this trick
we can eliminate the Bernoulli switch variable. This yields
the following generative process:

1. For each tweet d written by each user u:

(a) Sample a node rd ∼ nCRF(γ, α, u).

(b) If node rd is a globally new node then

i. µrd ∼ N
(
µπ(rd),Σπ(rd)

)
ii. φrd ∼ Dir

(
ωφπ(rd)

)
iii. θrd ∼ Dir

(
λθπ(rd)

)
(c) Sample a location ld ∼ N(µrd ,Σrd).

(d) For each word w(d,i):

i. Sample a topic index z(d,i) ∼ Multi(θrd).

ii. Sample word w(d,i) ∼ Multi(Πz(d,i)).

We repeat this generative process for all users in the corpus.

5. INFERENCE ALGORITHM
In this section, we describe a collapsed direct-assignment

Gibbs sampling algorithm to infer the latent structures im-
posed by the generative process introduced above. The ob-
served variables needed by the Gibbs inference algorithm
are: w(d,i), the i-th word in document d and ld, the geo-
graphical location of document d. In addition to these input
data, we also observe the author, as an index, of each docu-
ments. We collapse all multinomial variables and alternate
sampling a region assignment rd for each document/tweet d
from each user, a topic assignment z(d,i) for each word in the
document. Furthermore, we need to sample the parameters
(a mean vector and a covariance matrix) for multivariate
normal distributions to be able to calculate the probabili-
ties for geographical locations, and the mean-geographical
parameters for latent regions. We employ an auxiliary vari-
able method similar to [26] to deal with the cascading be-
havior of topic mixing vectors θ and φ. Each of the following
Sections detail each step.

5.1 Sampling Region Assignments
Instead of sampling a path rd, as a block as in the nCRP

[11], we use a level-wise strategy to sample a latent region
for each tweet1. Where rd is a specification of the path from
the root to the selected latent region. Lets say starting from
the root node, a document d with author u reached node i
on the tree, then it can descend the tree further as follows:

1. stay on the current node i – i.e. pick child 0, and set
rd,i = 0.

1This approximate strategy gives close results to the exact
method that samples a path as a block, while being much
faster. A detailed comparison is left to the full version of
this paper.

Algorithm 1: The sketch of one iteration of the infer-
ence algorithm. D is the total number of documents

Sampling region and topic assignments:
for d = 1 to D do

Sample region assignments rd, Eqn. (12)
Sample topic assignments zd, Eqn. (15)

Tree structure Kalman filter:
From the bottom to top:

Perform Eqn. (16, 17, 18)
From the top to the bottom:

Perform Eqn. (19,20)
Sampling topic proportions:

From the bottom to the top:
Sample ñr from C(r)∀r

From the top to the bottom:
Sample θr, Eqn. (13)

Sampling regional language models:
From the bottom to the top:

Compute m̃r from C(r)∀r
From the top to the bottom:

Sample φr, Eqn. (14)

2. Move to a child node j of i other than child 0, and set
rd,i = j

3. create a new child node of node i and move to it, and
set rd,i accordingly.

The probability of each choice shares a similar form:

P (rd,i = node | r−d, rest)P (wd, ld, zd | r, rest) (12)

where the second term in the right hand side is essentially
the probability of the data given a choice of the node, which
can be decomposed into three componenets: the probabil-
ity of the document (terms) P (wd | rd, rest) , the probabil-
ity of the location P (ld | rd, rest), and the probability of the
topic indicators P (zd | rd, rest). For P (ld | r, rest), it is in-
deed P (ld |µrd ,Σrd), evaluating the multivariate normal dis-
tribution associated to the corresponding node at ld (This
is because we explicitly represent these normal parameters,
which is discussed in Section (5.5)). The component corre-
sponding to P (wd | r, rest) and P (zd | r, rest) are just stan-
dard Dirichlet-multinomial integrals which reduces to the
ration of two log-partition functions. Finally, the compo-
nent P (rd = node | r−d, rest), is computed according to the
nCRF process defined in Section (3.2).

