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ABSTRACT 

Discretization is a standard technique used in click-based 

graphical passwords for tolerating input variance so that 

approximately correct passwords are accepted by the system. In 

this paper, we show for the first time that two representative 

discretization schemes leak a significant amount of password 

information, undermining the security of such graphical 

passwords. We exploit such information leakage for successful 

dictionary attacks on Persuasive Cued Click Points (PCCP), 

which is to date the most secure click-based graphical password 

scheme and was considered to be resistant to such attacks. In our 

experiments, our purely automated attack successfully guessed 

69.2% of the passwords when Centered Discretization was used to 

implement PCCP, and 39.4% of the passwords when Robust 

Discretization was used. Each attack dictionary we used was of 

approximately 2�� entries, whereas the full password space was of 

2�� entries. For Centered Discretization, our attack still 

successfully guessed 50% of the passwords when the dictionary 

size was reduced to approximately 2�� entries. Our attack is also 

applicable to common implementations of other click-based 

graphical password systems such as PassPoints and Cued Click 

Points – both have been extensively studied in the research 

communities.   

Categories and Subject Descriptors 

K.6.5 [Management of Computing and Information Systems]: 

Security and Protection – Authentication, unauthorized access. 

K.4.4 [Computers and Society]: Electronic Commerce – 

Security.  

General Terms 

Security, Experimentation. 

Keywords 

Graphical passwords, dictionary attack, discretization, 

authentication.  

1. INTRODUCTION 
Passwords have been widely used to authenticate users to remote 

servers in Web and other applications. Text passwords have been 

used for a long time. Graphical passwords, introduced by Blonder 

[1] in 1996, are an alternative to text passwords. In a graphical 

password, a user interacts with one or more images to create or 

enter a password. Graphical passwords are intended to capitalize 

on the promise of better memorability and improved security 

against guessing attacks. Graphical passwords are particularly 

suitable for keyboardless devices such as iPads and iPhones 

whereon inputting a text password is cumbersome. For example, 

Windows 8 recently released by Microsoft supports graphical 

password logon. With increasingly popularity of smart phones and 

slate computers, we expect to see a wider deployment of graphical 

passwords in Web applications.1 

Among a large variety of graphical password proposals, click-

based graphical passwords have attracted the most attention in 

both the Human-Computer Interaction (HCI) and security 

communities. A click-based graphical password consists of a 

sequence of click-points on one or more images. To log in, a user 

clicks the same points of her password, in the correct order, on the 

same image(s). PassPoints [2][3] is a representative click-based 

graphical password scheme, wherein a password consists of a 

sequence of points anywhere on an image. Later studies [5]-[11] 

indicate that PassPoints is vulnerable to dictionary attacks which 

exploit image hotspots [5][6] (i.e. spots that are more likely to be 

selected as click-points across users) and patterns of click-points 

[7]. Purely automated attacks [10][11] detect corner points and 

centroid points as hotspots, and apply heuristics to select a set of 

combinations of the detected hotspots to form dictionaries of 

guessed passwords. The attacks on two representative images 

used in PassPoints guessed 7-16% of the passwords for 

dictionaries each with approximately 2�� entries, and 48-54% of 

the passwords for dictionaries each with approximately 2�� 

entries, whereas the full password space contained 2�� entries.  

Lessons of hotspot-based dictionary attacks on PassPoints led to 

the design of two improved click-based graphical password 

schemes, Cued Click Points (CCP) [12] and Persuasive Cued 

Click Points (PCCP) [13][14]. CCP is a variation of PassPoints 

with improved security, and PCCP improves the security further. 

PCCP has been considered robust to all the reported hotspot-based 

dictionary attacks. 

Click-based graphical password schemes such as PassPoints, 

CCP, and PCCP allow arbitrary click-points in a password. Due to 

inevitable click inaccuracy, a predefined tolerance distance is used 

in these schemes that a click is verified correct if it falls in the 

tolerance region which has a distance to the originally chosen 

click-point equal to or less than the tolerance distance. This would 

work well if the password is stored in the clear in the system. For 

the sake of security, a practical system typically does not store 
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passwords in the clear. Instead, a password is cryptographically 

hashed and the hash value is stored in the system. It is impossible 

for such a system to calculate the distance of a click to the 

corresponding click-point in the password since a single bit 

change in the input would result in a completely different hash 

value. Therefore the system has no way to check if the click is 

within the tolerance region of the click-point or not. This problem 

is identified in [15]. A solution is discretization of click-points 

using grids so that all tolerable clicks of a click-point are inside a 

single grid cell. A discretization scheme should guarantee a 

minimum tolerance range of �  pixels, i.e., being � -safe: if a 

clicked point is within � pixels from the desirable point, the same 

discretization point would always be produced. 

Several password discretization schemes have been proposed. 

Robust Discretization [15] uses three offset grids of grid-square 

size 6� × 6� to guarantee that for every point in the image, there 

exists at least one grid whereby the point is � -safe. Centered 

Discretization [16] determines the grid for a point such that the 

point is the center of a grid-square of the grid. Its grid-square size 

is 2� × 2�  to maintain that the point is � -safe. Centered 

Discretization produces a smaller grid-square than Robust 

Discretization without impacting the usability of the system [16]. 

Optimal Discretization [17] is the same as Centered Discretization 

when offset is used, and suffers from the edge problem of 

discretization (i.e., a small perturbation may result in a wrong 

grid-square when the click-point is near a grid line) when no 

offset is used. The edge problem is what the other discretization 

schemes tried to avoid in their designs. As a consequence, 

multiple trials of possible grid-squares due to acceptable click- 

variation are used during authentication to address the edge 

problem of discretization when offset is not used in Optimal 

Discretization. Image-dependent discretization is proposed in 

[18], wherein image features are analyzed and Voronoi polygon 

tiling is produced that likely click-points are centered within the 

polygons.  

In all these discretization schemes, grid information used for a 

password is stored in the system in plaintext so that the same grids 

are used to discretize clicks in authenticating a user. This 

information may be accessible to adversaries. A natural question 

arises: what is the security implication of this additional 

information about a password? It is believed that the additional 

information of the discretization grids does not lead to weaker 

security [16]. It has remained for years an open problem whether 

it is possible for adversaries to exploit such information to their 

advantage [14][16][19].  

