
Security Implications of Password Discretization
for Click-based Graphical Passwords*

Bin B. Zhu1, Dongchen Wei2, Maowei Yang3, Jeff Yan4
1
Microsoft Research Asia, Beijing, China

2,3
Sichuan University, Chengdu, Sichuan, China

4
Newcastle University, United Kingdom

1binzhu@microsoft.com, 2v-dowe@microsoft.com, 3djyangmaowei@gmail.com,
4jeff.yan@ncl.ac.uk

ABSTRACT

Discretization is a standard technique used in click-based

graphical passwords for tolerating input variance so that

approximately correct passwords are accepted by the system. In

this paper, we show for the first time that two representative

discretization schemes leak a significant amount of password

information, undermining the security of such graphical

passwords. We exploit such information leakage for successful

dictionary attacks on Persuasive Cued Click Points (PCCP),

which is to date the most secure click-based graphical password

scheme and was considered to be resistant to such attacks. In our

experiments, our purely automated attack successfully guessed

69.2% of the passwords when Centered Discretization was used to

implement PCCP, and 39.4% of the passwords when Robust

Discretization was used. Each attack dictionary we used was of

approximately 2�� entries, whereas the full password space was of

2�� entries. For Centered Discretization, our attack still

successfully guessed 50% of the passwords when the dictionary

size was reduced to approximately 2�� entries. Our attack is also

applicable to common implementations of other click-based

graphical password systems such as PassPoints and Cued Click

Points – both have been extensively studied in the research

communities.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:

Security and Protection – Authentication, unauthorized access.

K.4.4 [Computers and Society]: Electronic Commerce –

Security.

General Terms

Security, Experimentation.

Keywords

Graphical passwords, dictionary attack, discretization,

authentication.

1. INTRODUCTION
Passwords have been widely used to authenticate users to remote

servers in Web and other applications. Text passwords have been

used for a long time. Graphical passwords, introduced by Blonder

[1] in 1996, are an alternative to text passwords. In a graphical

password, a user interacts with one or more images to create or

enter a password. Graphical passwords are intended to capitalize

on the promise of better memorability and improved security

against guessing attacks. Graphical passwords are particularly

suitable for keyboardless devices such as iPads and iPhones

whereon inputting a text password is cumbersome. For example,

Windows 8 recently released by Microsoft supports graphical

password logon. With increasingly popularity of smart phones and

slate computers, we expect to see a wider deployment of graphical

passwords in Web applications.1

Among a large variety of graphical password proposals, click-

based graphical passwords have attracted the most attention in

both the Human-Computer Interaction (HCI) and security

communities. A click-based graphical password consists of a

sequence of click-points on one or more images. To log in, a user

clicks the same points of her password, in the correct order, on the

same image(s). PassPoints [2][3] is a representative click-based

graphical password scheme, wherein a password consists of a

sequence of points anywhere on an image. Later studies [5]-[11]

indicate that PassPoints is vulnerable to dictionary attacks which

exploit image hotspots [5][6] (i.e. spots that are more likely to be

selected as click-points across users) and patterns of click-points

[7]. Purely automated attacks [10][11] detect corner points and

centroid points as hotspots, and apply heuristics to select a set of

combinations of the detected hotspots to form dictionaries of

guessed passwords. The attacks on two representative images

used in PassPoints guessed 7-16% of the passwords for

dictionaries each with approximately 2�� entries, and 48-54% of

the passwords for dictionaries each with approximately 2��

entries, whereas the full password space contained 2�� entries.

Lessons of hotspot-based dictionary attacks on PassPoints led to

the design of two improved click-based graphical password

schemes, Cued Click Points (CCP) [12] and Persuasive Cued

Click Points (PCCP) [13][14]. CCP is a variation of PassPoints

with improved security, and PCCP improves the security further.

PCCP has been considered robust to all the reported hotspot-based

dictionary attacks.

Click-based graphical password schemes such as PassPoints,

CCP, and PCCP allow arbitrary click-points in a password. Due to

inevitable click inaccuracy, a predefined tolerance distance is used

in these schemes that a click is verified correct if it falls in the

tolerance region which has a distance to the originally chosen

click-point equal to or less than the tolerance distance. This would

work well if the password is stored in the clear in the system. For

the sake of security, a practical system typically does not store

* Corresponding author: Bin B. Zhu (binzhu@microsoft.com or

binzhu@ieee.org). This work was done when Dongchen Wei

and Maowei Yang were interns at Microsoft Research Asia.

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink

to the author's site if the Material is used in electronic media.

WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.

ACM 978-1-4503-2035-1 /13/05.

1581

passwords in the clear. Instead, a password is cryptographically

hashed and the hash value is stored in the system. It is impossible

for such a system to calculate the distance of a click to the

corresponding click-point in the password since a single bit

change in the input would result in a completely different hash

value. Therefore the system has no way to check if the click is

within the tolerance region of the click-point or not. This problem

is identified in [15]. A solution is discretization of click-points

using grids so that all tolerable clicks of a click-point are inside a

single grid cell. A discretization scheme should guarantee a

minimum tolerance range of � pixels, i.e., being � -safe: if a

clicked point is within � pixels from the desirable point, the same

discretization point would always be produced.

Several password discretization schemes have been proposed.

Robust Discretization [15] uses three offset grids of grid-square

size 6� × 6� to guarantee that for every point in the image, there

exists at least one grid whereby the point is � -safe. Centered

Discretization [16] determines the grid for a point such that the

point is the center of a grid-square of the grid. Its grid-square size

is 2� × 2� to maintain that the point is � -safe. Centered

Discretization produces a smaller grid-square than Robust

Discretization without impacting the usability of the system [16].

Optimal Discretization [17] is the same as Centered Discretization

when offset is used, and suffers from the edge problem of

discretization (i.e., a small perturbation may result in a wrong

grid-square when the click-point is near a grid line) when no

offset is used. The edge problem is what the other discretization

schemes tried to avoid in their designs. As a consequence,

multiple trials of possible grid-squares due to acceptable click-

variation are used during authentication to address the edge

problem of discretization when offset is not used in Optimal

Discretization. Image-dependent discretization is proposed in

[18], wherein image features are analyzed and Voronoi polygon

tiling is produced that likely click-points are centered within the

polygons.

In all these discretization schemes, grid information used for a

password is stored in the system in plaintext so that the same grids

are used to discretize clicks in authenticating a user. This

information may be accessible to adversaries. A natural question

arises: what is the security implication of this additional

information about a password? It is believed that the additional

information of the discretization grids does not lead to weaker

security [16]. It has remained for years an open problem whether

it is possible for adversaries to exploit such information to their

advantage [14][16][19].

