
Reactive Crowdsourcing

Alessandro Bozzon∗ Marco Brambilla Stefano Ceri Andrea Mauri
Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy

{alessandro.bozzon, marco.brambilla, stefano.ceri, andrea.mauri}@polimi.it

ABSTRACT
An essential aspect for building effective crowdsourcing com-
putations is the ability of “controlling the crowd”, i.e. of
dynamically adapting the behaviour of the crowdsourcing
systems as response to the quantity and quality of com-
pleted tasks or to the availability and reliability of perform-
ers. Most crowdsourcing systems only provide limited and
predefined controls; in contrast, we present an approach to
crowdsourcing which provides fine-level, powerful and flex-
ible controls. We model each crowdsourcing application as
composition of elementary task types and we progressively
transform these high level specifications into the features of a
reactive execution environment that supports task planning,
assignment and completion as well as performer monitoring
and exclusion. Controls are specified as active rules on top
of data structures which are derived from the model of the
application; rules can be added, dropped or modified, thus
guaranteeing maximal flexibility with limited effort.

We also report on our prototype platform that implements
the proposed framework and we show the results of our ex-
perimentations with different rule sets, demonstrating how
simple changes to the rules can substantially affect time,
effort and quality involved in crowdsourcing activities.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Crowdsourcing, reactive rules, control, social computation.

1. INTRODUCTION
Crowdsourcing is an emerging way of involving humans in

performing information seeking and computation tasks; clas-
sical platforms, such as Amazon Mechanical Turk (AMT),1

are marketplaces where tasks created by humans can be
posted to humans; other classical platforms allow to post
questions or to ask for recommendations, often within spe-
cific domains or local contexts. Large crowds may take part
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to social computations for a variety of motivations, which in-
clude non-monetary ones, such as public recognition, fun, or
the genuine wish of contributing their knowledge to a social
process. In all these cases each responder brings value to the
requestor, who wishes to make the best use of responders’
availability and reliability so as to get the best possible re-
sult for the posted question or job. In particular, requestors
would like to dynamically adapt the platform behaviour so
as to maximise the quality of results while minimising or
focalising the interactions required to responders [11].

Unfortunately, most crowdsourcing systems are not flexi-
ble, as they do not support a high level, fine-tuned control
upon posting and retracting tasks. The AMT platform offers
an API for controlling the posting and evolution of tasks, but
the implementation of applications must be done through
imperative languages, either with low-level programming or
through frameworks like TurkIt [12]. Since crowdsourcing
can be performed upon social networking platforms too, one
can exploit social networks APIs for programming applica-
tions which use them. Some academic works provide control
capabilities for crowdsourcing, but with limited and specific
control rules (e.g., the DeCo [16] system provides support for
closing tasks based on temporal constraints). In summary,
in spite of the great importance of crowd control, at the cur-
rent state-of-the-art designing and deploying crowdsourcing
applications with sophisticated controls is very difficult. All
the existing platforms and approaches lack methods for sys-
tematically designing complex control strategies based on
the state of tasks, results and performers.

Objective. This paper is proposing a conceptual frame-
work and a reactive execution environment for modelling
and controlling crowdsourcing computations; reactive con-
trol is obtained through rules which are formally defined
according to a rule specification language and whose proper-
ties (e.g., termination) can be easily proved in the context of
a well-organized computational framework. As highlighted
by [15], several programmatic methods for human compu-
tation have been proposed so far [12][9][1][13][14], but they
do not support yet the complexity required by real-world,
enterprise–scale applications. Due to its flexibility and ex-
tensibility, our approach covers the expressive power in re-
active control which is exhibited by any of the cited systems.

Our framework applies the principles of separation of con-
cerns – which is typical for complex systems design – to the
diverse aspects of crowdsourcing design. We adopt an ab-
stract model of crowdsourcing activities in terms of elemen-
tary task types (such as: labelling, liking, sorting, grouping)
performed upon a data set, and then we define a crowdsourc-
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ing task as an arbitrary composition of these task types;
this model is not introducing limitations, as arbitrary crowd-
sourcing tasks can always be decomposed into smaller granu-
larity tasks, each one of the suitable elementary type. Start-
ing from task types, we then define the data structures which
are needed for controlling the planning, execution, and re-
active control of crowdsourcing applications. Control en-
compasses the evaluation of arbitrary conditions on result
objects (e.g., on their level of confidence and of agreement),
on performers (e.g., on the number of performed tasks and
their correctness, leading to the classification of performers
as experts or spammers) and on tasks (e.g., on their number
and duration). Our framework provides a reactive style for
specifying these conditions and for defining the actions that
must be correspondingly triggered, making decisions about
the production of results, the classification of performers the
early termination and re-planning of tasks, the dynamic def-
inition of micro-tasks, and so on.

Experiment . Besides the conceptual definitions and the
control rule language, our proposal comprises a platform
which acts either as a stand-alone system or as an inter-
operability framework on top of social networks or crowd-
sourcing systems, which are accessed through their APIs –
and therefore are subject to APIs’ limitations; the platform
includes an engine which executes rules and crowdsourcing
tasks. We present a set of experiments with different rule
sets, demonstrating how simple changes to the rules can sig-
nificantly affect the time, effort and quality of tasks.

Added Value. The added value of our work can be sum-
marised as follows:

• We define a design process through a sequence of sim-
ple model-driven design and instantiation activities,
which simplify crowdsourcing design and enactment;

• We present an application-independent abstraction for
crowdsourcing control that uses quantifiable measures
of correctness, effort or duration;

• We demonstrate that our rule-based approach provides
a high level of automation, flexibility, and expressive
power.