In this paper, we for the first time address this open question, 

which concerns an important aspect of applying click-based 

graphical password schemes including PassPoints, CCP and 

PCCP in real applications. Our security analysis on two 

representative discretization schemes, Robust Discretization and 

Centered Discretization, indicates that discretization does have 

significant security implications: it leaks information about 

password click-points, and thus leads to weaker security. The 

leaked information can be exploited to mount successful 

dictionary attacks on click-based graphical password schemes 

such as PCCP which are otherwise considered robust to the 

dictionary attacks. Our experimental studies on PCCP show that 

our purely automatic dictionary attacks using dictionaries each 

with approximately 2�� entries guessed 69.2% of the passwords 

when Centered Discretization was used, and 39.4% of the 

passwords when Robust Discretization was used, whereas the full 

password space was of 2��  entries. In addition, for Centered 

Discretization, our attack still successfully guessed 50% of the 

passwords when the attack dictionary size was reduced to 

approximately 2��. Our work sheds light on the future design of 

secure yet practical discretization schemes. 

The remaining paper is organized as follows. Related work is 

reviewed in Section 2. Technical details of discretization schemes 

are described in Section 3. We present our security analysis of 

discretization schemes in Section 4. Our dictionary attacks on 

PCCP using both Robust Discretization and Centered 

Discretization are described in Section 5. Discussions are 

presented in Section 6. The paper concludes in Section 7.  

2. RELATED WORK 
We briefly review click-based graphical passwords and their 

dictionary attacks in this section. Details on discretization 

schemes are provided in Section 3. 

2.1 Click-based Graphical Passwords 
Since the introduction of the first graphical password scheme by 

Blonder [1] in 1996, graphical passwords have become an active 

research topic, and a large number of graphical password schemes 

have been proposed. Among these schemes, click-based graphical 

password schemes have attracted the most attention in both HCI 

and security research communities. They will be briefly described 

here. For more detailed information of click-based graphical 

password schemes as well as other types of graphical password 

schemes, readers are referred to a recent comprehensive review of 

graphical password schemes [19]. 

In Blonder’s scheme [1], users click on a set of predefined tap 

regions. Jansen et al. [20] proposed a variation which requires 

users to click an ordered sequence of visible squares imposed on a 

background image. The squares are used to help users repeat 

click-points in subsequent logins. In V-go [21], users click on a 

sequence of predefined objects in the image. PassPoints [2][3] is 

the first click-based graphical scheme that allows a user to click 

anywhere on an image in creating a password. It requires a user to 

click a sequence of � points anywhere on an image. PassPoints has 

studied extensively. Studies [2]-[4] indicate that � = 5  leads to 

promising usability. Thus this setting has been widely adopted in 

the literature. Cued Click Points (CCP) [12] is a variation of 

PassPoints with improved security. In CCP, a sequence of images 

is used in entering a password, one click per image, with the next 

image selected by a deterministic function. The security is further 

improved with Persuasive Cued Click Points (PCCP) [13][14], 

which requires a user to select each click-point inside a randomly 

positioned viewport in creating a password, resulting in more 

randomly distributed click-points in a password.  

2.2 Dictionary Attacks on Click-based 

Graphical Passwords 
Effective dictionary attacks have been conducted on PassPoints-

style graphical password schemes by exploiting two weaknesses 

in human selection of a password: hotspots and patterns. Hotspots 

[5][6] are spots more likely selected as click-points across users, 

and patterns [7] are likely click orders and location relationships 

of click-points in users’ passwords. Both are related to predictable 

preferences in human created passwords.  

Image processing techniques have been used to locate hotspots in 

an image to enable automatic guessing attacks [5][10][11] on 

click-based graphical passwords. Dirik et al. [5] proposed 

automatic dictionary attacks on PassPoints, whereby mean-shift 

image segmentation [22][23] was applied to detect centroids of 
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segments that are not too large or too small, and then grid-squares 

were sorted according to their probabilities to be in a password, 

calculated by applying a user attention model, to build attack 

dictionaries. Experiments on a representative image found 8.45% 

of the passwords using a dictionary of approximately 2�� entries 

whereas the full password space was of 2��  entries [5]. Salehi-

Abari et al. [10] proposed an automatic hotspot-based dictionary 

attack against PassPoints-style graphical passwords, which were 

subsequently improved by van Oorschot et al. [11]. In these 

attacks, both corner and centroids are detected to form a set of 

predicted click-points. This set is too large to build an effective 

attack dictionary by traversing all combinations of the predicted 

click-points. Heuristic patterns of click-points in a password and 

salient regions detected using a visual attention model are used to 

select likely combinations of the predicted click-points in building 

attack dictionaries. Experiments using two representative images 

with a full password space of 2��  entries found 7-16% of the 

passwords using dictionaries each of approximately 2��  entries, 

and 48-54% of the passwords using dictionaries each of 

approximately 2�� entries [11]. 

In human-seeded attacks [8][9] on PassPoints, click-points from a 

small set of users are harvested for targeted images, and attack 

dictionaries are constructed using a first-order Markov model or 

an independent probability model. In a lab study [8][9] on two 

representative images with the full password space of 2�� entries, 

the method found 20-36% of the passwords using dictionaries 

each of  2�� to 2�� entries built with the independent probability 

model and 4-10% of the passwords within 100 guesses using the 

first-order Markov model.  

An analysis of user-selected passwords reported in [7] revealed 

that for CCP, users still tended to select click-points falling within 

known hotspots, but the patterns of click-points exploited in 

successful dictionary attacks on PassPoints were eliminated; on 

the other hand, PCCP had eliminated both common patterns and 

hotspots. Therefore, PCCP was considered to be robust to all the 

known dictionary attacks.   

3. DISCRETIZATION SCHEMES 
We briefly described several discretization schemes in Section 1. 

Since Optimal Discretization [17] is the same as Centered 

Discretization [16] when the edge problem of discretization is 

avoided and the image-dependent discretization scheme [18] lacks 

detailed information for an actual implantation, our security 

analysis will focus only on Robust Discretization and Centered 

Discretization. In the following, we describe these two schemes in 

detail.  