In this paper, we for the first time address this open question,

which concerns an important aspect of applying click-based

graphical password schemes including PassPoints, CCP and

PCCP in real applications. Our security analysis on two

representative discretization schemes, Robust Discretization and

Centered Discretization, indicates that discretization does have

significant security implications: it leaks information about

password click-points, and thus leads to weaker security. The

leaked information can be exploited to mount successful

dictionary attacks on click-based graphical password schemes

such as PCCP which are otherwise considered robust to the

dictionary attacks. Our experimental studies on PCCP show that

our purely automatic dictionary attacks using dictionaries each

with approximately 2�� entries guessed 69.2% of the passwords

when Centered Discretization was used, and 39.4% of the

passwords when Robust Discretization was used, whereas the full

password space was of 2�� entries. In addition, for Centered

Discretization, our attack still successfully guessed 50% of the

passwords when the attack dictionary size was reduced to

approximately 2��. Our work sheds light on the future design of

secure yet practical discretization schemes.

The remaining paper is organized as follows. Related work is

reviewed in Section 2. Technical details of discretization schemes

are described in Section 3. We present our security analysis of

discretization schemes in Section 4. Our dictionary attacks on

PCCP using both Robust Discretization and Centered

Discretization are described in Section 5. Discussions are

presented in Section 6. The paper concludes in Section 7.

2. RELATED WORK
We briefly review click-based graphical passwords and their

dictionary attacks in this section. Details on discretization

schemes are provided in Section 3.

2.1 Click-based Graphical Passwords
Since the introduction of the first graphical password scheme by

Blonder [1] in 1996, graphical passwords have become an active

research topic, and a large number of graphical password schemes

have been proposed. Among these schemes, click-based graphical

password schemes have attracted the most attention in both HCI

and security research communities. They will be briefly described

here. For more detailed information of click-based graphical

password schemes as well as other types of graphical password

schemes, readers are referred to a recent comprehensive review of

graphical password schemes [19].

In Blonder’s scheme [1], users click on a set of predefined tap

regions. Jansen et al. [20] proposed a variation which requires

users to click an ordered sequence of visible squares imposed on a

background image. The squares are used to help users repeat

click-points in subsequent logins. In V-go [21], users click on a

sequence of predefined objects in the image. PassPoints [2][3] is

the first click-based graphical scheme that allows a user to click

anywhere on an image in creating a password. It requires a user to

click a sequence of � points anywhere on an image. PassPoints has

studied extensively. Studies [2]-[4] indicate that � = 5 leads to

promising usability. Thus this setting has been widely adopted in

the literature. Cued Click Points (CCP) [12] is a variation of

PassPoints with improved security. In CCP, a sequence of images

is used in entering a password, one click per image, with the next

image selected by a deterministic function. The security is further

improved with Persuasive Cued Click Points (PCCP) [13][14],

which requires a user to select each click-point inside a randomly

positioned viewport in creating a password, resulting in more

randomly distributed click-points in a password.

2.2 Dictionary Attacks on Click-based

Graphical Passwords
Effective dictionary attacks have been conducted on PassPoints-

style graphical password schemes by exploiting two weaknesses

in human selection of a password: hotspots and patterns. Hotspots

[5][6] are spots more likely selected as click-points across users,

and patterns [7] are likely click orders and location relationships

of click-points in users’ passwords. Both are related to predictable

preferences in human created passwords.

Image processing techniques have been used to locate hotspots in

an image to enable automatic guessing attacks [5][10][11] on

click-based graphical passwords. Dirik et al. [5] proposed

automatic dictionary attacks on PassPoints, whereby mean-shift

image segmentation [22][23] was applied to detect centroids of

1582

segments that are not too large or too small, and then grid-squares

were sorted according to their probabilities to be in a password,

calculated by applying a user attention model, to build attack

dictionaries. Experiments on a representative image found 8.45%

of the passwords using a dictionary of approximately 2�� entries

whereas the full password space was of 2�� entries [5]. Salehi-

Abari et al. [10] proposed an automatic hotspot-based dictionary

attack against PassPoints-style graphical passwords, which were

subsequently improved by van Oorschot et al. [11]. In these

attacks, both corner and centroids are detected to form a set of

predicted click-points. This set is too large to build an effective

attack dictionary by traversing all combinations of the predicted

click-points. Heuristic patterns of click-points in a password and

salient regions detected using a visual attention model are used to

select likely combinations of the predicted click-points in building

attack dictionaries. Experiments using two representative images

with a full password space of 2�� entries found 7-16% of the

passwords using dictionaries each of approximately 2�� entries,

and 48-54% of the passwords using dictionaries each of

approximately 2�� entries [11].

In human-seeded attacks [8][9] on PassPoints, click-points from a

small set of users are harvested for targeted images, and attack

dictionaries are constructed using a first-order Markov model or

an independent probability model. In a lab study [8][9] on two

representative images with the full password space of 2�� entries,

the method found 20-36% of the passwords using dictionaries

each of 2�� to 2�� entries built with the independent probability

model and 4-10% of the passwords within 100 guesses using the

first-order Markov model.

An analysis of user-selected passwords reported in [7] revealed

that for CCP, users still tended to select click-points falling within

known hotspots, but the patterns of click-points exploited in

successful dictionary attacks on PassPoints were eliminated; on

the other hand, PCCP had eliminated both common patterns and

hotspots. Therefore, PCCP was considered to be robust to all the

known dictionary attacks.

3. DISCRETIZATION SCHEMES
We briefly described several discretization schemes in Section 1.

Since Optimal Discretization [17] is the same as Centered

Discretization [16] when the edge problem of discretization is

avoided and the image-dependent discretization scheme [18] lacks

detailed information for an actual implantation, our security

analysis will focus only on Robust Discretization and Centered

Discretization. In the following, we describe these two schemes in

detail.

3.1 Robust Discretization
Robust Discretization [15] uses three offset grids to guarantee that

for each point in the image, there exists at least one grid in which

the point is �-safe. Specifically, each grid �� , � ∈ {1,2,3} has a

grid-square size of 6� × 6�, with an offset from each other by a

distance of 2� in both directions. Figure 1 shows an example of

the three grids in Robust Discretization, along with two points A

and B, wherein point A is �-safe in grid G0, and point B is �-safe

in both G1 and G2. When creating a password, one of the three

grids is selected for each click-point. When a click-point is �-safe

in more than one grid, a selection algorithm is needed to select

one from the candidate grids. An optimal algorithm [16] selects

the grid wherein the point is closest to the center of the grid-

square in order to minimize the occurrence of false accepts and

false rejects of passwords.

Figure 1. Robust Discretization: Three grids G0, G1, and G2,

wherein A is �-safe in G0 and B is �-safe in both G1 and G2

(taken from [15]).

