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ABSTRACT

How often do individuals perform a given communication activity

in the Web, such as posting comments on blogs or news? Could we

have a generative model to create communication events with real-

istic inter-event time distributions (IEDs)? Which properties should

we strive to match? Current literature has seemingly contradictory

results for IED: some studies claim good fits with power laws; oth-

ers with non-homogeneous Poisson processes. Given these two ap-

proaches, we ask: which is the correct one? Can we reconcile them

all? We show here that, surprisingly, both approaches are correct,

being corner cases of the proposed Self-Feeding Process (SFP). We

show that the SFP (a) exhibits a unifying power, which generates

power law tails (including the so-called “top-concavity” that real

data exhibits), as well as short-term Poisson behavior; (b) avoids

the “i.i.d. fallacy”, which none of the prevailing models have stud-

ied before; and (c) is extremely parsimonious, requiring usually

only one, and in general, at most two parameters. Experiments

conducted on eight large, diverse real datasets (e.g., Youtube and

blog comments, e-mails, SMSs, etc) reveal that the SFP mimics

their properties very well.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: [Markov processes, Stochastic

processes, Time series analysis, Probabilistic algorithms]; H.4.3

[Information systems applications]: [Communication applications]

General Terms

Theory

Keywords

communication dynamics,inter-event times,generative model

1. INTRODUCTION
How long will it take until a next comment arrive on your Youtube1

video given the past history of comments timestamps? Does the be-

1www.youtube.com
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havior of commenting on Youtube videos differ from the behavior

of commenting on web blogs or online news websites? And how

different these activities are from writing and receiving e-mails?

The current availability of large datasets containing digitalized in-

formation about human communication dynamics has made it pos-

sible to propose a question that many thought was already answered:

what is the timing of human communications[2, 20]? Thus, the fo-

cus of this work is to find patterns in inter-event times between real

and modern communication activities of humans.

All the aforementioned communication activities are “point pro-

cesses”, and the simplest way to model them is by the Poisson Pro-

cess (PP) [17]. Unfortunately, this simple and elegant model has

proved unsuitable [34, 12, 15, 40], since analysis of real data have

shown that humans have very long periods of inactivity and bursts

of intense activity [2, 20], in contrast to the PP, where activities

occur at a fairly constant rate. Although researches agree that the

PP is not suitable, there is no consensus about the right model be-

tween two major schools of thought. The first viewpoint [2, 34]

states that a power law [13] is an appropriate fit for the Probability

Density Function (PDF) of the inter-event time distribution (IED),

where bursts and heavy-tails in human activities are a consequence

of a decision-based queuing process, when tasks are executed ac-

cording to some perceived priority. The second viewpoint is that

the IED is well explained by variations of the PP [25, 32, 31, 30,

23]. They are based on the fact that short-term communication

events exhibits a Poissonian behavior [5, 21] and suggest a piece-

wise Poisson process: the first interval has a constant rate λ; for the

next, change the rate, and continue.

Given these two approaches, we ask: which is the correct one?

Can we reconcile them all? We show here that, surprisingly, both

approaches are correct, being corner cases of the proposed Self-

Feeding Process (SFP). The SFP generates a power-law-tail distri-

bution for the inter-event time marginal, like [2], and it behaves as a

PP in the short term, like [32]. Moreover, the SFP is also extremely

parsimonious, requiring at most two parameters.

Additionally, unlike previous studies, we analyze the temporal

correlations between inter-event times, illustrating the “i.i.d. fal-

lacy” that has been routinely ignored until recently [22]. We show

that, unlike the PP that generates independent and identically dis-

tributed (i.i.d.) inter-event times, individual sequences of com-

munications tend to show a high dependence between consecutive

inter-arrival times. This is the basis of the SFP model, which uses

a Markovian approach to determine that the next inter-event time
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depends solely on the previous one. We validate the SFP model on

eight diverse and large datasets from real and modern communica-

tion data, that can be divided into two groups. The first group con-

tains five datasets extracted from Web applications in which several

users comment on a given topic. The second group contains three

datasets in which individuals perform and receive communication

events. In summary, the main contributions of the SFP are as fol-

lows:

• Unifying power. It reconciles existing and contrasting theo-

ries in human communication dynamics[2, 32];

• Temporal correlation. It shows positive correlation between

consecutive inter-event times [22];

• Parsimony. It requires usually one and at most two parame-

ters.