Paper Structure. The paper is organised as follows: Sec-
tion 2 defines our conceptual view of crowdsourcing appli-
cations and the method we apply for their design; Section
3 describes in details our reactive language for controlling
crowdsourcing tasks; Section 4 reports on our implementa-
tion and experiments; Section 5 discusses the related work;
and Section 6 concludes.

2. DESIGNING CROWD APPLICATIONS
With our approach, the operations which constitute a task

and are assigned to the performers of a crowdsourcing sys-
tem are described in terms of an abstract model, that was
initially presented in [3] and is hereby revised, built after
a careful analysis of the systems for human task executions
and of many applications and case studies.

The main strength of the model is its extreme simplicity.
We assume that each task receives as input a list of items
(e.g., photos, texts, but also arbitrarily complex objects)
and asks the users to perform one or more operations upon

them, which belong to a predefined set of abstract opera-
tions types; examples are Like, for annotating items with
a preference tag; Classify, for assigning each item to one or
more classes; Order, for reordering the items in a list. Each
operation type is further characterised by parameters and
default output variables; for instance, a Classify operation
has the list of classes as parameters and the classification(s)
of each item as output variables. The full list of currently
supported abstract operation types is reported in Table 1.

The model can be extended either by adding custom op-
eration types or by adding custom parameters and output
variables to the given types; however, the operation types
of the model are supported by automatic model transforma-
tions, discussed next, for generating a crowdsourcing appli-
cation, while custom elements require manual refinement of
either the transformations or the constructed models.

Task types are built as lists of operation types and apply
to a list of data objects, which have a schema consisting of
several attributes. The corresponding concepts are shown in
the meta-model À in the upper left corner of Fig. 1. For
instance, a task may consist in: choosing one photo out of an
input list of photos; writing a caption for it; and then adding
some tags. The meta-model can be used to describe complex
and long-duration tasks (e.g., asking for the translation of a
long text can be modelled as the insertion of a single item);
however, it better suits classical crowdsourcing applications
where tasks are split into several micro-tasks (or HITs), each
micro-task evaluates a subset of the task objects, and several
micro-task answers might be required to decide the results
for each data object (e.g., by majority agreement).

In this scenario, the presence of a simple yet formal meta-
model is quite useful, as it allows the formalisation of the
operation-dependent control variables and aggregations op-
erations required to keep track of micro-task executions and,
ultimately, to regulate the task execution.

The progressive specification of crowdsourcing applica-
tions consists of the following phases: i) Task design -
deciding how a task is assembled as a sequence of opera-
tion types; ii) Object and performer design - defining
the set of objects and performers; iii) Workplan design -
Defining how a task is split into micro-tasks and assigned to
objects and to performers; iv) Control Design - Defining
the rules that enable the run-time control of objects, tasks,
and performers. These phases are described next.

2.1 Task Design
Task design consists of deciding the main features of a

task, i.e. the operation types and the object schema; it is
conducted by instantiating the meta-model À in Fig. 1,
which contains entities for Task Type, Operation Type, Oper-
ation Parameter, Object Type, and Attribute; in the instance
model Á in Fig. 1, we show the design of a simple crowd-
sourcing application for classifying american politicians as
either republican or democratic, where the operation type is
classify, and classes are the republican or democratic party.
The schema includes politicians which are described by their
LastName and Photo.

When the instantiation is completed, the model transfor-
mation MT1 produces the structural model of the ap-
plication, which includes entities for Task, Performer and
Politician (see the model Â of Fig. 1). The transformation
assembles into the application-specific entity Politician the
attributes of its object type and of the output schema,
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Table 1: List of the operation types with input parameters and default output variables.

Op.Type Description Input Parameters Default output variables

Choice The performer selects up to n items n = max number of items that can
be selected

Selected items

Like The performer adds like (unlike) annotations
to some items

Number of likes for each item

Score The performer assigns a score (in the 1..n in-
terval) to some items.

n = max value for the score Average score of each item

Tag The performer annotates some items with
tags

n = max number of tags that can be
associated

Set of tags for each item

Classify The performer assigns each item to one or
more classes

set of predefined classes Set of classes for each item

Order The performer reorders the (top n) items in
the input list

n = number of top elements to be
ordered

Position of each item

Insert,
Delete

The performer inserts/deletes up to n items
in the list

n = max number of items that can
be inserted/deleted

Inserted objects / Tagging of deleted
objects

Modify The performer changes the values of at-
tributes of some items in the list

Set of modifiable attributes Set of changes to modifiable at-
tributes

Group The performer clusters the items into (at
most n) distinct groups

n = max number of groups Assignment of each item to a group

which are inferred from the task operation types (see last
column of Table 1). In the specific case, the result will
indicate, in the attribute Party, whether the politician is
republican, democratic, or unclassified.

2.2 Object and Performer Design
Object and process design consists of deciding if the task

should be instantiated as several task instances (e.g., for
assigning each instance to a different execution platform like
AMT, Facebook or Twitter) and then determining which
objects and performers are associated to each task instance.
Performers can be either pre-selected (e.g. based upon their
expertise in the topic) or dynamically determined.

The design is conducted by instantiating the structural
model. In our running example, for simplicity, we instan-
tiate a single task, and then we indicate some well-known
politicians and some performers (see the instance model Ã
in Fig. 1). In the actual design environment, this phase
is normally conducted by importing objects and performers
from existing sources. In this way, structural information
about the crowdsourcing application is fully specified.

2.3 Workplan Design
Workplan design consists of creating micro-tasks for each

task and of mapping each micro-task to specific performers
and objects. Task design includes task splitting, that should
be performed on different task types according to different
algorithms. Several articles are dedicated to task splitting
algorithms for specific operations, e.g., [18]; we don’t discuss
task splitting further (although we support it in our system
and use it in experiments).