Once a decision is made over node i and a child (other
than 0) is selected, we descend with that child and repeat
the process. The key idea here is that each node among the
children of i acts as proxy for the subtree rooted under it due
to the cascading nature of how the parameters are defined,
and as such allows us to make an informed decision at each
node separately without sampling the path as a block.

5.2 Sampling Topic Proportions
Since topic proportions for different regions are linked

through the cascading process defined in Equation (11), we
use an auxiliary variable method similar to [26] that we de-
tail below. We sample θr based on three parts: 1) actual
counts nr associated with node r, 2) pseudo counts ñr, prop-
agated from all children nodes of r and 3) topic proportion
θπ(r) from the parent node of r. Thus, topic proportions for
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π(r)

r

p1 . . . pC(r)

. . . . . .
ñp1 ñpC(r)

θπ(r)

Figure 2: This is a demonstration of sampling θr, the
distribution over topics for node r. The sampling is
drawn from a Dirichlet distribution with parameters
consisting of count statistics nr from node r, pseudo
counts ñr gathering from its children nodes and topic
proportions θπ(r) from its parent node.

node r are influenced by its children nodes and its parent
node, enforcing topic proportion cascading on the tree.

To sample ñr, we start from all children node of r. Let s̃p,k
be the number of counts that node p ∈ C(r) will propagate
to its parent node r and np,k is the actual number of times
topic k appears at node p. We sample s̃p,k by the following
procedure. We firstly set it to 0, then for j = 1, · · · , np,k +

ñp,k, flip a coin with bias
λθr,k

j−1+λθr,k
, and increment s̃p,k if

the coin turns head. The final value of s̃p,k is a sample
from the Antoniak distribution. Thus, for node r, ñr,k =∑
p∈C(r) s̃p,k. This sampling procedure is done from the

bottom to the top. Note that s̃p,k has the meaning as the
number of times the parent node was visited when sampling
topic k at node p.

After smoothing over the tree from bottom to the top,
we will have pseudo counts on each node. Thus, new topic
proportions for each node can be effectively sampled by:

θr ∼ Dir
(
nr + ñr + λθπ(r)

)
(13)

where nr is the actual count vector for node r and ñr is the
pseudo count vector. We do this process from the top to the
bottom of the tree.

5.3 Sampling Regional Language Models
As we discussed before, regional language models are

cascaded through the tree structure. Thus, we need to
sample them explicitly in the inference algorithm. The
sampling process is also a top-down procedure where we
start from the root node. For the root node, we always
sample it from a uniform Dirichlet distribution φroot ∼
Dir(0.1/V, · · · , 0.1/V ). For all other nodes, we sample φr
from:

φr ∼ Dir
(
mr + m̃r + ωφπ(r)

)
(14)

where mr is the count vector for node r, m̃r is a smoothed
count vector for node r and ω is a parameter. Here, m(r,v)

is the number of times term v appearing in node r. For m̃r,
it is a smoothed vector of counts from sub-trees of node r.
It can be sampled through a draw from the corresponding
Antoniak distribution, similar to Section (5.2). However,
since the element in φr is much larger than topic proportions,
it is not efficient. Here, we adopt two approximations [15,
27]:

1. Minimal Paths: In this case each node p ∈ C(r)
pushed a value of 1 to its parent, if mp,v > 0.

2. Maximal Paths: Each node r propagate its full count
mp,v vector to its parent node.

The sum of the values propagated from all p ∈ C(r) to r
defines m̃r. Although the sampling process defined here is
reasonable in theory, it might be extremely inefficient to
store φ values for all nodes. Considering a modest vocabu-
lary of 100k distinct terms, it is difficult to keep a vector for
each region. To address this we use the sparsity of regional
language models and adopt a space efficient way to store
these vectors.