With Robust Discretization, each click-point in a password is

associated with an image, a grid selected for the click-point, and a

grid-square in the grid where the click-point lies in. Therefore a

password can be represented by a sequence of grid-squares in the

selected grids with corresponding images associated with the

click-points of the password; and a cryptographic hash of the

sequence is stored in the system. Identifiers of the selected grids

for the password’s click-points are also stored in the system but in

plaintext. During authentication, the stored grid identifier for each

click-point is retrieved to determine the exact grid-square which a

user-clicked point actually lie in. The hash of the resulting

sequence of the grid-squares with the corresponding images is

calculated and compared with the stored hash to determine if

authentication is a success or failure.

3.2 Centered Discretization
Centered Discretization [16] finds, for each click-point in a

password, a grid wherein the click-point is the center of a grid-

square in the grid. This grid can be uniquely determined by an

offset to the grid aligned with both x-axis and y-axis. This offset

is stored in plaintext in the system, and will be used to reconstruct

the grid during authentication. To make the point be �-safe, each

grid has a grid-square size of 2� × 2�. The grid’s offset is For

every click-point, Centered Discretization has the same maximal

tolerance level of click-variations, which is � pixels on each

direction; whereas for click-points at different locations, Robust

Discretization has various maximal tolerance levels of click-

variations, in the range from � to 3�. If the click-point is at the

center of its grid-square, it can accept click-variations within 3�

pixels on each direction. That maximal tolerance level reduces

gradually to � when the click-point moves from the center towards

an edge of the grid-square.

For the same guaranteed tolerance range � of click-variations, a

grid-square in Centered Discretization is one third in size of that

in Robust Discretization along each direction, resulting in the size

of the full password space in Centered Discretization about

9� ≈ 2�� times of that in Robust Discretization for passwords of 5

click-points. For the same grid-square size, Centered

Discretization has a guaranteed tolerance level three times that

Robust Discretization offers, whereas both have the same size for

the full password space.

Security of Centered Discretization is compared with that of

Robust Discretization in [16] using PassPoints, with the

conclusion that both discretization schemes have the same level of

1583

security when both have the same size of grid-squares, and that

Centered Discretization is more secure when they are both �-safe.

4. A SECURITY ANALYSIS
In this section, we present a security analysis of Robust

Discretization and Centered Discretization. We first explain

theoretical models assumed in our analysis, and describe key

observations that motivated our attacks. Next, we introduce our

attack methodology, which consists of two stages. In the first

stage, image processing techniques are used to detect potential

click-points in each image. In the second stage, discretization

information stored in the system is exploited to build attack

dictionaries. This security analysis is generic, as it is independent

from any specific click-based graphical password scheme.

4.1 Theoretical Models

4.1.1 Threat Model
HTTP Authentication [24] has been widely used in Web

applications. It contains two types of authentication protocols,

Basic Access Authentication and Digest Access Authentication.

The latter is more secure than the former. In Digest Access

Authentication, password hash is calculated at the client side. As a

consequence, the discretization grid information for each click-

point of a password needs to send to client when a discretization

scheme is used in Digest Access Authentication, and thus

accessible to adversaries. Since discretization grid information is

stored in plaintext, it is also accessible to adversaries in offline

dictionary attacks. A password guess can be verified with the

system for online dictionary attacks or with the stored password

hash for offline dictionary attacks. A user ID is frequently stored

in a Web browser and thus accessible to adversaries.

In summary, the threat model in our studies is as follows:

Adversaries have access to everything except passwords or the

information accessible only with passwords. Particularly,

adversaries have access to the discretization information, user

IDs, and hash values of passwords stored in the system.

We note that the above threat model is generic, not necessarily

tied with Web applications. For example, the threat model is

applicable for offline dictionary attacks whereby adversaries have

access to the authentication information stored in the

authentication server.

4.1.2 Independent Model of Click-Points
For generality, we assume that click-points are mutually

independent. For some click-based graphical password schemes

such as PassPoints, there might exist some correlations among the

click-points in a password, as exploited by successful dictionary

attacks on PassPoints described in Section 2.2. The correlations

can be exploited to improve efficiency of the dictionary attacks to

be presented in this paper. For example, the heuristic patterns of

click-points used in [10][11] or the first-order Markov model used

in [8][9] can be applied to improve our dictionary attacks on

discretization with PassPoints.

4.2 Key Observations
Our security analysis was motivated with the following two

observations. The first is on click-points likely selected in click-

based graphical passwords, and the second is on the distribution

of human click-variations.

4.2.1 Click-Points of Graphical Passwords
A study [7] reveals that hotspots exist in both PassPoints and

CCP, but are eliminated in PCCP, thanks to the requirement that a

click-point is selected within a randomly positioned viewport. We

conceive that click-points in PCCP are likely salient points in

viewports that should be detectable with image processing

techniques. That conception led us to using corners and centroids

in images to predict click-points for all click-based graphical

password schemes.

There are typically too many detected salient points (i.e., corners

and centroids) that a dictionary built by traversing all their

combinations is too large to mount a meaningful dictionary attack.

Patterns of click-points in a password and other techniques such

as a user attention model have been used to select only likely

salient points and their combinations in dictionary attacks on

PassPoints [5][10][11]. These techniques can no longer be used to

attack PCCP, as concluded in [7]. With the independent model of

click-points assumed in this paper, detected corners and centroids

cannot in general mount an effective dictionary attack on a click-

based graphical password scheme. We need to reduce the size of

dictionaries significantly to mount a meaningful dictionary attack.

4.2.2 Distribution of Human Click Variations
People have different accuracy in re-clicking a point. Figure 2

shows the result of a study by Chiasson et al. [12] with 24

university students on the accuracy that users re-entered click-

points for both stages of password confirmation and login. More

than 70% of the users had small variations, in the range from 1 to

3 pixels, in re-entering click-points. Click-variations for the

remaining users distribute in the long tail in the figure, ranging

from 4 to more than 51 pixels.

Figure 2. Accuracy in re-entering click-points (taken from [12]).

For acceptable usability, a practical system should select � of a

discretization scheme conservatively so that most users should be

able to enter their passwords correctly. In other words, � should

be selected significantly larger than most users’ click-variations.

For example � should be 4 pixels or larger from Figure 2. We

conceive that the disparity between a large tolerance range of the

system and small click-variations for most people can be

exploited to remove salient points unlikely related to the click-

point currently seeking for: salient points far away from likely

locations of the current click-point are removed. Additionally, if

the location of a click-point is known within a grid-square as in

Centered Discretization or predictable as in the image-dependent

discretization scheme [18], salient points can be rank-ordered by

their distances to the click-point’s locations inside their respective

grid-squares: a salient point with a shorter distance is more likely

to be the click-point. This conception led to our method to build

effective dictionaries from detected salient points by exploiting

the location information of a click-point leaked by a discretization

scheme, as to be described in Section 4.4.