3.1 Robust Discretization 
Robust Discretization [15] uses three offset grids to guarantee that 

for each point in the image, there exists at least one grid in which 

the point is �-safe. Specifically, each grid �� , � ∈ {1,2,3} has a 

grid-square size of 6� × 6�, with an offset  from each other by a 

distance of 2� in both directions. Figure 1 shows an example of 

the three grids in Robust Discretization, along with two points A 

and B, wherein point A is �-safe in grid G0, and point B is �-safe 

in both G1 and G2. When creating a password, one of the three 

grids is selected for each click-point. When a click-point is �-safe 

in more than one grid, a selection algorithm is needed to select 

one from the candidate grids. An optimal algorithm [16] selects 

the grid wherein the point is closest to the center of the grid-

square in order to minimize the occurrence of false accepts and 

false rejects of passwords.  

 

Figure 1. Robust Discretization: Three grids G0, G1, and G2, 

wherein A is �-safe in G0 and B is �-safe in both G1 and G2 

(taken from [15]). 

With Robust Discretization, each click-point in a password is 

associated with an image, a grid selected for the click-point, and a 

grid-square in the grid where the click-point lies in. Therefore a 

password can be represented by a sequence of grid-squares in the 

selected grids with corresponding images associated with the 

click-points of the password; and a cryptographic hash of the 

sequence is stored in the system. Identifiers of the selected grids 

for the password’s click-points are also stored in the system but in 

plaintext. During authentication, the stored grid identifier for each 

click-point is retrieved to determine the exact grid-square which a 

user-clicked point actually lie in. The hash of the resulting 

sequence of the grid-squares with the corresponding images is 

calculated and compared with the stored hash to determine if 

authentication is a success or failure.  

3.2 Centered Discretization 
Centered Discretization [16] finds, for each click-point in a 

password, a grid wherein the click-point is the center of a grid-

square in the grid. This grid can be uniquely determined by an 

offset to the grid aligned with both x-axis and y-axis. This offset 

is stored in plaintext in the system, and will be used to reconstruct 

the grid during authentication. To make the point be �-safe, each 

grid has a grid-square size of 2� × 2�. The grid’s offset is For 

every click-point, Centered Discretization has the same maximal 

tolerance level of click-variations, which is �  pixels on each 

direction; whereas for click-points at different locations, Robust 

Discretization has various maximal tolerance levels of click-

variations, in the range from � to 3�. If the click-point is at the 

center of its grid-square, it can accept click-variations within 3� 

pixels on each direction. That maximal tolerance level reduces 

gradually to � when the click-point moves from the center towards 

an edge of the grid-square. 

For the same guaranteed tolerance range � of click-variations, a 

grid-square in Centered Discretization is one third in size of that 

in Robust Discretization along each direction, resulting in the size 

of the full password space in Centered Discretization about 

9� ≈ 2�� times of that in Robust Discretization for passwords of 5 

click-points. For the same grid-square size, Centered 

Discretization has a guaranteed tolerance level three times that 

Robust Discretization offers, whereas both have the same size for 

the full password space.  

Security of Centered Discretization is compared with that of 

Robust Discretization in [16] using PassPoints, with the 

conclusion that both discretization schemes have the same level of 
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security when both have the same size of grid-squares, and that 

Centered Discretization is more secure when they are both �-safe.  

4. A SECURITY ANALYSIS  
In this section, we present a security analysis of Robust 

Discretization and Centered Discretization. We first explain 

theoretical models assumed in our analysis, and describe key 

observations that motivated our attacks. Next, we introduce our 

attack methodology, which consists of two stages. In the first 

stage, image processing techniques are used to detect potential 

click-points in each image. In the second stage, discretization 

information stored in the system is exploited to build attack 

dictionaries. This security analysis is generic, as it is independent 

from any specific click-based graphical password scheme.   

4.1 Theoretical Models  

4.1.1 Threat Model  
HTTP Authentication [24] has been widely used in Web 

applications. It contains two types of authentication protocols, 

Basic Access Authentication and Digest Access Authentication. 

The latter is more secure than the former. In Digest Access 

Authentication, password hash is calculated at the client side. As a 

consequence, the discretization grid information for each click-

point of a password needs to send to client when a discretization 

scheme is used in Digest Access Authentication, and thus 

accessible to adversaries. Since discretization grid information is 

stored in plaintext, it is also accessible to adversaries in offline 

dictionary attacks. A password guess can be verified with the 

system for online dictionary attacks or with the stored password 

hash for offline dictionary attacks. A user ID is frequently stored 

in a Web browser and thus accessible to adversaries.  

In summary, the threat model in our studies is as follows: 

Adversaries have access to everything except passwords or the 

information accessible only with passwords. Particularly, 

adversaries have access to the discretization information, user 

IDs, and hash values of passwords stored in the system.  

We note that the above threat model is generic, not necessarily 

tied with Web applications. For example, the threat model is 

applicable for offline dictionary attacks whereby adversaries have 

access to the authentication information stored in the 

authentication server. 

4.1.2 Independent Model of Click-Points  
For generality, we assume that click-points are mutually 

independent. For some click-based graphical password schemes 

such as PassPoints, there might exist some correlations among the 

click-points in a password, as exploited by successful dictionary 

attacks on PassPoints described in Section 2.2. The correlations 

can be exploited to improve efficiency of the dictionary attacks to 

be presented in this paper. For example, the heuristic patterns of 

click-points used in [10][11] or the first-order Markov model used 

in [8][9] can be applied to improve our dictionary attacks on 

discretization with PassPoints. 

4.2 Key Observations  
Our security analysis was motivated with the following two 

observations. The first is on click-points likely selected in click-

based graphical passwords, and the second is on the distribution 

of human click-variations.  

4.2.1 Click-Points of Graphical Passwords  
A study [7] reveals that hotspots exist in both PassPoints and 

CCP, but are eliminated in PCCP, thanks to the requirement that a 

click-point is selected within a randomly positioned viewport. We 

conceive that click-points in PCCP are likely salient points in 

viewports that should be detectable with image processing 

techniques. That conception led us to using corners and centroids 

in images to predict click-points for all click-based graphical 

password schemes.  

There are typically too many detected salient points (i.e., corners 

and centroids) that a dictionary built by traversing all their 

combinations is too large to mount a meaningful dictionary attack. 