Moreover, we would like to point out that our findings open a

new perspective in understanding human communication dynam-

ics both at the network (first group) and individual (second group)

level. By knowing the typical human behavior, one can leverage a

varied number of applications in different areas, such as popular-

ity prediction of videos and news, identification of spammers and

other anomalous behavior, resource allocation, among others.

The rest of the paper is organized as follows. In Section 2, we

provide a brief survey of the related work that analyzed inter-event

times between communications. In Section 3, we describe the eight

datasets used in this work. In Section 4, we analyze the IED of indi-

viduals from these datasets and we show that the Odds Ratio func-

tion of their IEDs is well modeled by a power law. Later, in Sec-

tion 5, we show that the typical behavior of inter-event sequences

shows a positive correlation between consecutive inter-event times.

In Section 6, we describe our proposed SFP model that provides

an intuitive and simple explanation for the observed data. Then, in

Section 7 we show that the SFP model also unifies existing theories

on communication dynamics. Finally, we show the conclusions and

future research directions in Section 8.

2. RELATED WORK
The accurate understanding of the human dynamics on the Web

can benefit a large number of applications, such as query sugges-

tions, crawling policies, advertising, result ranking, recommender

systems, anomaly detection, among others. However, the dynamics

of humans on the Web is very rich and varied, given the large num-

ber of activities one can perform online. For example, in [36] the

authors developed methods for modeling the dynamics of the query

and click behaviors seen in a large population of Web searchers.

In [37], the authors analyzed the tendency a person has to com-

ment on stories in the Web in order to connect users with stories

they are likely to comment on. Moreover, [19] analyzed and mod-

eled the temporal behavior of users in social rating networks, what

may leverage the prediction of future links, ratings or community

structures. Finally, in [27], the authors used stochastic models of

user behavior on online news websites to predict the popularity of

a given news based on early user reactions to new content. Our

work tackle a more general human behavior, i.e., her/his communi-

cations activities, which may occur on news websites, online social

networks, video channels, directly via e-mail and in many other

ways.

The study of the time interval in which events occur in human

activity is not new in the literature. The most primitive model is the

classic Poisson process [17]. Although the most recent approaches

have among themselves significant differences, they all agree that

the timing of individuals systematically deviates from this classical

approach. The Poisson process predicts that the time interval ∆t

between two consecutive events by the same individual follows an

exponential distribution with expected value β and rate λ = 1/β,

where

∆t = −β × ln(U(0, 1)), (1)

where U(0, 1) is a uniformly random distributed number between

[0, 1]. While in a Poisson process consecutive events follow each

other at a relatively regular time, real data shows that humans have

very long periods of inactivity and also bursts of intense activity [2].

Recently, Barabási et. al. [2, 34] proposed that a power law [13]

is an appropriate fit for the Probability Density Function (PDF) of

the inter-event time distribution (IED). They propose that bursts

and heavy-tails in human activities are a consequence of a decision-

based queuing process, when tasks are executed according to some

perceived priority. In this way, most of the tasks would be executed

rapidly while some of them may take a very long time. The queu-

ing models generate power law distributions p(X = x) ≈ x−α with

slopes α ≈ 1 or α ≈ 1.5.

The second modern approach claims that the IED is well ex-

plained by variations of the PP, such as the Interrupted Poisson [25]

(IPP), Non-Homogeneous Poisson Process [32, 31, 30] and Klein-

berg’s burst model [23]. All these studies are based on the fact

that short-term communication events exhibits a Poissonian behav-

ior [5, 21] and suggest a piece-wise Poisson process: the first inter-

val has a constant rate λ; for the next, change the rate (say, to zero,

for the IPP, or to double-or-half for Kleinberg’s model), and con-

tinue. Malmgreen et al. [32, 31, 30] proposes a non-homogeneous

Poisson process, where the rate λ(t) varies with time, in a peri-

odic fashion (e.g., people answer emails in the morning; then go to

lunch; then answer more e-mails, etc). This model explains the data

at the cost of requiring several parameters and careful data analysis,

being impractical for synthetic data generators, for instance. Later,

the authors adapted this model to a more parsimonious version [30],

but it still has 9 parameters.

3. DATA DESCRIPTION
In this work we analyze eight datasets that can be divided into

two groups. The first group contains five datasets extracted from

Web applications in which several users comment on a given topic.