1584

4.3 Prediction of Click-Points
Like [10][11], corners and centroids are detected with image

processing techniques and used as salient points to predict click-

points for click-based graphical password schemes such as PCCP,

CCP, and PassPoints. A corner is the intersection of two edges,

and a centroid is the center point of an object. Corner detection

and centroid detection we recommend to use are described as

follows.

4.3.1 Corner Detection
Harris corner detection [25] implemented by Kovesi [26] is used

to detect corners. Kovesi’s implementation contains three

parameters, “sigma” (�), “thresh” (�), and “radius” (�), where

�	 is the standard deviation of a smoothing Gaussian filter, �

measures the strength of non-maxima-suppression: all corners

with weight lower than � are suppressed, � is an inhibition radius,

measured in pixels around a detected corner. For large �, Kovesi’s

detector detects strongly distinctive corners. Weakly distinctive

corners can also be detected when the value of � reduces. The

following unique method is applied to detect corners in an image:

1. Detection of strongly distinctive corners. Kovesi’s

detector is applied to the image with the following

parameters: � = 1, � = 65, � = 2 . The set of corners

detected in this step is denoted by ��.

2. Detection of weakly distinctive corners. Kovesi’s detector

is applied to the image with the following parameters:

� = 1, � = 5, � = 4. The set of corners detected in this

step is denoted by ��.

3. Detection of weakly distinctive corners in 2X window.

The image is smoothed using a Gaussian filter with the

standard deviation of 1.0, and then down-sampled.

Kovesi’s detector is applied to the resulting image with

the following parameters: � = 1, � = 7, � = 2. The set of

corners detected in this step is denoted as �� . This is

equivalent to using Harris detector with a window twice

the size in both directions of the default window used in

Kovesi’s implementation.

4. Detection of weakly distinctive corners in both scales.

For each point # in ��, if there exist a point in �� within a

distance of 7 pixels from 	# , then # is kept in �� .

Otherwise # is removed from �� . The set of survived

corners in �� is denoted by ��
$.

5. Detected corners. The union of �� and ��
$, � = �� ∪ ��

$, is

output as the detected corners of the image.

The detected corners in � are either strongly distinctive corners or

weakly distinctive corners of large structures. Figure 3 shows the

detected corners for image “pool” which has been widely used in

security studies of PassPoints. Each corner is marked by a ‘+’ on

the image. Compared to the detected corners of the same image

shown in [11], our corner detection produces a slightly smaller

number of corners. The major difference between the two corner

detection methods is around the tree leaves in the image: weak

corners of small structures are suppressed in our corner detection.

4.3.2 Centroid Detection
Centroids are detected with the same method as in [11] except

using a different implementation of mean-shift segmentation

algorithm [22][23] for our convenience. We use the

implementation [27] to segment images with the following values

of the three parameters used by the implementation:&'()*� = 7,

&'()*+ = 9 , and)',+-('., = 100 . The last parameter is a

threshold for the minimal segment area (in pixels). For the

resulting segments, we calculate only the segments with an area of

500 pixels or less. Segments too large or too small are ignored.

Only the segments with an area in the range from 100 pixels to

500 pixels are used to calculate centroids.

A segment with an irregular shape may result in a centroid outside

the segment. This type of centroid is unlikely selected as a click-

point, and thus should be removed. Removing this type of

centroid is achieved by checking if the centroid is outside its

segment or not. If the centroid is outside the segment, the centroid

is removed. Otherwise the centroid is kept. The survived centroids

are output as the detected centroids.

Figure 3. Detected corners (each corner is marked by a ‘+’).

4.4 Construction of Dictionaries
For each click-point in a password, once salient points are

detected, the discretization information stored in the system is

exploited to remove salient points that are unlikely to be the click-

point for Robust Discretization, or to rank-order combinations of

salient points by their predicted probabilities to be the password

for Centered Discretization. This section represents the key

insights behind our attacks.

4.4.1 Dictionaries for Centered Discretization
In Centered Discretization, a click-point is the center of some

grid-square of the grid associated with the click-point. According

to the distribution of click variations shown in Figure 2, a point

closer to but not at the center of its grid-square has a higher

probability to be the click-point. A password consists of multiple

click-points. For each password, we can build a model using

distances of salient points to the centers of their grid-squares to

predict the probability that a sequence of the salient points is the

password.

Before applying the model, we prune salient points so that each

grid-square contains at most one salient point. If a grid-square

contains more than one salient point, only the salient point closest

to the center of the grid-square is kept and all the other salient

points in the grid-square are removed. Then one of the following

two models is used to build attack dictionaries with entries

ordered by their probability to be the password.

Zooming-out Window Model. In this model, we use a series of

concentered windows with different sizes to determine the order

of grid-squares in constructing a dictionary. More specifically, we

place a selecting window	01 of size 22 × 22 at the center of each

grid-square, where 0 ≤ 2 ≤ �, and assign a salient point a priority

1585

value 2 if the salient point is in window	01 but not in window

014�, where we assume that 04� is empty. A salient point with a

smaller priority value is closer to the center of its grid-square, and

thus considered to be more probably to be the click-point. Salient

points not in any selecting window are removed. The priority

value of a grid-square is the priority value of the salient point

inside the grid-square. Grid-squares containing no salient point

are removed. The survived grid-squares are traversed for all

possible combinations of grid-squares. Based on the independent

model of click-points, the priority value of a sequence of grid-

squares is assigned to be the sum of the priority values of the

constituent grid-squares. The sequences with priority value & form

a set denoted as �5. A sequence in set �6 is more likely to be the

password than a sequence in �7 if ' < 9. A series of dictionaries

{:5|& = 0,1, ⋯ } can thus be constructed as follows:

:5 = ⋃ ��
5
�>� (1)

These dictionaries have the following relationship:

:� ⊆ :� ⊆ :� ⊆ ⋯ (2)

Password guesses in a dictionary :5 can therefore be partitioned

into a layered order: the guesses in :� are ordered as the first layer

and tested first; the guesses in :� but not in :� (i.e., the guesses in

��) are ordered as the second layer and tested next. This process

continues until all the guesses in :5 are ordered and tested. In

other words, guesses in a dictionary :5 are tested according to

their priority values, from low to high. Guesses with the same

priority value can be tested in any order.