5.4 Sampling Topic Assignments
Given the current region assignment, we need to sample

the topic allocation variable z(d,i) for word w(d,i) in docu-
ment d:

P (z(d,i) = k |w, z−(d,i), r, l,Θ,Φ) ∝
P (z(d,i) = k | z−(d,i), r,Θ,Φ)P (w(d,i) | z, w−(d,i),Φ)

Since all θ are integrated out, this is essentially similar to the
Gibbs sampling in LDA where document-level topic propor-
tions in LDA becomes region-level topic proportions. Thus,
we can utilize a similar equation to sample topic assign-
ments. Note, as we discussed in the last section, we have
a (T + 1) matrix Π where the first dimension is a special
row for regional language models that are distinct for each
region. The sampling rule is as follows:

(
ñ−ir,k + n−ir,k + ρθπ(r),k

)[
m−i
k,v

+η∑
wm

−i
k,w

+V η

]
k 6= 0(

ñ−ir,0 + n−ir,0 + ρθπ(r),0
)[m−i

r,v+m̃r,w+λφπ(r),v∑
wm

−i
r,w+m̃r,w+λ

]
k = 0

(15)
where v ≡ w(d,i), nr,k is the number of times topic k ap-
pearing in region r and mk,v is the number of times term v
assigned to k. Here, nr,0 and mr,v serve the purpose for the
special index for the regional language model. Note, n−i∗
and m−i∗ mean that the count should exclude the current
token.

5.5 Tree Structure Kalman Filter
For all latent regions, we sample their mean vectors as a

block using the multi-scale Kalman filter algorithm [14]. The
algorithm proceeds in two stages: upward filtering phase
and downward-smoothing phase over the tree. Once the
smoothed posterior probability of each node is computed,
we sample its mean from this posterior.

We define the following two quantities, Ψn to be the
prior covariance of node n, i.e. the sum of the covari-
ances along the path form the root to node n, and Fn =
Ψlevel(n)−1

[Ψlevel(n)]
−1, which are used to ease the compu-

tations below.
We first begin the upward filtering phase by computing

the conditional posterior for a given node n based on each
of its children m ∈ C(n). Recall that each child 0 of every
node specify the set of documents sampled directly from
this node. Thus we have two different update equations as
follows:

Σn,0 = ΨnΣπ(n)

[
Σπ(n) + |C(n)|Ψn

]−1

µn,0 = Σn,0Σ−1
π(n)

[ ∑
d∈C(n,0)

Id
]

(16)
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µn,m = Fmµ̂m

Σn,m = FmΣmF
T
m + FmΣn (17)

where m ∈ C(n). Once these quantities are calculated for
all children nodes for n, we update the filtered mean and
covariance of node n, (µ̂n, Σ̂n) based on its downward tree
as follows:

Σ̂n =
[
Ψ−1
n +

∑
m∈C(n)

[Σ−1
n,m −Ψ−1

n ]
]−1

µ̂n = Σ̂n
[ ∑
m∈C(n)

Σ−1
n,mµn,m

]
(18)

Once we reach the root node, we start the second downward
smoothing phase and compute the smoothed posterior for
each node (µ′n,Σ

′
n), as follows:

µ′root = µ̂root Σ′root = Σ̂root (19)

µ′n = µ̂n + Jn
[
µ′π(n) − µπ(n),n

]
Σ′n = Σn + Jn

[
Σ′π(n) − Σπ(n),n

]
JTn (20)

where Jn = Σ̂nF
T
n Σ̂−1

π(n). Here, Σ.,. and µ.,. are from upward

phase. After upward and downward updates, we sample the
mean µn of each node n from N(µ′n,Σ

′
n).

6. EXPERIMENTS
We demonstrate the efficacy of our model on two datasets

obtained from Twitter streams. Two types of location in-
formation are attached to tweets: 1) geographical locations
and 2) Twitter Places, a set of pre-defined places of inter-
est. For geographical locations, each tweet contains a real-
valued latitude and longitude vector. For Twitter Places,
we convert them into real-valued latitudes and longitudes.
We ignore all tweets without location information. More-
over, we remove all non-English tweets. This is achieved
by a simple dictionary based method. We randomly sample
10, 000 Twitter users from a larger dataset, with their full
set of tweets between January 2011 and May 2011, resulting
573, 203 distinct tweets. The size of dataset is significantly
larger than the ones used in some similar studies (e.g, [17,
31]). We denote this dataset as DS1. For this dataset, we
split the tweets into disjoint training and test subsets such
that users in the training set do not appear in the test
set (we use 80%-20% split). In other words, users in the
test set are like new users. This is the most adversarial
setting. In order to compare with other location predic-
tion methods, we also apply our model a dataset available
at http://www.ark.cs.cmu.edu/GeoText/, denoted as DS2,
using the same split as in [17]. The priors over topics and
topics mixing vectors were set to .1 and ω, λ to .1 favouring
sparser representation at lower levels. The remaining hyper-
parameters are tunded using cross-validation. We ran the
model until the training likelihood asymptotes.