Task planning is performed according to planning direc-
tives, that drive the second model transformation, MT2,
which generates the workplan model Ä of Fig. 1. The
directives indicate:

• Cardinality: the number of objects associated to each
micro-task.

• Replication: the number of copies of each object that
should be assigned to micro-tasks.

• Initiation: the number of micro-tasks which should be
created when the application starts (more micro-tasks
can be dynamically created during the execution).

The workplan model includes the new entity MicroTask;
each micro-task instance is associated to one task, one per-
former, and one or more objects (represented by the Politi-
cian entity in the example). The workplan model is in-
stantiated by the system, which uses the planning directives
and simple mathematic formulas to build the suitable micro-
tasks in order to perform the application. In Fig. 1 Å we
show the micro-task 723 of type Classify the political party
assigned to the performer Mario and to the objects Bush and
Kennedy. Depending on the underlying execution platform,
tasks can be pushed to specific performers or performers can
pull the tasks that they like; in the push model micro-task
mapping to performers is static, while in the pull model it
is dynamically assigned.

2.4 Control Mart
For effectively monitoring the execution, it is most conve-

nient to track the performer’s response for each distinct ob-
ject which is present in the micro-task. Thus, a final model
transformation creates the control mart, shown in Fig. 2,
where each microTObjExecution instance is connected ex-
actly to one task, one performer and one object. The control
mart is analogous to data marts used for data warehousing
[7], as its central entity represents the facts, surrounded by
three dimensions.

A minimal relational representation of the control mart,
useful for describing reactive control design in the next sec-
tion, is described in listing 2.1, and it includes the fact ta-
ble Execution and the dimension tables Politician, Per-

former and Task. Each execution requires an Eid, as the
same performer could be assigned the same politician in dif-
ferent micro-tasks; Status attributes trace the application
evolution (e.g., a Performer can be ‘Active’ or ‘Spammer’,
a Task and an Execution can be in the status: ‘Planned’,
‘Started’, ‘Completed’ or ‘Invalid’). Additional infor-
mation of interest is present in the actual data marts, e.g.,
the starting and ending time of tasks and execution, the
number of completed tasks for each performer, and so on.

2.1 Fact Table and Dimension Tables
Politician (Oid,Party)
Performer (Pid,Status)
Task (Tid,Status)
Execution (Eid,Oid,Pid,Tid,Status,Party)
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Figure 1: Overview of the concepts and their relations.

2.2 Aggregate Tables

Object_CTRL (Oid,Eval,Dem,Rep,Answer)
Performer_CTRL (Pid,Eval,Right,Wrong)
Task_CTRL (Tid,CompExec,CompObj)

In addition to the control mart, we derived aggregate ta-
bles that contain one tuple for each politician, performer
and task, and are automatically maintained at each micro-
task completion by computing aggregates. As our running
example is a classify operation, aggregate tables in listing
2.2 include: i) Object_CTRL, which contains the number
of evaluations performed on each object (Eval), a counter
for the number of preferences got for each category (Dem
and Rep) and the current value for the object evaluation
(Answer); ii) Performer_CTRL which contains the number of
micro-tasks executed by the performer (Eval), and the num-
ber of correct (Right) and incorrect (Wrong) answers; and
iii) Task_CTRL, which includes the counters of completed
executions (CompExec) and of evaluated objects (CompObj).

Aggregate tables can be derived in an analogous way also
for the other operations listed in Table 1: for instance, the
Object_CTRL table of a like operation could feature a Pref-

erences attribute to count the preferences obtained by the
object.

At workplan enacting, the system creates the instances of
the control mart and aggregate tables. Some information
might be still undefined (e.g., with a pull model, the iden-
tity of performers becomes known during execution), but
otherwise we assume that each object, performer and task
is associated with suitable entries in the control mart and
aggregates tables. The next section is the core of this paper,
dedicated to object, performer, and task control.
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Figure 2: Control mart.

3. REACTIVE CONTROL DESIGN
Control design consists of three activities:

• Object control is concerned with deciding when and
how responses should be generated for each object.

• Performer control is concerned with deciding how per-
formers should be dynamically selected or rejected, on
the basis of their performance.

• Task control is concerned with completing a task or
re-planning task execution.
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The control of objects, performers, and tasks is performed
by active rules, expressed according to the event-condition-
action (ECA) paradigm. Each rule is triggered by events
(e) generated upon changes in the control mart or periodi-
cally; the rule’s condition (c) is a predicate that must be
satisfied on order for the action to be executed; the rule’s
actions (a) change the content of the control mart and ag-
gregate tables. This approach has the following advantages:

• Automation: most active rules are system-generated.

• Flexibility: encoding variants of simple controls require
to change specific rules while preserving the rest of the
rule set.

• Power: rules can be programmed to support arbitrar-
ily complex controls.

3.1 Rule Language
The rule language has been inspired by the long-standing

tradition of active databases [19]; its full syntax is reported
in Appendix B. Its peculiar syntactic features are the fol-
lowing:

• Rules can be triggered by classical data updates and
by periodic TIMER events.

• Rules are at row-level granularity. Variables NEW and
OLD denote the before and after state of each row.

• Special selector formulae are used to express subqueries
synthetically; thus, TABLE[<predicate>].ATTRIBUTE ex-
tracts the same values as SELECT ATTRIBUTE FROM TA-

BLE WHERE <predicate>.

• Special functions may perform operations on the work-
plan model (e.g., planning of new micro-tasks).