Patterns of click-points in a password and other techniques such 

as a user attention model have been used to select only likely 

salient points and their combinations in dictionary attacks on 

PassPoints [5][10][11]. These techniques can no longer be used to 

attack PCCP, as concluded in [7]. With the independent model of 

click-points assumed in this paper, detected corners and centroids 

cannot in general mount an effective dictionary attack on a click-

based graphical password scheme. We need to reduce the size of 

dictionaries significantly to mount a meaningful dictionary attack.   

4.2.2 Distribution of Human Click Variations 
People have different accuracy in re-clicking a point. Figure 2 

shows the result of a study by Chiasson et al. [12] with 24 

university students on the accuracy that users re-entered click-

points for both stages of password confirmation and login. More 

than 70% of the users had small variations, in the range from 1 to 

3 pixels, in re-entering click-points. Click-variations for the 

remaining users distribute in the long tail in the figure, ranging 

from 4 to more than 51 pixels.  

 

Figure 2. Accuracy in re-entering click-points (taken from [12]). 

For acceptable usability, a practical system should select � of a 

discretization scheme conservatively so that most users should be 

able to enter their passwords correctly. In other words, � should 

be selected significantly larger than most users’ click-variations. 

For example � should be 4 pixels or larger from Figure 2. We 

conceive that the disparity between a large tolerance range of the 

system and small click-variations for most people can be 

exploited to remove salient points unlikely related to the click-

point currently seeking for: salient points far away from likely 

locations of the current click-point are removed. Additionally, if 

the location of a click-point is known within a grid-square as in 

Centered Discretization or predictable as in the image-dependent 

discretization scheme [18], salient points can be rank-ordered by 

their distances to the click-point’s locations inside their respective 

grid-squares: a salient point with a shorter distance is more likely 

to be the click-point. This conception led to our method to build 

effective dictionaries from detected salient points by exploiting 

the location information of a click-point leaked by a discretization 

scheme, as to be described in Section 4.4.  
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4.3 Prediction of Click-Points  
Like [10][11], corners and centroids are detected with image 

processing techniques and used as salient points to predict click-

points for click-based graphical password schemes such as PCCP, 

CCP, and PassPoints. A corner is the intersection of two edges, 

and a centroid is the center point of an object. Corner detection 

and centroid detection we recommend to use are described as 

follows. 

4.3.1 Corner Detection 
Harris corner detection [25] implemented by Kovesi [26] is used 

to detect corners. Kovesi’s implementation contains three 

parameters, “sigma” (�), “thresh” (�), and “radius” (�),  where 

�	 is the standard deviation of a smoothing Gaussian filter, � 

measures the strength of non-maxima-suppression: all corners 

with weight lower than � are suppressed, � is an inhibition radius, 

measured in pixels around a detected corner. For large �, Kovesi’s 

detector detects strongly distinctive corners. Weakly distinctive 

corners can also be detected when the value of �  reduces. The 

following unique method is applied to detect corners in an image: 

1. Detection of strongly distinctive corners. Kovesi’s 

detector is applied to the image with the following 

parameters: � = 1, � = 65, � = 2 . The set of corners 

detected in this step is denoted by ��. 

2. Detection of weakly distinctive corners. Kovesi’s detector 

is applied to the image with the following parameters: 

� = 1, � = 5, � = 4. The set of corners detected in this 

step is denoted by ��.  

3. Detection of weakly distinctive corners in 2X window. 

The image is smoothed using a Gaussian filter with the 

standard deviation of 1.0, and then down-sampled. 

Kovesi’s detector is applied to the resulting image with 

the following parameters: � = 1, � = 7, � = 2. The set of 

corners detected in this step is denoted as �� . This is 

equivalent to using Harris detector with a window twice 

the size in both directions of the default window used in 

Kovesi’s implementation.  

4. Detection of weakly distinctive corners in both scales. 

For each point # in ��, if there exist a point in �� within a 

distance of 7 pixels from 	# , then #  is kept in �� . 

Otherwise #  is removed from �� . The set of survived 

corners in �� is denoted by ��
$ .  

5. Detected corners. The union of �� and ��
$ , � = �� ∪ ��

$ , is 

output as the detected corners of the image. 

The detected corners in � are either strongly distinctive corners or 

weakly distinctive corners of large structures. Figure 3 shows the 

detected corners for image “pool” which has been widely used in 

security studies of PassPoints. Each corner is marked by a ‘+’ on 

the image. Compared to the detected corners of the same image 

shown in [11], our corner detection produces a slightly smaller 

number of corners. The major difference between the two corner 

detection methods is around the tree leaves in the image: weak 

corners of small structures are suppressed in our corner detection. 

4.3.2 Centroid Detection 
Centroids are detected with the same method as in [11] except 

using a different implementation of mean-shift segmentation 

algorithm [22][23] for our convenience. We use the 

implementation [27] to segment images with the following values 

of the three parameters used by the implementation:&'()*� = 7, 

&'()*+ = 9 , and )',+-('., = 100 . The last parameter is a 

threshold for the minimal segment area (in pixels). For the 

resulting segments, we calculate only the segments with an area of 

500 pixels or less. Segments too large or too small are ignored. 

Only the segments with an area in the range from 100 pixels to 

500 pixels are used to calculate centroids. 

A segment with an irregular shape may result in a centroid outside 

the segment. This type of centroid is unlikely selected as a click-

point, and thus should be removed. Removing this type of 

centroid is achieved by checking if the centroid is outside its 

segment or not. If the centroid is outside the segment, the centroid 

is removed. Otherwise the centroid is kept. The survived centroids 

are output as the detected centroids. 

 

Figure 3. Detected corners (each corner is marked by a ‘+’). 

4.4 Construction of Dictionaries 
For each click-point in a password, once salient points are 

detected, the discretization information stored in the system is 

exploited to remove salient points that are unlikely to be the click-

point for Robust Discretization, or to rank-order combinations of 

salient points by their predicted probabilities to be the password 

for Centered Discretization. This section represents the key 

insights behind our attacks.  

4.4.1 Dictionaries for Centered Discretization 
In Centered Discretization, a click-point is the center of some 

grid-square of the grid associated with the click-point. According 

to the distribution of click variations shown in Figure 2, a point 

closer to but not at the center of its grid-square has a higher 

probability to be the click-point. A password consists of multiple 

click-points. For each password, we can build a model using 

distances of salient points to the centers of their grid-squares to 

predict the probability that a sequence of the salient points is the 

password.  