6.1 Hierarchies and Topics
Our model sheds some light on interesting patterns that

are not easily obtained in other models: Figure 3 provides
a small subtree of the hierarchy discovered on DS1 with the
number of topics fixed to 10. Each box represents a region
where the root node is the leftmost node. The bar charts
demonstrate overall topic proportions. The words attached

Table 1: Top ranked terms for some global topics.

Entertainment
video gaga tonight album music playing artist video
itunes apple produced bieber #bieber lol new songs
Sports
winner yankees kobe nba austin weekend giants
horse #nba college victory win
Politics
tsunami election #egypt middle eu japan egypt
tunisia obama afghanistan russian
Technology
iphone wifi apple google ipad mobile app online
flash android apps phone data

Table 2: Location accuracy on DS1 and DS2.

Results on DS1 Avg. Error Regions
Yin 2011 [31] 150.06 400
Hong 2012 [21] 118.96 1000
Full 91.47 2254

Results on DS2 Avg. Error Regions
Eisenstein 2010 [17] 494 -
Wing 2011 [30] 479 -
Eisenstein 2011 [16] 501 -
Hong 2012 [21] 373 100
Full 298 836

to each box are the top ranked terms in regional language
models (they are all in English since we removed all other
content).

Because of cascading patterns defined in the model, it is
clear that topic proportions become increasingly sparse as
the level of nodes increases. This is desirable as we can see
that nodes in higher level represent broader regions. For
instance, the three regions shown on the first level roughly
correspond to Indonesia, the USA and the UK. This is con-
sistent with our observation that users from these countries
are active in generating geotagged Tweets. Also, by inves-
tigating the top ranked terms, we found that regional lan-
guage models can capture the area dependent variations of
languages, thus providing more discriminative features to lo-
cation prediction. Some examples of global topics are shown
in Table 1. Compared to regional language models, it is
also clear that these shared topics capture higher level of
interests among users across different regions2. Compared
to similar approaches such as [21] and [16], our hierarchi-
cal structure plus global topics has more expressive power is
arguably more intuitive.

6.2 Location Prediction
As discussed in Section 1, users’ mobility patterns can be

inferred from content. We test the accuracy by estimating
locations for Tweets. Differing from [17] who aim to esti-
mate a single location for each user (note that they use the
location of the first tweet as a reference, which may not be
ideal), our goal is to infer the location of each new tweet,
based on its content and the author’s other tweets.

Based on our statistics, only 1% ∼ 2% of tweets have

2The general politics topic contains words like Egypt and
Tunisia as these were globably popular keywords during the
time the data was collected – Jan-May 2011
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and,	  #followfriday ,	  
the,	  	  weekend,	  	  all,	  	  
play,	  google	  ,	  #ff,	  
has,	  	  did	  

jakarta,	  #iphonesia,	  
news,	  	  happy,	  	  
#jakarta,	  	  facebook,	  
#indonesia,	  	  	  day,	  
#tv	  

#ladygaga,	   #ff, the,	  	  
bieber,	  	  sunday,	  	  
home,	  #<,	  youtube,	  
holiday,	  	  twi=er	  

london,	   park,	  	  and,	  
#uk,	  home,	  	  all,	  	  not,	  	  
share,	  #followfriday	  

#california,	  earth,	  	  air	  
google,	  #sfo,	  terminal,	  	  
#<,	  google	  ,	  #ff,	  #ca	  

nyc,	  manha=an,	  
#show,	  	  #ladaygaga,	  	  
share,	  	  york,	  #<,	  #ff,	  
city,	  	  new	  

new,	  	  manha=an,	  ,	  
brooklyn,	  	  jus>n,	  	  
nyc,	  google	  ,	  #nyc,	  
bronx,	  	  york	  

#j@,	  land,	  coffee,	  
kennedy,	  port,	  	  air,	  star,	  	  
delay,	  flight,	  terminal	  

#occupy,	  #nyc ,	  park,	  
#<,	  	  new,	  	  street,	  	  
#free,	  #show,	  yankees,	  	  

Figure 3: A small portion of the tree structure discovered from DS1.