Probability Model. If we ignore the value at 0, we can

approximate the distribution of user click-variations shown in

Figure 2 with a normal distribution

@A2) = * ∙ -C#A−
1E

�FE
) (3)

where * is a normalization coefficient and 2 (0 ≤ 2 ≤ �) is the

distance of the point to the center of its grid-square. For

simplicity, Eq. (3) is also used for the case 2 = 0 in our studies,

although @A2) at 2 = 0 deviates considerably from the value

shown in Figure 2. We believe that such a deviation will be

tolerated by our probability model, as this model is much more

accurate than the zooming-out window model. The belief is

confirmed true by our experimental results which will be reported

later: even the zooming-out window model has produced good

results.

For each grid-square containing a salient point, we calculate a

probability that the click-point actually lies in the grid-square by

using Eq. (3), with 2 being the distance of the salient point to the

center of its grid-square. For every possible password guess

constructed from the grid-squares containing salient points,

according to the independent model of click-points, we calculate

its probability to be the password as multiplication of the

probabilities of the constituent grid-squares. These guesses are

then sorted by their likelihood of being the password. An attack

dictionary can select any number of most probable guesses, and

guesses are tested in the order of their probability of being the

password.

4.4.2 Dictionaries for Robust Discretization
In Robust Discretization, different schemes can be used to select a

grid when more than one grid satisfies the guaranteed tolerance

range � . The maximum tolerable range of click-variations runs

from � to 3�, depending on the location of the click-point in its

grid-square. To have a good balance between usability and the

size of the full password space, it is typical to choose the optimal

grid that maximizes the safe distance of the click-point to the

edges of the grid-square. This optimal Robust Discretization was

used in [16] to study security of Robust Discretization, and has

been adopted in our studies too. The optimal Robust

Discretization leads to an eligible region that a click-point may lie

in. Figure 4 shows the eligible region surrounded by the dashed

lines inside the greyed grid-square if grid �� is used for the click-

point. The eligible region is about 36% of the grid-square. With

this information, we remove salient points that are not inside any

eligible region. Then we select all the grid-squares that contain at

least one salient point, and build a dictionary by traversing all

their combinations using the independent model of click-points.

Figure 4. The eligible region that a click-point can lie inside a

grid-square for grid GH.

5. DICTIONARY ATTACKS ON PCCP

USING DISCRETIZATION

5.1 Why do We Target PCCP?
PCCP was selected as the click-based graphical password scheme

in our studies of the two representative discretization schemes

since it was considered the most secure click-based graphical

password scheme to date, robust to all the dictionary attacks

reported on click-based graphical passwords. It was estimated in

[13] that hotspot-based dictionary attacks would guess only 0.03%

of PCCP passwords, a percentage that is extremely small as

compared to the ratios of passwords guessed by dictionary attacks

reported on PassPoints.

For PCCP, next image IJKLM is selected by a deterministic function

@	of current image INOPP, the current tolerance square, and the user

ID:

I,-CQ 	 = 	@AIRS��, (�'2�TS*�-, S&-�I:) (4)

Eq. (4) makes PCCP rely on a discretization scheme in selecting a

next image so that approximate clicks would result in the same

next image. Due to this image selection mechanism, we cannot

build a general dictionary to attack all users as in attacking

PassPoints. Instead, we need to build personalized attack

dictionaries for each individual user, which makes dictionary

attacks much more complex than those on PassPoints. Like

1586

reported security studies on PassPoints, we assume that each

password consists of 5 click-points in our studies.

According to the generic threat model in Section 4.1.1, user IDs

are known to adversaries. Once a user ID is known, a single login

attempt can obtain the first image used by the account. We also

assume that a service is available to adversaries to determine the

next image for every input triple consisting of a current image, a

clicked grid-square, and a user ID. The generic threat model in

Section 4.1 is thus refined as follows for PCCP: Adversaries have

access to everything except passwords or the information

accessible only with passwords. Particularly, adversaries have

access to the discretization information, user IDs, and hashed

password stored in the system. For PCCP, adversaries have

access to each user’s first image and the image database. The

deterministic function is used as an oracle that adversaries can

query to get the index of the next image used in entering a

password but have no access to and would not try to find the

internal logic or parameters of the deterministic function.

Adversaries do not have access to any password or any of the

remaining images any user uses.

5.2 Building Personalized Attack Dictionaries
To build personalized attack dictionaries for each participant in

our studies, we detected salient points for the first image,

processed these points using the grid information associated with

the image, as described in Section 4.4, and obtained the grid-

squares, (�
�|� = 0, 1, ⋯, which contain at least one salient point.

Each of the grid-squares is a password guess of the first click-

point. These grid-square form a set :� = {(�
�|� = 0, 1, ⋯ }, which

comprises of guesses of the user’s password up to the first click-

point.

Suppose we have finished the construction of set :6 = {(�
6 |� =

0, 1, ⋯ } comprising of password guesses of the user’s password

up to i-th click-point, (�
6 |� = 0, 1, ⋯,	 where '	 < 	5. We use the

following procedure to build the set :6U� comprising of the

password guesses of the user’s password up to the (i+1)-th click-

point.

• Initialize :6U� to empty, and a count � to 0.

• For each entry (�
6 ∈ :6 , � = 0, 1, ⋯, we obtain the next

image by querying the oracle with the current image, the

current grid-square, and the user ID. Then we detect and

process the salient points of the obtained image in the

same way as for the first image. Each of the grid-

squares containing at least one salient point for the

obtained image is a guess of the (i+1)-th click-point of

the user’s password, and combined with the guess of the

preceding click-points of (�
6 . Each resulting guess (�

6U�

is inserted into :6U�, with the current value of the count

� as the lower index � of the guess. After a guess is

inserted into :6U�, the count � is increased by 1.

The above procedure is applied until all the five click-points have

been guessed. The resulting set :� is the attack dictionary,

: = :�, built for the user.

5.3 Experimental Setting
We searched Internet for images with similar complexity as the

representative image shown in Figure 3, which has been widely

used in security studies on click-based graphical password

schemes, and collected 1200 images for our experimental studies

on PCCP. These images were cropped to size of 451 × 331 pixels

if necessary. The grid-square sizes in our studies ranged from

9 × 9 to 19 × 19. For passwords of 5 click-points, the size of the

full password space for an individual user was 2�� if the largest

grid-square 19 × 19 was used, or 2�� if the smallest grid-square

9 × 9 was used. The detection algorithms described in Section 4.3

were then applied to each image to detect the salient points in the

image. The detected click-points were saved together with the

image for later studies. We also implemented PCCP based on the

description in [13]. In our implementation, MD5 hash function

was used as the deterministic mapping function in Eq. (4) to select

the next image, by dividing the resulting hash value by 1200, the

total number of images in in our studies. A count starting from 0

was added to the list of parameters of the hash function. The count

was increased by 1 when a new image was selected in entering a

password, including dropped images as explained next. When the

next image selected by the function repeated a preceding image in

entering a password, the image was dropped and a new image was

selected using the previously clicked grid-square. This process

repeated until an image different from all the preceding images

was selected. This process would result in a unique sequence of 5

different images for each user and her password.