Before applying the model, we prune salient points so that each 

grid-square contains at most one salient point. If a grid-square 

contains more than one salient point, only the salient point closest 

to the center of the grid-square is kept and all the other salient 

points in the grid-square are removed. Then one of the following 

two models is used to build attack dictionaries with entries 

ordered by their probability to be the password. 

Zooming-out Window Model. In this model, we use a series of 

concentered windows with different sizes to determine the order 

of grid-squares in constructing a dictionary. More specifically, we 

place a selecting window	01 of size 22 × 22 at the center of each 

grid-square, where 0 ≤ 2 ≤ �, and assign a salient point a priority 
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value 2 if the salient point is in window	01  but not in window 

014�, where we assume that 04� is empty. A salient point with a 

smaller priority value is closer to the center of its grid-square, and 

thus considered to be more probably to be the click-point. Salient 

points not in any selecting window are removed. The priority 

value of a grid-square is the priority value of the salient point 

inside the grid-square. Grid-squares containing no salient point 

are removed. The survived grid-squares are traversed for all 

possible combinations of grid-squares. Based on the independent 

model of click-points, the priority value of a sequence of grid-

squares is assigned to be the sum of the priority values of the 

constituent grid-squares. The sequences with priority value & form 

a set denoted as �5. A sequence in set �6 is more likely to be the 

password than a sequence in �7  if ' < 9. A series of dictionaries 

{:5|& = 0,1, ⋯ } can thus be constructed as follows: 

:5 = ⋃ ��
5
�>�  (1) 

These dictionaries have the following relationship: 

:� ⊆ :� ⊆ :� ⊆ ⋯ (2) 

Password guesses in a dictionary :5 can therefore be partitioned 

into a layered order: the guesses in :� are ordered as the first layer 

and tested first; the guesses in :� but not in :� (i.e., the guesses in 

��) are ordered as the second layer and tested next. This process 

continues until all the guesses in :5  are ordered and tested. In 

other words, guesses in a dictionary :5  are tested according to 

their priority values, from low to high. Guesses with the same 

priority value can be tested in any order. 

Probability Model. If we ignore the value at 0, we can 

approximate the distribution of user click-variations shown in 

Figure 2 with a normal distribution 

@A2) = * ∙ -C#A−
1E

�FE
) (3) 

where * is a normalization coefficient and 2 (0 ≤ 2 ≤ �) is the 

distance of the point to the center of its grid-square. For 

simplicity, Eq. (3) is also used for the case 2 = 0 in our studies, 

although @A2)  at 2 = 0  deviates considerably from the value 

shown in Figure 2. We believe that such a deviation will be 

tolerated by our probability model, as this model is much more 

accurate than the zooming-out window model. The belief is 

confirmed true by our experimental results which will be reported 

later: even the zooming-out window model has produced good 

results.   

For each grid-square containing a salient point, we calculate a 

probability that the click-point actually lies in the grid-square by 

using Eq. (3), with 2 being the distance of the salient point to the 

center of its grid-square. For every possible password guess 

constructed from the grid-squares containing salient points, 

according to the independent model of click-points, we calculate 

its probability to be the password as multiplication of the 

probabilities of the constituent grid-squares. These guesses are 

then sorted by their likelihood of being the password. An attack 

dictionary can select any number of most probable guesses, and 

guesses are tested in the order of their probability of being the 

password. 

4.4.2 Dictionaries for Robust Discretization 
In Robust Discretization, different schemes can be used to select a 

grid when more than one grid satisfies the guaranteed tolerance 

range � . The maximum tolerable range of click-variations runs 

from � to 3�, depending on the location of the click-point in its 

grid-square. To have a good balance between usability and the 

size of the full password space, it is typical to choose the optimal 

grid that maximizes the safe distance of the click-point to the 

edges of the grid-square. This optimal Robust Discretization was 

used in [16] to study security of Robust Discretization, and has 

been adopted in our studies too. The optimal Robust 

Discretization leads to an eligible region that a click-point may lie 

in. Figure 4 shows the eligible region surrounded by the dashed 

lines inside the greyed grid-square if grid �� is used for the click-

point. The eligible region is about 36% of the grid-square. With 

this information, we remove salient points that are not inside any 

eligible region. Then we select all the grid-squares that contain at 

least one salient point, and build a dictionary by traversing all 

their combinations using the independent model of click-points. 

 

Figure 4. The eligible region that a click-point can lie inside a 

grid-square for grid GH. 

5. DICTIONARY ATTACKS ON PCCP 

USING DISCRETIZATION 

5.1 Why do We Target PCCP? 
PCCP was selected as the click-based graphical password scheme 

in our studies of the two representative discretization schemes 

since it was considered the most secure click-based graphical 

password scheme to date, robust to all the dictionary attacks 

reported on click-based graphical passwords. It was estimated in 

[13] that hotspot-based dictionary attacks would guess only 0.03% 

of PCCP passwords, a percentage that is extremely small as 

compared to the ratios of passwords guessed by dictionary attacks 

reported on PassPoints. 

For PCCP, next image IJKLM is selected by a deterministic function 

@	of current image INOPP, the current tolerance square, and the user 

ID: 

I,-CQ 	 = 	@AIRS��, (�'2�TS*�-, S&-�I:)         (4) 

Eq. (4) makes PCCP rely on a discretization scheme in selecting a 

next image so that approximate clicks would result in the same 

next image. Due to this image selection mechanism, we cannot 

build a general dictionary to attack all users as in attacking 

PassPoints. Instead, we need to build personalized attack 

dictionaries for each individual user, which makes dictionary 

attacks much more complex than those on PassPoints. Like 
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reported security studies on PassPoints, we assume that each 

password consists of 5 click-points in our studies. 

According to the generic threat model in Section 4.1.1, user IDs 

are known to adversaries. Once a user ID is known, a single login 

attempt can obtain the first image used by the account. We also 

assume that a service is available to adversaries to determine the 

next image for every input triple consisting of a current image, a 

clicked grid-square, and a user ID. The generic threat model in 

Section 4.1 is thus refined as follows for PCCP: Adversaries have 

access to everything except passwords or the information 

accessible only with passwords. Particularly, adversaries have 

access to the discretization information, user IDs, and hashed 

password stored in the system. For PCCP, adversaries have 

access to each user’s first image and the image database. The 

deterministic function is used as an oracle that adversaries can 

query to get the index of the next image used in entering a 

password but have no access to and would not try to find the 

internal logic or parameters of the deterministic function. 