Two examples of simple active rules for maintaining the
counters of ‘Rep’ and ‘Dem’ answers for a given Politician
are reported in rules 1 and 2; they are triggered by the com-
pletion of a micro-task, which in turn consists of an update
to the Answer attribute of one or more rows in Execution.

Rule 1 RepAnswer Rule.

e: UPDATE FOR Execution[Answer]
c: NEW.Answer == ’Rep’
a: SET Object_CTRL[oid == NEW.oid].Rep += 1

Rule 2 DemAnswer Rule.
e: UPDATE FOR Execution[Answer]
c: NEW.Answer == ’Dem’
a: SET Object_CTRL[oid == NEW.oid].Dem += 1

3.2 Active Rule Programming
It is known that active rule programming is rather subtle

and unstable: the behaviour of a set of rules may change
dramatically as a consequence of small changes in the rules
[19]. To overcome this problem, we observe a best practice in
writing rules. Functionally, we divide rules in three classes:

• Control rules for modifying the control tables;

• Result rules for modifying the result tables (Politician,
Performer, Task);

• Execution rules for modifying the execution table - ei-
ther directly or through replanning of crowdsearching.

Consider the Precedence Graph PG =< N,E >, where
the nodes N are tables; an arc < N1, N2 > is drawn when a
rule R is triggered by an operation on N1 and performs an
action on N2. Then, we impose that control and result rules
in our system can only generate edges in the PG shown in
Fig. 3. Intuitively, this best practice corresponds to prop-
agating rule execution top-down (from execution to control
to result tables) and left-to-right (from object to performer
to task).

Control Production Rules
Result Production Rules
Execution Modifier Rules

EXECUTION

OBJECT PERFORMER TASK

OBJECT 
CONTROL

PERFORMER 
CONTROL

TASK 
CONTROL

Figure 3: Precedence Graph for rules.

We further assume that only control rules can have cycles
in PG, and in such case we assume their triggering graph to
be acyclic.2 Then the following result holds.
Theorem. Any execution of control and result rules termi-
nates.
Proof. The acyclicity of the triggering graph of the rule set,
a sufficient condition for termination [19], descends from the
acyclicity of the PG graph shown in Fig. 3 (excluding exe-
cution rules) and from the acyclicity of ring rules.

Thus, by adopting the best practice for active rule pro-
gramming described above, we need to worry about rule
termination only when we add execution rules, that typi-
cally create cycles in the triggering graph of the rule set.
These rules have to be carefully considered, as we will show
in Section 3.5.

3.3 Control Rules
Control rules maintain the control tables; they are trig-

gered by updates of the execution table (e.g., when a micro-
task execution is completed), or of the result tables (e.g.,
when an object is closed, see later) of the control tables
themselves – e.g., the rules 1 and 2, which update the aggre-
gate counts Rep and Dem on the basis of the Answer in the

2To guarantee this assumption it is sufficient that aggre-
gate computations is performed progressively, from fine to
coarse-grain aggregations, as shown by the example rules in
Appendix A.
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Object_CTRL table. Control rules are automatically gen-
erated, due to the fact that operations are typed and to
the model-driven application generation process described
in Section 2. In addition to rules 1 and 2, several control
rules are listed in Appendix A. We next describe the inter-
esting case of rules for spammer control.

We define spammers as performers whose answers de-
viate significantly from correct answers; when performers
are rewarded by money, spammers typically give random
answers in order to maximise their pay, and providing un-
reliable answers; our definition of spammer is orthogonal to
the reward and is defined just on statistical basis. Spammer
detection requires two parts: first computing wrong answers
(using a control production rule), and then deciding which
performers are spammers based on the amount of wrong an-
swers they provide (using a result production rule). Next we
show three different control production rules corresponding
to different scenarios; all rules can be automatically pro-
duced – the flexibility of the approach is demonstrated by
the fact that a rule change is sufficient to change the control
policy.

3.3.1 Performers evaluation against golden truth
A typical strategy [17] in crowdsourcing is to set a few

golden answers known a priori (e.g., predefined by experts)
and then check the correctness of performers against them,
while tasks are executed. This is possible in our approach by
adding the Gold property to the object schema; Gold stores
the golden answer when available, and a NULL value oth-
erwise. Then, the rule for managing the aggregate control
information of performers is represented in Rule 3.

Rule 3 GoldenTruthRule.
e: UPDATE FOR Execution[Answer]
c: Politician[oid=NEW.oid].Gold <> NULL
a: IF(NEW.Answer == Politician[oid==NEW.oid].Gold)

THEN SET Performer_CTRL[pid==NEW.PID].Right += 1
ELSE SET Performer_CTRL[pid==NEW.PID].Wrong += 1

The rule is triggered by any answer on Execution and
simply checks if the answer is about a politician with avail-
able golden answer; if so, it updates the counters of Right

and Wrong answers of Performer_CTRL depending on the
correctness of the given answer against the golden value.

3.3.2 Performers evaluation on object completion
The second possibility for maintaining the performer coun-

ters is to wait for an object to be completed (Rule 4) – i.e.,
for a final evaluation to be produced.

Rule 4 ObjectResultRule.

e: UPDATE FOR Politician[Party]
c: NEW.Party <> NULL
a: FOREACH e IN EXECUTION[Oid==NEW.Oid]

IF (e.Party == NEW.Party)
THEN SET Performer_CTRL[Pid==e.Pid].Right += 1
ELSE SET Performer_CTRL[Pid==e.Pid].Wrong += 1

The rule is triggered by the completion of an object, which
is assigned a non-null Party value as effect of an agreed
response. The rule then considers all the past executions of
that object and compares the answers of the performers with
the answer that has been written in the Party attribute, and
updates the Right and Wrong counters of Performer_CTRL.