Since the index of a grid-square depends on the size of the grid-

square, Eq. (4) will select a different image and result in a

different password for different sizes of grid-squares in our

studies even if a user uses the same current image and the same

click-point on the image in her password. This would complicate

our experiments on different grid-square sizes since a participant

would have to create and remember one password for every grid-

square size, and we could not rule out interference in memorizing

multiple passwords by a participant. To simplify the tasks each

participant needed to perform in our studies and to avoid possible

interference, we made a minor modification to Eq. (4) as follows:

 I,-CQ 	 = 	@AIRS��, #.',QV..�2',*Q-&, S&-�I:�, (5)

where #.',QV..�2',*Q-& is the coordinates of the recovered

click-point calculated from the user’s click. For Centered

Discretization, the recovered click-point is the center of the

clicked grid-square. For Robust Discretization, the recovered

click-point is the point with a given bias from the center of the

clicked grid-square, with the bias being the coordinates of the

click-point relative to the center of the grid-square it lies in. The

bias for each click-point is stored in the oracle to determine the

next images for the user. If a user re-clicks the same grid-square

in a login attempt, the recovered click-point is the actual click-

point, and thus the correct next image is selected by Eq. (5). If a

wrong grid-square is clicked, the recovered click-point is different

from the actual click-point, and thus a wrong image is selected.

Since Eq. (5) depends only on the coordinates of a click-point,

which does not change for different grid-square sizes, a

participant would create a single password valid for both Centered

Discretization and Robust Discretization with different grid-

square sizes, greatly simplifying our experiments. Such a

modification has no impact on our security studies of the

discretization schemes with PCCP when the images in the

database are of similar complexity.

5.4 Password Collection
We conducted an in-lab user study with 38 voluntary participants

(29 males and 9 females) to collect PCCP passwords. All the

participants were engineering students ranging from

undergraduate senior to Ph. D. students. All of them were good at

using computers and Web browsing but none of them had studied

computer or network security, or used the graphical password

schemes under study. The participants were trained to get familiar

1587

with the experimental tasks in advance. They used Web browsers

on their own PCs to create passwords and log into a remote

authentication server. Each participant was required to select a

password of 5 click-points in length. The selected password was

confirmed immediately after creation with all the discretization

schemes and configurations under test. Each participant was given

up to three trials to pass the confirmation test. If a confirmation

login failed three times with any discretization scheme and any

configuration, the participant was asked to recreate a new

password. This process was repeated until the created password

was confirmed successfully. Our experimental results confirmed

the distribution of click-variations shown in Figure 2: most

participants could pass the confirmation test in a single trial,

implying that their re-click variations were 3 pixels or less on

each direction from the click-points.

Once a password had been successfully confirmed, the participant

was required to pass two login tests, occurred at 24 hours and 7

days, respectively, after creation of the password. In each login

test, a participant was required to log in successfully within three

trials for each of the discretization schemes and configurations

under test. Otherwise the login test was claimed a failure. A

participant who failed in either login test was required to re-do the

above procedure, only for the failed discretization schemes and

configurations, until he or she passed the two login tests

successfully for all the discretization schemes and configurations

under test. This process was designed to ensure that every

participant selected a PCCP password that could be remembered

for a reasonably long time. The PCCP passwords which had

successfully completed the two login tests were collected.

For each participant, we built personalized dictionaries as

described in Section 5.2. Each guess in a personalized dictionary

was tested in the following order until the password was found,

the dictionary was exhausted, or the termination condition was

met: randomly for Robust Discretization; from highest probability

to the lowest probability for Centered Discretization using the

probability model; or from lowest layer to the highest layer and

randomly within the same layer for Centered Discretization using

the zooming-out window model. The attack result was recorded.

5.5 Experimental Results

5.5.1 Attack Results for Robust Discretization
For Robust Discretization, only the grid-square size of 19 × 19,

with � = 3 pixels, was studied since a smaller grid-square size

leads to poor usability according to [16]. For this setting, 15 out of

the 38 passwords were found by our attack, with a success rate of

39.4%, and with the attack dictionaries each of approximately 2��

entries.

To find out how effectively Robust Discretization has helped

reduce dictionary sizes, we constructed the attack dictionaries

traversing all combinations of the detected salient points, i.e.,

without exploiting Robust Discretization. These dictionaries were

all of approximately 2�W entries. For each user, the individual full

search space contains 2�� entries for the size of images we used,

which is the same size as the full password space for all users in

PassPoints. This is because that once the user ID and the first

image are determined, each grid-square would select a next

image, and there are 391 (= X451 19⁄ Z × X331 19⁄ Z) grid-squares

per image. Therefore, the first click-point has 391 possibilities.

For each grid-square in the first image, there are 391 grid-squares

in the second image, which contributes 391 possibilities.

Therefore the first two click-points contribute 391 × 391	 =
	391� possibilities. This procedure repeats until all the five click-

points have been taken into consideration, resulting in 391� ≈
2�� possibilities, which is the full search space for an individual

user. The prediction of click-points using the corner and centroid

detection algorithms described in Section 4.3 has thus effectively

reduced the password search space by a factor of 2�	A=
2��	 	2�W	�⁄ , i.e. 4 bits, and Robust Discretization has further

reduced the search space by a factor of 2�	A= 2�W	 	2��	�⁄ , i.e., 4

additional bits.

On the other hand, Robust Discretization removes an average of

1.0 − [2��	 2�W⁄\ = 	42.6% of grid-squares per image when

constructing attack dictionaries, which roughly agrees with the

36% area ratio of the eligible region to the grid-square size (see

Section 4.4.2).

5.5.2 Attack Results for Centered Discretization
For Centered Discretization, grid-square sizes ranged from 9 × 9

to 19 × 19 were used, leading to �	 = 	4.5, 5.5, … , 9.5 pixels. For

each �, dictionaries were built respectively with the zooming-out

window model using 2 running from 2 to X�Z , and with the

probability model where the size of a dictionary is controlled at

the end of the range of an integer power of 2.

Table 1 summarizes our attack results achieved with the zooming-

out window model. The leftmost column shows attack success

rates (the ratio of the number of guessed passwords to the total

number of passwords). Note that for the same 2, the success rate

remains constant for different grid-square sizes, since a click-

point always remains at the center of its grid-square, which is also

the center of the selecting window with a size of 22 × 22. When

the grid-square size is fixed, the attack success rate is correlated

with the dictionary size; the larger dictionaries are used, the

higher the attack success rate can be achieved. With attack

dictionaries each of approximately 2�� entries, our attack

successfully guessed 63.2% of the passwords when the grid-

square size was 19 × 19, whereas the full password space was of

2�� entries.