Adversaries do not have access to any password or any of the 

remaining images any user uses. 

5.2 Building Personalized Attack Dictionaries 
To build personalized attack dictionaries for each participant in 

our studies, we detected salient points for the first image, 

processed these points using the grid information associated with 

the image, as described in Section 4.4, and obtained the grid-

squares, (�
�|� = 0, 1, ⋯, which contain at least one salient point. 

Each of the grid-squares is a password guess of the first click-

point. These grid-square form a set :� = {(�
�|� = 0, 1, ⋯ }, which 

comprises of guesses of the user’s password up to the first click-

point. 

Suppose we have finished the construction of set :6 = {(�
6 |� =

0, 1, ⋯ } comprising of password guesses of the user’s password 

up to i-th click-point, (�
6 |� = 0, 1, ⋯,	 where '	 < 	5. We use the 

following procedure to build the set :6U�  comprising of the 

password guesses of the user’s password up to the (i+1)-th click-

point. 

• Initialize :6U� to empty, and a count � to 0. 

• For each entry (�
6 ∈ :6 , � = 0, 1, ⋯, we obtain the next 

image by querying the oracle with the current image, the 

current grid-square, and the user ID. Then we detect and 

process the salient points of the obtained image in the 

same way as for the first image. Each of the grid-

squares containing at least one salient point for the 

obtained image is a guess of the (i+1)-th click-point of 

the user’s password, and combined with the guess of the 

preceding click-points of (�
6 . Each resulting guess (�

6U� 

is inserted into :6U�, with the current value of the count 

�  as the lower index �  of the guess. After a guess is 

inserted into :6U�, the count � is increased by 1. 

The above procedure is applied until all the five click-points have 

been guessed. The resulting set :�  is the attack dictionary, 

: = :�, built for the user. 

5.3 Experimental Setting  
We searched Internet for images with similar complexity as the 

representative image shown in Figure 3, which has been widely 

used in security studies on click-based graphical password 

schemes, and collected 1200 images for our experimental studies 

on PCCP. These images were cropped to size of 451 × 331 pixels 

if necessary. The grid-square sizes in our studies ranged from 

9 × 9 to 19 × 19. For passwords of 5 click-points, the size of the 

full password space for an individual user was 2�� if the largest 

grid-square 19 × 19 was used, or 2�� if the smallest grid-square 

9 × 9 was used. The detection algorithms described in Section 4.3 

were then applied to each image to detect the salient points in the 

image. The detected click-points were saved together with the 

image for later studies. We also implemented PCCP based on the 

description in [13]. In our implementation, MD5 hash function 

was used as the deterministic mapping function in Eq. (4) to select 

the next image, by dividing the resulting hash value by 1200, the 

total number of images in in our studies. A count starting from 0 

was added to the list of parameters of the hash function. The count 

was increased by 1 when a new image was selected in entering a 

password, including dropped images as explained next. When the 

next image selected by the function repeated a preceding image in 

entering a password, the image was dropped and a new image was 

selected using the previously clicked grid-square. This process 

repeated until an image different from all the preceding images 

was selected. This process would result in a unique sequence of 5 

different images for each user and her password.  

Since the index of a grid-square depends on the size of the grid-

square, Eq. (4) will select a different image and result in a 

different password for different sizes of grid-squares in our 

studies even if a user uses the same current image and the same 

click-point on the image in her password. This would complicate 

our experiments on different grid-square sizes since a participant 

would have to create and remember one password for every grid-

square size, and we could not rule out interference in memorizing 

multiple passwords by a participant. To simplify the tasks each 

participant needed to perform in our studies and to avoid possible 

interference, we made a minor modification to Eq. (4) as follows: 

 I,-CQ 	 = 	@AIRS��, #.',QV..�2',*Q-&, S&-�I:�,         (5) 

where #.',QV..�2',*Q-&  is the coordinates of the recovered 

click-point calculated from the user’s click. For Centered 

Discretization, the recovered click-point is the center of the 

clicked grid-square. For Robust Discretization, the recovered 

click-point is the point with a given bias from the center of the 

clicked grid-square, with the bias being the coordinates of the 

click-point relative to the center of the grid-square it lies in. The 

bias for each click-point is stored in the oracle to determine the 

next images for the user. If a user re-clicks the same grid-square 

in a login attempt, the recovered click-point is the actual click-

point, and thus the correct next image is selected by Eq. (5). If a 

wrong grid-square is clicked, the recovered click-point is different 

from the actual click-point, and thus a wrong image is selected. 

Since Eq. (5) depends only on the coordinates of a click-point, 

which does not change for different grid-square sizes, a 

participant would create a single password valid for both Centered 

Discretization and Robust Discretization with different grid-

square sizes, greatly simplifying our experiments. Such a 

modification has no impact on our security studies of the 

discretization schemes with PCCP when the images in the 

database are of similar complexity.  

5.4 Password Collection 
We conducted an in-lab user study with 38 voluntary participants 

(29 males and 9 females) to collect PCCP passwords. All the 

participants were engineering students ranging from 

undergraduate senior to Ph. D. students. All of them were good at 

using computers and Web browsing but none of them had studied 

computer or network security, or used the graphical password 

schemes under study. The participants were trained to get familiar 
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with the experimental tasks in advance. They used Web browsers 

on their own PCs to create passwords and log into a remote 

authentication server. Each participant was required to select a 

password of 5 click-points in length. The selected password was 

confirmed immediately after creation with all the discretization 

schemes and configurations under test. Each participant was given 

up to three trials to pass the confirmation test. If a confirmation 

login failed three times with any discretization scheme and any 

configuration, the participant was asked to recreate a new 

password. This process was repeated until the created password 

was confirmed successfully. Our experimental results confirmed 

the distribution of click-variations shown in Figure 2: most 

participants could pass the confirmation test in a single trial, 

implying that their re-click variations were 3 pixels or less on 

each direction from the click-points.  