3.3.3 Performers evaluation on each execution
The third possibility is to maintain the performer’s coun-

ters at each execution; this anticipates the definition of right
and wrong answers even if a final result is not available for
the objects. In this case, the Pid attribute of the performer
who caused the last change to an object is added to the
Object_CTRL table (the content of Pid is copied from Exe-

cution by a suitable control rule).

Rule 5 ExcutionResultRule.
e: UPDATE FOR Object_CTRL[Answer]
c: Answer<> ’Undefined’
a: SET Performer_CTRL[Pid==NEW.Pid].Right=0

SET Performer_CTRL[Pid==NEW.Pid].Wrong=0
FOREACH e IN Execution [Pid==NEW.Pid]
FOREACH o IN Object_CTRL[Oid==e.Oid]
IF [e.Answer == o.CurrentAnswer]
THEN SET Performer_CTRL[Pid==NEW.Pid].Right += 1
ELSE SET Performer_CTRL[Pid==NEW.Pid].Wrong += 1

In Rule 5, at every update of the current Answer in the
Object_CTRL table, the specific performer who provided the
last Answer in the execution table is considered, and all
the past answers of that performer are compared with the
corresponding current answers; given that current answers
change their value during a crowdsourcing session, incre-
mental maintenance is impossible, and the counters of the
affected performer have to be set to zero and recomputed.

3.4 Result Rules
Result rules are triggered by changes in control tables and

produce result tables; they express the result control logic,
that can be specified through high level directives and be
translated to rules. We consider how to decide that an object
is closed or that a performer is a spammer.

3.4.1 Closing Objects
Objects are closed when they are associated with enough

evaluations to provide a conclusive response, i.e. a majority
of equal answers. The smallest possible majority calls for
two equal answers, and is recognised by Rule 6.

Rule 6 MajorityResultRule.
e: UPDATE FOR Object_CTRL
c: (NEW.Rep== 2) or (NEW.Dem == 2)
a: SET Politician[oid==NEW.oid].Party = NEW.Answer,

SET Task_CTRL[tid==NEW.tid].CompObj += 1

This rule is triggered by any change of the object control
table, and simply checks that one of the two attributes Rep

or Dem is equal to 2; then it sets the politician’s party equal
to the current answer and increases the number of completed
objects in Task_CTRL.

Of course, different majority conditions are possible, which
can be arbitrarily complex and depend also on the number
of evaluations, e.g.,

C1: (Eval>5) and ((Rep>0.5*Dem) or (Dem>0.5*Rep))
C2: (Eval>10) and ((Rep>0.8*Dem) or (Dem>0.8*Rep))
C3: Eval>15

The above cases denote three distinct rule conditions; they
can either be embedded into three different rules or their
disjunction could be embedded into a single rule. The effect
is to close the object as soon as one of the three conditions
is true. With enough micro-task completions, the condition
Eval>15 becomes eventually true.
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3.4.2 Identification of Spammers
Performers are identified as spammers when they are as-

sociated with enough wrong answers, which have been col-
lected according to anyone of the methods discussed in Sec-
tion 3.3. A simple rule for identifying spammers is:

Rule 7 SpammerIdentificationRule.
e: UPDATE FOR Performer_CTRL
c: (NEW.Eval > 10) and (NEW.Wrong > New.Right)
a: SET Performer[Pid==NEW.Pid].Status = ’Spammer’

This rule is triggered by any change of the performer con-
trol table, and simply checks that after 10 evaluations the
number of wrong answers exceeds the number of right an-
swers; then it sets the performer’s status to ‘Spammer’.

Of course, different spammer identification conditions are
possible, e.g., condition C1 identifies as spammer whoever
performs 4 errors, condition C2 selects as spammer anyone
who has given more than 20% of wrong answers, condition
C3 uses two thresholds.

C1: Wrong == 4
C2: Wrong > 0.2*Eval
C3: ((Eval>10) and (Wrong>3)) or (Wrong>Right)

3.5 Execution Rules
Execution rules respond to the need of altering the execu-

tion plan; their action either changes the current micro-tasks
or calls for task re-planning, which eventually produces new
micro-tasks. These rules are triggered by changes in the
control or result tables, and are perhaps the most powerful
rules. They must be analysed because they may introduce
danger of nontermination of the computation.

3.5.1 Remove Spammer’s Micro-Task Executions
Spammer detection results in excluding performers from

future assignments. In addition, we may want to propa-
gate the effects of spamming detection upon micro-tasks.
Rule 8 selects all the executions of the performer which has
been recognised as ’Spammer’, and checks whether the cor-
responding objects have been already completed; if not, it
logically undoes the spammer’s micro-tasks, by first sub-
tracting 1 from Eval and either the Rep or Dem counters of
the object control table, and then by deleting the execution
tuple. Note that the subsequent propagation to Answer in
Object_CTRL is performed by a rule in Appendix A, with no
change.

Rule 8 RemoveMicroTask.
e: UPDATE FOR Performer[Status]
c: (OLD.Status != ’Spammer’) and (NEW.Status==’Spammer’)
a: FOREACH e IN Execution[Pid==NEW.Pid]

SET e.Status= ’Invalid’,
FOREACH o IN Object_CTRL[o==e.Oid]

IF (Politician[Oid==o.Oid].Party==NULL)
THEN

SET o.Eval -= 1 ,
IF (e.Answer==’Rep’) THEN o.Rep -=1
IF (e.Answer==’Dem’) THEN o.Dem -=1

Proving termination requires considering the cycles in the
triggering graph and reasoning about their mutual triggering
[2]. Updates to Object_CTRL may cause the closure of ob-
jects (see Sect. 3.4.1), but the condition of the corresponding
rule may become true only due to increments of the Rep and

Dem counters (which should be equal to given thresholds),
while the above rule performs decrements; thus, the condi-
tion of that rule fails. Updates to Object_CTRL may also
cause updates of Performer_CTRL and the re-classification
of the performer as a spammer; in such case a second in-
stance of Rule 8 would be triggered, but the condition on
the specific performer would fail. Thus, at least one trig-
gered rules along every potential cycle has a false condition,
and no cyclic behavior can occur.