Table 3: Accuracy of different approximations and
sampling methods for computing φr.

Method DS1 DS2

Minimal Paths 91.47 298.15
Maximal Paths 90.39 295.72
Antoniak 88.56 291.14

Table 4: Ablation study of our model

Results on DS1 Avg. Error Regions
Hong 2012 [21] 118.96 1000
Flat 122.43 1377
Topic 109.55 2186
Global 98.19 2034
Full 91.47 2254

Results on DS2 Avg. Error Regions
Hong 2012 [21] 372.99 100
Flat 404.26 116
Topic 345.18 798
Global 310.35 770
Full 298.15 836

either geographical locations (including Twitter Places) ex-
plicitly attached, meaning that we cannot easily locate a
majority of tweets. However, geographical locations can be
used to predict users’ behaviors and uncover users’ inter-
ests [13, 12] and therefore it is potentially invaluable for
many perspectives, such as behavioral targeting and online
advertisements. For each new tweet (from a new user not

seen during training), we predict its location as l̂d. We cal-
culate the Euclidean distance between predicted value and
the true location and average them over the whole test set
1
N

∑
l(l̂d, ld) where l(a, b) is the distance and N is the to-

tal number of tweets in the test set. The average error is
calculated in kilometres. We denote our full model as Full.

For DS1 we compare Full with the following approaches:

Yin 2011 [31] Their method is essentially to have a global
set of topics shared across all latent regions. There is

no regional language models in the model. Besides, no
user level preferences are learned in the model.

Hong 2012 [21] Their method utilizes a sparse additive
generative model to incorporate a background lan-
guage models, regional language models and global
topics. The model also considers users’ preferences
over topics and regions as well.

For all these models, the prediction is done by two steps:
1) choosing the region index that can maximize the test
tweet likelihood, and 2) use the mean location of the region
as the predicted location. For Yin 2011 and Hong 2012,
the regions are the optimal region which achieves the best
performance. For our method, the regions are calculated as
the average of number of regions from several iterations after
the inference algorithm converges. The results are shown in
the top part of Figure 2.

The first observation is that Full model outperforms Yin

2011 and Hong 2012 significantly. Note that for both Yin

2011 and Hong 2012, we need to manually tune the num-
ber of regions as well as the number of topics, which re-
quires a significant amount of computational efforts, while
for Full, the number of regions grows naturally with the
data. Also, we notice that the optimal number of regions in-
ferred by Full is larger than its counterparts Yin 2011 and
Hong 2012. We conjecture that this is because the model
organizes regions in a tree-like structure and therefore more
regions are needed to represent the fine scale of locations.

For the comparison on the DS2 dataset, we compare with:

Eisenstein 2010 [17] The model is to learn a shared topic
matrix and a different topic matrix as the regional vari-
ation for each latent region. No user level preferences
are learned in the model. The best reported results
are used in the experiments.

Eisenstein 2011 [16] The original SAGE paper. The best
reported results are used in the experiments.

Wing 2011 [30] Their method is essentially to learn re-
gional language models per explicit regions.

Hong 2012 [21] This was the previous state of the art.
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For [17, 30, 16], the authors do not report optimal regions.
For [21], the optimal region is reported from the paper. The
best reported results are used in the experiments. For our
method, the regions are calculated as the same fashion as
above. The results are shown in the second part of Figure
2. It is obvious that our full model performs the best on
this public dataset. Indeed, we have approximately 40%
improvement over the best known algorithm [21] (note that
area accuracy is quadratic in the distance). Recall that all
prior methods used a flat clustering approach to locations.
Thus, it is possible that the learned hierarchical structure
helps the model to perform better on the prediction task.