Once a password had been successfully confirmed, the participant 

was required to pass two login tests, occurred at 24 hours and 7 

days, respectively, after creation of the password. In each login 

test, a participant was required to log in successfully within three 

trials for each of the discretization schemes and configurations 

under test. Otherwise the login test was claimed a failure. A 

participant who failed in either login test was required to re-do the 

above procedure, only for the failed discretization schemes and 

configurations, until he or she passed the two login tests 

successfully for all the discretization schemes and configurations 

under test. This process was designed to ensure that every 

participant selected a PCCP password that could be remembered 

for a reasonably long time. The PCCP passwords which had 

successfully completed the two login tests were collected.  

For each participant, we built personalized dictionaries as 

described in Section 5.2. Each guess in a personalized dictionary 

was tested in the following order until the password was found, 

the dictionary was exhausted, or the termination condition was 

met: randomly for Robust Discretization; from highest probability 

to the lowest probability for Centered Discretization using the 

probability model; or from lowest layer to the highest layer and 

randomly within the same layer for Centered Discretization using 

the zooming-out window model. The attack result was recorded. 

5.5 Experimental Results 

5.5.1 Attack Results for Robust Discretization 
For Robust Discretization, only the grid-square size of 19 × 19, 

with � = 3 pixels, was studied since a smaller grid-square size 

leads to poor usability according to [16]. For this setting, 15 out of 

the 38 passwords were found by our attack, with a success rate of 

39.4%, and with the attack dictionaries each of approximately 2�� 

entries.  

To find out how effectively Robust Discretization has helped 

reduce dictionary sizes, we constructed the attack dictionaries 

traversing all combinations of the detected salient points, i.e., 

without exploiting Robust Discretization. These dictionaries were 

all of approximately 2�W entries. For each user, the individual full 

search space contains 2�� entries for the size of images we used, 

which is the same size as the full password space for all users in 

PassPoints. This is because that once the user ID and the first 

image are determined, each grid-square would select a next 

image, and there are 391 (= X451 19⁄ Z × X331 19⁄ Z) grid-squares 

per image. Therefore, the first click-point has 391 possibilities. 

For each grid-square in the first image, there are 391 grid-squares 

in the second image, which contributes 391 possibilities. 

Therefore the first two click-points contribute 391 × 391	 =
	391� possibilities. This procedure repeats until all the five click-

points have been taken into consideration, resulting in 391� ≈
2�� possibilities, which is the full search space for an individual 

user. The prediction of click-points using the corner and centroid 

detection algorithms described in Section 4.3 has thus effectively 

reduced the password search space by a factor of 2�	A=
2��	 	2�W	�⁄ , i.e. 4 bits, and Robust Discretization has further 

reduced the search space by a factor of 2�	A= 2�W	 	2��	�⁄ , i.e., 4 

additional bits.  

On the other hand, Robust Discretization removes an average of 

1.0 − [2��	 2�W⁄\ = 	42.6%  of grid-squares per image when 

constructing attack dictionaries, which roughly agrees with the 

36% area ratio of the eligible region to the grid-square size (see 

Section 4.4.2). 

5.5.2 Attack Results for Centered Discretization 
For Centered Discretization, grid-square sizes ranged from 9 × 9 

to 19 × 19 were used, leading to �	 = 	4.5, 5.5, … , 9.5 pixels. For 

each �, dictionaries were built respectively with the zooming-out 

window model using 2  running from 2 to X�Z , and with the 

probability model where the size of a dictionary is controlled at 

the end of the range of an integer power of 2.  

Table 1 summarizes our attack results achieved with the zooming-

out window model. The leftmost column shows attack success 

rates (the ratio of the number of guessed passwords to the total 

number of passwords). Note that for the same 2, the success rate 

remains constant for different grid-square sizes, since a click-

point always remains at the center of its grid-square, which is also 

the center of the selecting window with a size of 22 × 22. When 

the grid-square size is fixed, the attack success rate is correlated 

with the dictionary size; the larger dictionaries are used, the 

higher the attack success rate can be achieved. With attack 

dictionaries each of approximately 2��  entries, our attack 

successfully guessed 63.2% of the passwords when the grid-

square size was 19 × 19, whereas the full password space was of 

2�� entries. 

Table 1. Attack success rates using the zooming-out window 

model 

Success 

rate (%) 

Dictionary size (bits) per grid-square size 

19x19 17x17 15x15 13x13 11x11 9x9 

76.4 38      

71.1 37 38     

71.1 36 37 39    

63.2 35 36 38 40   

57.9 33 35 37 39 41  

39.5 30 32 34 36 38 41 

7.9 27 29 31 33 35 38 

2.6 21 23 25 27 30 33 

 

Table 2 summarizes our results achieved with the probability 

model. The leftmost column is dictionary size (n bits). Attack 

results for some n values are omitted to avoid an overly lengthy 

table. When the grid-square size is fixed, the attack success rate is 

correlated with the dictionary size; the larger dictionaries are used, 

the higher the success rate can be achieved. For the grid-square 

size of 19 × 19, and thus the full search space of 2�� entries, the 

probability model successfully guessed 69.2% of the passwords 
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with attack dictionaries of approximately 2�� entries, and guessed 

50% of the passwords with attack dictionaries each of 

approximately 2�� entries.  

In addition to a better controlled dictionary size, the probability 

model also produced better success rates than the zooming-out 

window model did, as we can easily see by comparing Table 1 

and Table 2. 

Table 2. Attack success rates using the probability model 

Dictionary 

size (bits) 

Attack success rate (%) per grid-square size 

19x19 17x17 15x15 13x13 11x11 9x9 

43     65.8 57.9 

40  76.3 73.7 71.1 60.5 34.2 

39 81.6 76.3 71.1 65.8 52.6 23.7 

38 74.4 76.3 71.1 63.2 50 18.4 

35 69.2 65.8 52.6 36.9 18.4 7.9 

33 63.2 55.3 39.5 18.4 7.9 5.3 

32 60.5 50 31.6 10.5 7.9 0 

31 52.6 34.2 18.4 7.9 5.3 0 

30 50 31.6 10.5 7.9 5.3 0 

29 31.6 18.4 7.9 5.3 0 0 

28 21.1 10.5 7.9 5.3 0 0 

26 10.5 7.9 5.3 0 0 0 

23 5.3 2.6 0 0 0 0 

 

Table 3. Full password space and salient point dictionary size 

for different grid-square sizes  

 Grid-square size 

19x19 17x17 15x15 13x13 11x11 9x9 

Salient point 

dictionary 

size (bits) 

39 40 41 42 43 44 

Full 

password 

space (bits) 

43 44 46 48 51 54 

 

For each grid-square size, we also constructed attack dictionaries 

using all the detected salient points, but without exploiting any 

information leaked by Centered Discretization. Table 3 shows the 

size of each of such dictionaries and the corresponding full 

password space size. By comparing Table 1 with Table 3 and 

Table 2 with Table 3, we see how much the information leakage 

by Centered Discretization has contributed to our attacks, and how 

much our salient point detection methods have contributed to our 

attacks, respectively. For example, when the grid-square size was 

19 × 19, our salient point detection reduced the search space by a 

factor of 2�	A= 2��	 	2�W�⁄ , i.e. 4 bits, as illustrated in Table 3. 