Note that termination analysis for this rule must consider
the actual rule set with mutual triggering and conditions, as
the proof of termination cannot be inferred from the struc-
ture of the PG graph [19].

3.5.2 Re-planning
Re-planning occurs when, during execution, the answers

accumulated so far do not guarantee convergence to a result.
For instance, a system execution could require a majority of
three responses for a given object and start by planning ex-
actly 3 micro-task executions. Then, on the first conflictual
answer, the system could plan to add 3 more micro-tasks,
by using the Plan function, as shown in Rule 9:

Rule 9 ReplanWhenNoMajority.
e: UPDATE FOR Object_CTRL
c: NEW.Eval==3 and NEW.Dem >=0 and NEW.Rep >=0
a: action PLAN(NEW.oid, 3)

A different re-planning could be triggered by a timer event,
e.g., in the case that the designer wishes to add 10 micro-
tasks so as to quickly produce additional executions for each
object with less than 30 evaluations, as shown by Rule 10.

Rule 10 ReplanWhenTimeout.
e: TIMER for Object_CTRL
c: Object_CTRL.Eval<30
a: action PLAN(Object_CTRL.oid, 10)

The PLAN function performs the planning of new micro-
tasks which are then described through suitable tuples in
the control and aggregate tables; this function therefore cre-
ates new crowdsearching activities until the condition on
evaluations is met, but rule termination is not affected.

Many complex planning rules can be programmed, as demon-
strated in the experiments of Section 4; for instance, rules
could compute the quality of performers and the difficulty
of closing objects, and then assign difficult objects to good
quality performers.

4. EXPERIMENTAL EVALUATION
We implemented our reactive control approach in Crowd-

Searcher,3 a platform for crowd management presented in
[3]. We use the approach presented in Section 2 for ap-
plication deployment; rules are written in the scripting lan-
guage Groovy.4 Each relational control rule is directly trans-
lated into a Groovy script; triggering is modelled through
internal platform events. We developed three applications,5

which demonstrate the flexibility and expressive power of
reactive crowdsearching for different aspects of application

3
http://crowdsearcher.search-computing.com

4
http://groovy.codehaus.org

5
http://demo.search-computing.org/politici
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Figure 4: Results precision and percentage of completed objects over micro-task executions.

design and deployment. We recruited (mainly trough public
mailing lists and social networks announcements) 284 per-
formers, who performed about 3500 micro-tasks during the
third week of Nov. 2012. The code, the dataset, and the
anonymized execution logs produced by the experiments are
available for download.6
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Figure 5: User description of the politician classification.

In the politician’s crimes application, the system pre-
sents photos of 50 members of the Italian parliament and
asks performers to indicate if they have ever been accused,
prosecuted or convicted. From the performers’ point of view,
this application is a game - of physiognomic nature, given
that many faces are not known; each performer sees, in a
fixed amount of time, a number of photos which raises as
a function of the performer’s ability; a higher number of
photos gives to players higher possibility of improving their
ranking. At the end of each round, the system presents a
report with correct answers and the ranking of performers.
Rules are used for assessing performers’ ability and for cre-
ating micro-tasks based on the dynamically evolving quality
of performers; we noted that games with higher variability
of tasks are most appreciated by users (281 vs. 565 execu-
tions), and lead to a considerably higher evaluation precision
(65% vs. 82% respectively).

In the politician ranking application, the task is to pro-
duce a total ranking of 25 politicians; at each interaction, the

6
http://www.search-computing.org/www2013

performer is presented a pair of politicians and is asked to
chooses the one she likes the most. In this application, used
by 159 distinct performers, the system performs an ordering
task by splitting it into micro-tasks with pairwise politician
comparisons. Control production rules update the current
score of politicians after each comparison by using the Elo
rating system [5].

Finally, in the politician classification application, per-
formers are asked to classify the political affiliation of 30
members of the Italian parliament – this application is sim-
ilar to the running case study of the paper, with six Italian
parties instead of two. Performers are provided with a set of
photos of politicians, with associated names; there is no time
limit, and performers are encouraged to use search engines.
This application is therefore an example of human compu-
tation whose execution control aims at result precision and
spammer detection.

Within the politician classification application we per-
formed eight experiments, each featuring a different set of
control rules similar to those presented in Section 3; we exe-
cuted a total of 593 micro-tasks, involving 105 unique users.
Table 2 reports, for each configuration, a short description,
the rules that were used in the specific configuration, the
number NE of executions, the average duration time AT of
each micro-task, the number NR of object re-planning, the
number NP of performers, the number NS of identified spam-
mers, and the precision PR at the end of the experiment. All
experiments use variations of the control rules 1, 2, and 6,
and of the Appendix A; the table reports only the optional
rules, specific to the experiment. Tasks are considered closed
when all their objects are fully evaluated.

Figure 5 shows the overall experiment’s precision, the av-
erage performer’s precision, and the average degree of agree-
ment of performers. We measured the users’ and experi-
ments’ precision against the available gold truth (the actual
affiliation of each politician), but we did not used it for con-
trolling spammers, so to simulate the worst case scenario
were the attainable truth is the one agreed by the involved
performers.