Table 1. Attack success rates using the zooming-out window

model

Success

rate (%)

Dictionary size (bits) per grid-square size

19x19 17x17 15x15 13x13 11x11 9x9

76.4 38

71.1 37 38

71.1 36 37 39

63.2 35 36 38 40

57.9 33 35 37 39 41

39.5 30 32 34 36 38 41

7.9 27 29 31 33 35 38

2.6 21 23 25 27 30 33

Table 2 summarizes our results achieved with the probability

model. The leftmost column is dictionary size (n bits). Attack

results for some n values are omitted to avoid an overly lengthy

table. When the grid-square size is fixed, the attack success rate is

correlated with the dictionary size; the larger dictionaries are used,

the higher the success rate can be achieved. For the grid-square

size of 19 × 19, and thus the full search space of 2�� entries, the

probability model successfully guessed 69.2% of the passwords

1588

with attack dictionaries of approximately 2�� entries, and guessed

50% of the passwords with attack dictionaries each of

approximately 2�� entries.

In addition to a better controlled dictionary size, the probability

model also produced better success rates than the zooming-out

window model did, as we can easily see by comparing Table 1

and Table 2.

Table 2. Attack success rates using the probability model

Dictionary

size (bits)

Attack success rate (%) per grid-square size

19x19 17x17 15x15 13x13 11x11 9x9

43 65.8 57.9

40 76.3 73.7 71.1 60.5 34.2

39 81.6 76.3 71.1 65.8 52.6 23.7

38 74.4 76.3 71.1 63.2 50 18.4

35 69.2 65.8 52.6 36.9 18.4 7.9

33 63.2 55.3 39.5 18.4 7.9 5.3

32 60.5 50 31.6 10.5 7.9 0

31 52.6 34.2 18.4 7.9 5.3 0

30 50 31.6 10.5 7.9 5.3 0

29 31.6 18.4 7.9 5.3 0 0

28 21.1 10.5 7.9 5.3 0 0

26 10.5 7.9 5.3 0 0 0

23 5.3 2.6 0 0 0 0

Table 3. Full password space and salient point dictionary size

for different grid-square sizes

 Grid-square size

19x19 17x17 15x15 13x13 11x11 9x9

Salient point

dictionary

size (bits)

39 40 41 42 43 44

Full

password

space (bits)

43 44 46 48 51 54

For each grid-square size, we also constructed attack dictionaries

using all the detected salient points, but without exploiting any

information leaked by Centered Discretization. Table 3 shows the

size of each of such dictionaries and the corresponding full

password space size. By comparing Table 1 with Table 3 and

Table 2 with Table 3, we see how much the information leakage

by Centered Discretization has contributed to our attacks, and how

much our salient point detection methods have contributed to our

attacks, respectively. For example, when the grid-square size was

19 × 19, our salient point detection reduced the search space by a

factor of 2�	A= 2��	 	2�W�⁄ , i.e. 4 bits, as illustrated in Table 3.

When the information leakage by the discretization was exploited,

we could further reduce the search space by a factor of 2W	A=
2�W	 	2���⁄ , i.e. 9 bits, but still successfully guessed 39.5% of the

passwords using the zooming-out window model, and 50% of the

passwords using the probability model. This clearly suggests that

Centered Discretization can leak a significant amount of password

information.

To compare the success rates for both Robust Discretization and

Centered Discretization with the same 19 × 19 grid-square size,

our attack on Centered Discretization produced a much higher

success rate for similar dictionary sizes or required much smaller

dictionaries to achieve similar success rates. This result

contradicts the previous conclusion in [16] that they both have the

same level of security to dictionary attacks. This contradiction is

due to the fact that the information leakage caused by

discretization was ignored in [16].

The significantly different success rates between the two

discretization schemes for the same grid-square size can be

explained by the fact that the discretization schemes leak click-

point information at different uncertainty levels: whether a click-

point is in the center of a grid square in Centered Discretization

vs. whether a click-point is inside an eligible region, i.e. 36% of a

grid square in Robust Discretization. That is, Centered

Discretization leaks much more click-point information than

Robust Discretization does, and thus the former suffers more from

our dictionary attacks.

On the other hand, for the same �, Centered Discretization tends

to have a better security than Robust Discretization, as the former

allows a much larger theoretical password space. For example,

when � = 3, our attack guessed 39.4% of the passwords when

Robust Discretization (with grid-square size of 19 × 19) was

used, and 7.9% of the passwords when Centered Discretization

(with grid-square size of 9 × 9) was used, both used dictionaries

each of approximately 2�� entries.

6. DISCUSSIONS
We have not conducted experimental studies on the Image-

Dependent Discretization (IDD) scheme [18] due to lack of details

to implement the scheme. However, it is possible to apply our

ideas for attacking Centered Discretization to mount dictionary

attacks on this IDD as well.

In the IDD scheme, image features are analyzed with image

processing and computer vision techniques to predict likely click-

points, which are then placed at centers of Voronoi polygon tiles.

When such prediction is reasonably accurate, we can use the

distance of a salient point to the center of a Voronoi polygon tile

to model the probability that the salient point is a click-point. In

this case, we can actually use the same techniques as we used for

Centered Discretization to rank-order sequences of Voronoi

polygon tiles that contain salient points. This way, we will be able

to achieve a much improved success rate in password guessing

than that can be achieved without exploiting click-point

information leaked by IDD.

On the other hand, if the prediction of click-points is not very

accurate, then the IDD scheme may not be as attractive as other

discretization schemes, since a wrong prediction may result in a

click-point far away from the center of a Voronoi polygon tile,

leading to a significant reduction of the tolerance range of click-

variations, and thus may cause unacceptable false accepts and

false rejects.

7. CONCLUSION
We have shown that two representative discretization schemes,

Robust Discretization and Centered Discretization, both leak

1589

information on password click-points, weakening the security of

click-based graphical password systems. This is an important

issue that had been neglected by researchers and practitioners

before our study.

Our purely automated dictionary attacks have successfully

exploited click-point information leaked by each of the

discretization schemes. In our experiments, our attack

successfully guessed 69.2% of the passwords in PCCP when

Centered Discretization was used, and 39.4% of the passwords

when Robust Discretization was used, with attack dictionaries

each of approximately 2�� entries whereas the full password space

was of 2�� entries. In addition, for Centered Discretization, our

attack still successfully guessed 50% of the passwords in PCCP

when the attack dictionary size was reduced to approximately 2��.

These results clearly suggest that both representative

discretization schemes leak a significant amount of password

information.

PCCP was considered robust to all known dictionary attacks, and

thus the most secure click-based graphical password scheme.

However, our results for the first time show that PCCP is

vulnerable to dictionary attacks when its implementation uses

either Centered Discretization or Robust Discretization.