When the information leakage by the discretization was exploited, 

we could further reduce the search space by a factor of 2W	A=
2�W	 	2���⁄ , i.e. 9 bits, but still successfully guessed 39.5% of the 

passwords using the zooming-out window model, and 50% of the 

passwords using the probability model. This clearly suggests that 

Centered Discretization can leak a significant amount of password 

information.  

To compare the success rates for both Robust Discretization and 

Centered Discretization with the same 19 × 19 grid-square size, 

our attack on Centered Discretization produced a much higher 

success rate for similar dictionary sizes or required much smaller 

dictionaries to achieve similar success rates. This result 

contradicts the previous conclusion in [16] that they both have the 

same level of security to dictionary attacks. This contradiction is 

due to the fact that the information leakage caused by 

discretization was ignored in [16].  

The significantly different success rates between the two 

discretization schemes for the same grid-square size can be 

explained by the fact that the discretization schemes leak click-

point information at different uncertainty levels: whether a click-

point is in the center of a grid square in Centered Discretization 

vs. whether a click-point is inside an eligible region, i.e. 36% of a 

grid square in Robust Discretization. That is, Centered 

Discretization leaks much more click-point information than 

Robust Discretization does, and thus the former suffers more from 

our dictionary attacks.  

On the other hand, for the same �, Centered Discretization tends 

to have a better security than Robust Discretization, as the former 

allows a much larger theoretical password space. For example, 

when � = 3, our attack guessed 39.4% of the passwords when 

Robust Discretization (with grid-square size of 19 × 19 ) was 

used, and 7.9% of the passwords when Centered Discretization 

(with grid-square size of 9 × 9) was used, both used dictionaries 

each of approximately 2�� entries. 

6. DISCUSSIONS 
We have not conducted experimental studies on the Image-

Dependent Discretization (IDD) scheme [18] due to lack of details 

to implement the scheme. However, it is possible to apply our 

ideas for attacking Centered Discretization to mount dictionary 

attacks on this IDD as well.  

In the IDD scheme, image features are analyzed with image 

processing and computer vision techniques to predict likely click-

points, which are then placed at centers of Voronoi polygon tiles. 

When such prediction is reasonably accurate, we can use the 

distance of a salient point to the center of a Voronoi polygon tile 

to model the probability that the salient point is a click-point. In 

this case, we can actually use the same techniques as we used for 

Centered Discretization to rank-order sequences of Voronoi 

polygon tiles that contain salient points. This way, we will be able 

to achieve a much improved success rate in password guessing 

than that can be achieved without exploiting click-point 

information leaked by IDD.  

On the other hand, if the prediction of click-points is not very 

accurate, then the IDD scheme may not be as attractive as other 

discretization schemes, since a wrong prediction may result in a 

click-point far away from the center of a Voronoi polygon tile, 

leading to a significant reduction of the tolerance range of click-

variations, and thus may cause unacceptable false accepts and 

false rejects.  

7. CONCLUSION 
We have shown that two representative discretization schemes, 

Robust Discretization and Centered Discretization, both leak 
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information on password click-points, weakening the security of 

click-based graphical password systems. This is an important 

issue that had been neglected by researchers and practitioners 

before our study.  

Our purely automated dictionary attacks have successfully 

exploited click-point information leaked by each of the 

discretization schemes. In our experiments, our attack 

successfully guessed 69.2% of the passwords in PCCP when 

Centered Discretization was used, and 39.4% of the passwords 

when Robust Discretization was used, with attack dictionaries 

each of approximately 2�� entries whereas the full password space 

was of 2��  entries. In addition, for Centered Discretization, our 

attack still successfully guessed 50% of the passwords in PCCP 

when the attack dictionary size was reduced to approximately 2��. 

These results clearly suggest that both representative 

discretization schemes leak a significant amount of password 

information.  

PCCP was considered robust to all known dictionary attacks, and 

thus the most secure click-based graphical password scheme. 

However, our results for the first time show that PCCP is 

vulnerable to dictionary attacks when its implementation uses 

either Centered Discretization or Robust Discretization.  

Our attacks are certainly also applicable to other click-based 

graphical passwords such as PassPoints and CCP. What our 

attacks have exploited is a fundamental security problem with the 

underlying discretization mechanisms, and it is straightforward to 

apply our attacks to PassPoints, CCP or any other click-based 

graphical passwords. It is worthwhile to highlight that since our 

attack assumes that password click-points are mutually 

independent, which is a conservative assumption, our results as 

reported just indicates a conservative success rate for schemes like 

PassPoints and CCP  (like a lower bound).  For example, the 

heuristic patterns of click-points used in [10][11] or the first-order 

Markov model used in [8][9] can be applied to significantly boost 

our attack’s success rate on PassPoints. That is, when these 

attacks are combined with ours, they will lead to a dramatically 

improved success rate on guessing PassPoints passwords.    

As such, our work calls for the design of countermeasures to 

address our attack, or the design of better discretization schemes 

or other alternatives. For example, for the sake of security, a 

discretization scheme should leak as little information as possible. 

On the other hand, a discretization scheme offering good usability 

tends to leak click-point information. A good balance between 

these two contradicting requirements remains a research issue. 

This line of exploration is essential for implementing usable and 

secure click-based graphical passwords in various contexts 

(including Web applications with increasingly popular 

keyboardless client devices), and it is our ongoing work.         
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