Fig. 4 (a) - (d) plot the precision and number of object
evaluations as a function of the completed micro-task execu-
tions. We stressed four analysis dimensions: result produc-
tion, object re-planning, spammer identification, and spam-
mer threshold tuning.
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Table 2: Description of experiments of the politician classi-
fication experiment.

Description Rules NE AT NR NP NS PR

Exp.1 Maj@7 90 21 N/A 17 N/A 0.63
Exp.2 Maj@3/Maj@7 9 65 29 17 12 N/A 0.53
Exp.3 Maj@3/Maj@5/Maj@7 9 50 40 20 11 N/A 0.80
Exp.4 Maj@3/Maj@7/Maj@15 9 74 21 20 22 N/A 0.80
Exp.5 Exp.2,Early Spam@0.5 5, 7, 9 82 31 24 24 4 0.72
Exp.6 Exp.2,Early Spam@0.6 5, 7, 9 74 32 20 27 8 0.83
Exp.7 Exp.2,Early Spam@0.7 5, 7, 9 90 48 27 22 8 0.75
Exp.8 Exp.2,Late Spam@0.5 4, 7, 9 73 17 23 24 2 0.81

Result production. We experimented with two result
production policies. Exp.1 – Late Policy – produces ob-
ject’s results as majority answers after 7 evaluations; Exp.2
– Early policy – adopts the Majority Result policy of Rule
6, where a result is immediately produced if, after three
executions, all the involved performers agree; otherwise, 4
additional evaluations are planned. As shown in Table 2 and
Figure 4, the Early policy is able to considerably reduce the
number of executions required for task closing, at the cost
of a considerable quality penalization due to the possibility
of performers agreement on wrong classification.

Object replanning. In the second set of experiments
(Exp.2, Exp.3, and Exp.4), we compared three variations
of the control logic expressed by Rule 9 for object replan-
ning. While Exp.2 performs a single stage of replan for
objects which fail to have an early majority after 3 evalua-
tions, Exp.3 and Exp.4 adopt a two-staged replanning poli-
cies, respectively testing for majority on each object after
5/7 evaluations or after 7/15 evaluations. As displayed in
Figure 4 b), both Exp.3, and Exp.4 achieve a considerably
higher precision w.r.t. Exp.2; they differ for the number of
executions required for completion.

Spammer identification. The third set of experiments,
displayed in Figure 4 d), exploited the re-planning policy of
Exp.3 while adding spamming detections capabilities. Exp.5
and Exp.8 respectively implement the early and late evalu-
ation of wrong answers (by rules 5 and 4) and a variant of
Rule 7 where spammers are identified as performers with at
least 50% of wrong answers. Both experiments required an
higher number of micro-task executions compared to Exp.3;
Exp.5 detected 8 spammers, while Exp.8 detected only 2
spammers.

Spammer threshold tuning. Finally, we performed a
fine tuning of the threshold for judging a performer as spam-
mer. Setting the threshold is critical: while a high threshold
value may miss spammers, a low threshold value may detect
too many performers as spammers. We respectively required
wrong answers to be 60% in Exp.6 and 70% in Exp.7; a close
comparison of solutions in Figure 4 shows that the interme-
diate choice of Exp.6 has better performances.

Figure 6 shows the number of activations of the various
classes of rules during the execution of the experiments. Re-
planning calls for additional triggering of both control rules
(more control statistics to update) and result rules (more
closures to be done). Execution rules only depend on the
re-planning policies, and their executions are slightly higher
for spamming control experiments as they have to recompute
the aggregates relative to invalid micro-tasks of spammers.
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Figure 6: Activations of rules of different classes.

5. RELATED WORK
The increasing importance of high level systems for the

programming of human computation tasks is testified by
the many startups7 and crowdsourcing systems [4] that have
been proposed in the latest years. Most approaches rely on
an imperative programming model to specify the in-
teraction with crowdsourcing services. Turkit [12] offers a
scripting language for programming iterative tasks on Ama-
zon Mechanical Turk. RABJ [9] is a proprietary human
computation engine developed by Metaweb to enhance the
data processing pipelines of Freebase with human judge-
ments. It offers very simple built-in control logic (e.g., limit-
ing the maximum number of votes or the types of responses),
while complex controls are externalised to client applications
written in HTML and Javascript. Jabberwocky [1] transpar-
ently manages several crowdsourcing platforms to explicitly
manage information about performers and their connections
and provides parameterised functions for standard human
activities. Jabberwocky can be procedurally programmed
and compiles into a functional programming framework in-
spired by MapReduce. All of the cited frameworks allow
defining human computations by procedural programming.

Recent works propose approaches for human computation
which are based on high level abstractions, sometimes
of declarative nature. In [15], authors describe a lan-
guage that interleaves human-computable functions, stan-
dard relational operators and algorithmic computation in
a declarative fashion. Qurk [13] is a query system for hu-
man computation workflows that exploits a relational data
model, SQL to express queries, and a UDF-like approach to
specify human tasks. CrowdDB [6] also adopts a declarative
approach by using CrowdSQL (an extension of SQL) both
as a language for modeling data and to ask queries; human
tasks are modelled as crowd operators in query plan, from
which it is possible to semi-automatically derive task execu-
tion interfaces. Similarly to CrowdDB, the DeCo [16] system
allows SQL queries to be executed on a crowd-enriched data-
source; however, human tasks are defined as fetch and res-
olution rules programmed in a scripting language (Python)

7E.g., CrowdFlower, Microtask, uTest.
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and defined in the schema of the data source. CrowdLang
[14] supports workflow design and execution of tasks involv-
ing human and machine activities. It incorporates explicit
abstractions for group decision processes (e.g., voting and
consensus mechanisms) and human computation tasks (e.g.,
contest, collaboration).