Our attacks are certainly also applicable to other click-based

graphical passwords such as PassPoints and CCP. What our

attacks have exploited is a fundamental security problem with the

underlying discretization mechanisms, and it is straightforward to

apply our attacks to PassPoints, CCP or any other click-based

graphical passwords. It is worthwhile to highlight that since our

attack assumes that password click-points are mutually

independent, which is a conservative assumption, our results as

reported just indicates a conservative success rate for schemes like

PassPoints and CCP (like a lower bound). For example, the

heuristic patterns of click-points used in [10][11] or the first-order

Markov model used in [8][9] can be applied to significantly boost

our attack’s success rate on PassPoints. That is, when these

attacks are combined with ours, they will lead to a dramatically

improved success rate on guessing PassPoints passwords.

As such, our work calls for the design of countermeasures to

address our attack, or the design of better discretization schemes

or other alternatives. For example, for the sake of security, a

discretization scheme should leak as little information as possible.

On the other hand, a discretization scheme offering good usability

tends to leak click-point information. A good balance between

these two contradicting requirements remains a research issue.

This line of exploration is essential for implementing usable and

secure click-based graphical passwords in various contexts

(including Web applications with increasingly popular

keyboardless client devices), and it is our ongoing work.

8. REFERENCES
[1] Blonder, G. 1996. Graphical Passwords. United States Patent

5559961.

[2] Wiedenbeck, S., Waters, J., Birget, J. C., Brodskiy, A., and

Memon, N. 2005. Authentication using graphical passwords:

Effects of tolerance and image choice. In Proc. Symp. on

Usable Privacy and Security (SOUPS’05).

[3] Wiedenbeck, S., Waters, J., Birget, J. C., Brodskiy, A., and

Memon, N. 2005. PassPoints: Design and longitudinal

evaluation of a graphical password system. Int. Journal of

Human-Computer Studies (Special Issue on HCI Research in

Privacy and Security). 63, 102–127.

[4] Chiasson, S., van Oorschot, P. C., and Biddle, R. 2007. A

second look at the usability of click-based graphical

passwords. In Proc. Symp. on Usable Privacy and Security

(SOUPS’07).

[5] Dirik, A., Menon, N., and Birget, J. 2007. Modeling user

choice in the PassPoints graphical password scheme. In Proc.

Symp. on Usable Privacy and Security (SOUPS’07).

[6] Golofit, K. 2007. Click passwords under investigation. In

12th European Symposium on Research in Computer

Security (ESORICS’07). LNCS vol. 4734 (Sept. 2007).

[7] Chiasson, S., Forget, A., Biddle, R., and van Oorschot, P. C.

2009. User interface design affects security: Patterns in click-

based graphical passwords. Int. Journal of Information

Security. Springer, 8, 6 (2009), 387-398.

[8] Thorpe, J., and van Oorschot, P. C. 2007. Human-seeded

attacks and exploiting hot-spots in graphical passwords. In

USENIX Security.

[9] van Oorschot, P. C., and Thorpe, J. 2011. Exploiting

predictability in click-based graphical passwords. Journal of

Computer Security, 19, 4 (2011), 669-702.

[10] Salehi-Abari, A., Thorpe, J., and van Oorschot, P. C. 2008.

On purely automated attacks and click-based graphical

passwords. In Proc. 24th Annual Computer Security

Applications Conference (ACSAC).

[11] van Oorschot, P. C., Salehi-Abari, A., and Thorpe, J. 2010.

Purely automated attacks on PassPoints-style graphical

passwords. IEEE Trans. Information Forensics and Security.

5, 3 (2010), 393-405.

[12] Chiasson, S., van Oorschot, P. C., and Biddle, R. 2007.

Graphical password authentication using cued click Ppoints.

In ESORICS’2007. LNCS, vol. 4734/2007, 359–374.

[13] Chiasson, S., Forget, A., Biddle, R., and van Oorschot, P. C.

2008. Influencing users towards better passwords: Persuasive

cued click-points. In Proc. of HCI. British Computer Society.

[14] Chiasson, S., Stobert, E., Forget, A., Biddle, R., and van

Oorschot, P. C. 2012. Persuasive cued click-points: Design,

implementation, and evaluation of a knowledge-based

authentication mechanism. IEEE Trans. on Dependable and

Secure Computing. 9, 2 (March/April 2012), 222-235.

[15] Birget, J. C., Hong, D., and Memon, N. 2006. Graphical

passwords based on robust discretization. IEEE Trans.

Information Forensics and Security. 1, 3 (2006), 395-399.

[16] Chiasson, S., Srinivasan, J., Biddle, R., and van Oorschot, P.

C. 2008. Centered discretization with application to graphical

passwords. In Proc. 1st Conf. on Usability, Psychology, and

Security (UPSEC’08).

[17] Bicakci, K. 2008. Optimal discretization for high-entropy

graphical passwords. In 23rd Int. Symp. on Computer and

Information Sciences (Istanbul, Turkey, 2008).

[18] Kirovski, D., Jojie, N., and Roberts, P. 2006. Click

passwords. In IFIP Int. Federation for Information

Processing, vol. 201, Security and Privacy in Dynamic

Environments. 351-363.

[19] Biddle, R., Chiasson, S., and van Oorschot, P. C. 2012.

Graphical passwords: Learning from the first twelve years.

1590

ACM Computing Surveys. 44, 4 (August 2012), Article 19, 1-

41.

[20] Jansen, W. A. 2003. Authenticating users on handheld

devices. In Proc. of Canadian Information Technology

Security Symposium (2003).

[21] Passlogix. http://www.passlogix.com, site accessed May 6,

2011.

[22] Cheng, Y. 1995. Mean shift, mode seeking, and clustering.

IEEE Trans. on Pattern Analysis and Machine Intelligence.

17, 8 (1995), 790-799.

[23] Comaniciu, D., and Meer, P. 2002. Mean shift: A robust

approach toward feature space analysis. IEEE Trans. on

Pattern Analysis and Machine Intelligence. 24, 5 (2002),

603-619.

[24] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P.

Leach, A. Luotonen, and L. Stewart. 1999. HTTP

authentication: Basic and digest access authentication, RFC

2617.

[25] Harris, C. G., and Stephens, M. J. 1988. A Combined corner

and edge detector. In Proc. of the Fourth Alvey Vision

Conference. 147–151.

[26] Kovesi, P. D. MATLAB and Octave Functions for Computer

Vision and Image Processing. School of Computer Science

& Software Engineering, University of Western Australia.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/.

[27] Edge Detection and Image Segmentation (EDISON) System.

http://coewww.rutgers.edu/riul/research/code/EDISON/doc/s

egm.html.

1591