In Section 5.3, we discussed how to sample regional lan-
guage models. In Table 3 we compare the two approxima-
tion methods with directly sampling from Antoniak distribu-
tions. We can see that all three methods achieve comparable
results although sampling Antoniak distributions can have
slightly better predictive results. However, it takes substan-
tially more time to draw from the Antoniak distribution,
compared to Minimal Paths and Maximal Paths. In Table
2, we only report the results by using Minimal Paths.

6.3 Ablation Study
In this section, we investigate the effectiveness of different

components of the model and reveal which parts really help
with the performance, in terms of location prediction. For
both DS1 and DS2, we compare the following versions:

Flat: We do not have a hierarchical structure of regions
while the number of regions is still infinite. Regional
language models and a set of global topics are utilized.

Topic: No regional language model version of our proposed
model: In this model, we still have the hierarchical
structure over regions but no only having a global set
of topics without regional language models.

Global: No personal distribution over the tree structure,
we assume that all tweets are generated by a fictitious
user and no personal preferences are incorporated.

Full: Our full model.

The results are shown in Table 4. The first observation
is that Topic, Global and Full, which utilize hierarchical
structures of regions are better than other methods. This
validates our assumption that hierarchies of regions can con-
trol the scope of regions and therefore smaller regions can
be discovered from the data. This is also clearly observable
from the optimal number of regions these methods have dis-
covered. For Topic, it is only slightly better than Hong as it
does not incorporate regional language models into account.
We can see the effect of regional language models by focus-
ing on Global where no personal distributions over the tree
is introduced. In summary, Full demonstrated that person-
alized tree structures can further boost the performance.

6.4 Error Analysis
In order to understand how our model performs in terms

of prediction we conduct a qualitative error analysis on our
model as well on the the state-of-the-art model [21] on all
users in the USA on DS1. The results are given in Figure 4.
Each circle in the map represents 1000 tweets. The mag-
nitude of the circle represents the magnitude of average
error made for these 1000 tweets. Note that the circles are
re-scaled such as to be visible on the map (i.e. radii do not
correspond to absolute location error).

Figure 4: Error analysis for the state-of-the-art
model [21] (blue) and our model (orange) on DS1.

We observe that in the industrialized coastal regions both
models perform significantly better than in the Midwest.
This is because that we have more users in those areas and
therefore we can, in general, learn better distributions over
those regions. At the same time, users in those areas might
have much more discriminative mobility patterns relative to
users in the Midwest. The second observation is our method
consistently outperforms [21]. This is particularly salient in
the Midwest.

7. CONCLUSION
Nonparametric Bayesian models have been demonstrated

as an effective tool to discover hierarchies in many appli-
cations, however, existing methods usually exhibit a global
distribution over the tree structure, not allowing this dis-
tribution to vary for different users. The latter can be
an impediment in applications such as behavioral targeting
and online user profiling. In addition, the cascading of pa-
rameter spaces over hierarchies is usually an artifact of the
stick-breaking process, not necessarily directly controlled by
the design of models. This leads to inflexibility when han-
dling multiple types of parameters which should be cascaded
through the discovered tree structure. In this paper, we pro-
pose a unified framework, the nested Chinese Restaurant
Franchise, to discover a unified hidden tree structure with
unbounded width and depth while allowing users to have
different distributions over this structure. Furthermore, the
patterns of parameters cascading over the tree are explic-
itly specified. An efficient algorithm is developed to per-
form the posterior inference. We apply the framework to
organize Twitter messages into a hierarchical structure and
show that this tree structure can be used to predict locations
of unlabeled messages, resulting in significant improvements
to state-of-the-art approaches, as well as revealing interest-
ing hidden patterns. For future work, we plan to exploit
distributed sampling techniques and data layout as in [2,
6] in addition to hash-based sampling [5] to scale the infer-
ence algorithm to the full twitter dataset. In addition, to
model temporal variation for extra location signals, we plan
to extend the current work with ideas from [3, 4, 7].
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