None of the these works dwell into the problem of specify-
ing the control associated with the execution of human tasks,
leaving its management to opaque optimisation strategies.

In designing crowdsourcing control, we have been inspired
by several applications of human computations. Among
them, [20] compares seven strategies for improving the qual-
ity and diversity of worker-generated explanations of social
analysis tools; [10] presents alternatives in allocating tasks
to workers; and [8] compares some alternatives for involving
Mechanical Turk users in terms of their cost and quality.

We used methods in active rule design originally defined
in [19]; specific rule analysis methods are from [2].

6. CONCLUSIONS
Supporting the dynamic control of crowdsourcing applica-

tions is increasingly important; however, most crowdsourc-
ing platforms do not provide adequate solutions. Many plat-
forms hide the control logic, a few expose limited program
interfaces. In our framework we focused on reactive con-
trol of human computations by designing and deploying ac-
tive rules for crowdsourcing control; our approach is com-
plemented by a design method for crowdsourcing applica-
tions which uses standard operation types and model-driven
transformations. In this way, rules have a default version
that can be automatically derived from application design,
but they can be modified or extended so as to implement
arbitrary and sophisticated control policies.

We detailed in a running case study the exact structure
of the relational data (control mart) and of rules, showing
that simple rule substitutions or condition re-writings enable
the encoding of different control policies; these are presented
through extensive examples applied to classical human com-
putations. The proposed approach is a good compromise
between the conflicting requirements of design automation,
flexibility, and expressive power.
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APPENDIX
A. RULES FOR THE RUNNING EXAMPLE

The complete rule set of the example is constituted by the
seven rules below and by rules 1, 2, 6; and optionally one of
(3, 4, 5), 7, 8, and one of (9, 10).

rule ObjectEvalCounter
e: UPDATE FOR Execution[Answer]
a: SET Object_CTRL[oid==NEW.oid].Eval += 1

rule PerformerEvalCounter
e: UPDATE FOR Execution[Answer]
a: SET Performer_CTRL[pid==NEW.pid].Eval += 1

rule TaskEvalCounter
e: UPDATE FOR Execution[Answer]
a: SET Task_CTRL[tid==NEW.tid].CompExec += 1

rule CurrentMajorityDem
e: UPDATE FOR Object_CTRL[Dem,Rep]
c: NEW.Dem > NEW.Rep
a: SET NEW.Answer = ’Dem’

rule CurrentMajorityRep
e: UPDATE FOR Object_CTRL[Dem,Rep]
c: NEW.Rep > NEW.Dem
a: SET NEW.Answer = ’Rep’

rule CurrentMajorityTie
e: UPDATE FOR Object_CTRL[Dem,Rep]
c: NEW.Rep == NEW.Dem
a: SET NEW.Answer = ’Undefined’

rule TaskControlOnClosedObject
e: UPDATE FOR Politician[Status]
c: NEW.Status == ’Complete’
a: SET Task_CTRL[tid==NEW.tid].CompObj += 1

B. GRAMMAR OF RULE LANGUAGE
〈rule〉 ::= ‘rule’ 〈rulename〉 ‘e:’ 〈eventclause〉 [‘c:’ 〈condition-clause〉]

‘a:’ 〈action-clause〉

〈event-clause〉 ::= ‘TIMER FOR’ 〈TABLE〉 〈timer-expression〉
| ‘INSERT FOR’ 〈TABLE〉 | ‘DELETE FOR’ 〈TABLE〉
| ‘UPDATE FOR’

〈TABLE〉 [‘[’〈ATTRIBUTE〉{,〈ATTRIBUTE〉}‘]’]

〈condition-clause〉 ::= ( 〈predicate〉 ) | ‘not’ 〈predicate〉
| 〈predicate〉 ‘and’ 〈predicate〉 | 〈predicate〉 ‘or’ 〈predicate〉

〈predicate〉 ::= 〈expression〉 〈comp〉 〈expression〉

〈expression〉 ::= 〈expression〉 〈op〉 〈expression〉
| 〈op〉 〈expression〉
| (〈expression〉) | 〈constant〉
| 〈variable〉.〈ATTRIBUTE〉 | 〈selector〉.〈ATTRIBUTE〉

〈selector〉 ::= 〈TABLE〉[〈condition-clause〉]

〈action-clause〉 := 〈statement〉 [{,〈statement〉}]

〈statement〉 ::= ‘IF’ 〈condition-clause〉 ‘THEN’ 〈action-clause〉 [‘ELSE’
〈action-clause〉]

| ‘FOREACH’ 〈variable〉 ‘IN’
〈selector〉.〈ATTRIBUTE〉〈action-clause〉

| ‘SET’ 〈selector〉‘.’〈ATTRIBUTE〉 ‘=’ 〈expression〉
| ‘SET’ 〈variable〉‘.’〈ATTRIBUTE〉 ‘=’ 〈expression〉
| ‘DELETE FROM’ 〈selector〉
| ‘INSERT INTO’ 〈TABLE〉 (〈expression〉 {,〈expression〉})
| 〈FUNCTION 〉 (〈parameter〉{,〈parameter〉})

〈parameter〉 ::= 〈variable〉 | 〈constant〉

〈variable〉 ::= ‘NEW’ | ‘OLD’ | 〈variable-name〉

〈comp〉 ::= ‘==’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘!=’

〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘+=’

〈timer-expression〉 ::= ‘EVERY’ 〈time-constant〉
| ‘AT’ 〈time-constant〉

<TABLE >, <ATTRIBUTE >, <FUNCTION >, <variable-name >, <constant >, <time-
constant > are strings
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