The datasets are extracted from five popular websites: Youtube,

MetaFilter, MetaTalk, Ask MetaFilter and Digg. The second group

contains three datasets in which individuals perform and receive

communication events. In this group we have a Short Message

Service (SMS), a mobile phone-call and a public e-mail dataset.

For simplicity, we use the term “individual” to refer both to topics

of the first group and users of the second group.

In the first group, we analyze a public online news dataset, con-

taining a set of stories and comments over each story. More specif-

ically, the data is from the popular social media site Digg and

has 1,485 stories and over 7 million comments [11]. The Digg

dataset is public for research interests and can be downloaded at

http://www.infochimps.com/datasets/diggcom-data-set. We also an-

alyze three publicly available datasets from the Metafilter Info-

dump Project2, extracted from three discussion forums: MetaFil-

ter3 (Mefi), MetaTalk4 (Meta) and Ask MetaFilter 5 (Askme). After

2downloaded on September 22nd from
http://stuff.metafilter.com/infodump/
3http://www.metafilter.com/
4http://metatalk.metafilter.com/
5http://ask.metafilter.com/
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disregarding topics which received less than 30 comments, the Mefi

dataset has 8,384 topics and 1,471,153 comments, the Meta dataset

has 2,484 topics and 503,644 comments and the Askme dataset has

498 topics and 65,950 comments.

Our final dataset from the first group was collected from the

Youtube website using the Google’s Youtube API6. We collected

all the comments posted on the videos classified as trending by

the API7 from 22/Aug/2012 to 25/Sep/2012. We collected a total

of 1,221,390 comments on 989 videos, but we use in our dataset

only those videos with more than 30 comments and which the

comments span for more than one week, a total of 610 videos

and 1,008,511 comments. The full dataset can be downloaded at

www.dcc.ufmg.br/˜olmo/youtube.zip.

In the second group, the mobile phone calls dataset contains

more than 3.1 million customers of a large mobile operator of a

large city, with more than 263.6 million phone call records regis-

tered during one month. From this same operator, we also have a

SMS dataset of 300,000 users spanning six months of data, for a

total of 8,784,101 records. These datasets from the mobile opera-

tor is under Non-Disclosure Agreement (NDA) and belong to the

iLab Research at the Heinz College at CMU, but was already used

in several papers [38, 39, 1]. We also analyze the public Enron

e-mail dataset, consisting of 200,399 messages belonging to 158

users with an average of 757 messages per user [24]. The data is

public and can be downloaded at http://www.cs.cmu.edu/ enron/.

4. MARGINAL DISTRIBUTION
In this work, we are first interested on the inter-event time dis-

tribution IED of the random variable ∆k representing the time ∆k

between the k − th and the (k − 1) − th communication events on a

given topic (first group) or of an user (second group). For simplic-

ity, we use the term “individual” to refer both to topics of the first

group and users of the second group.

4.1 Odds Ratio Using the Cumulative Distri-
bution Function

In Figure 1, we show the distribution of the time intervals ∆k be-

tween communication events for a typical active user of the SMS

dataset, with 44,785 SMS messages sent or received. The his-

togram is shown in Figure 1-a and, as we observe, this user had

a significantly high number of events separated by small periods of

time and also long periods of inactivity. Moreover, both the power

law fitting, which in the best fit has an exponent of − 2, and the

exponential fitting, which is generated by a PP, deviates from the

real data. The method we use to fit the power law is based on the

Maximum likelihood estimation (MLE) described in [7].

In empirical data that spans for several orders of magnitude,

which is the case of the IEDs, it is very difficult to identify sta-

tistical patterns in the histograms, since the distribution is consid-

erably noisy at its tail [2, 32]. A possible option is to move away

from the histogram and analyze the cumulative distributions, i.e.,

cumulative density function (CDF) and complementary cumulative

density function (CCDF), which veil the data sparsity. However,

by using the CDF, as we observe in Figure 1-b,we lose information

in the tail of the distribution and, on the other hand, by using the

CCDF, as we observe in Figure 1-c, we lose information in the head

of the distribution.

In order to escape from these drawbacks, we propose the use of

the Odds Ratio (OR) function combined with the CDF as it allows

for a clean visualization of the distribution behavior both in the

6https://developers.google.com/youtube/
7https://gdata.youtube.com/feeds/api/standardfeeds/on_the_web

head and in the tail. This OR(k) function is commonly used in the

survival analysis [3, 29] and measures the ratio between the number

of individuals who have not survived by time t and the ones that

have survived. Its formula is given by:

Odds Ratio(t) = OR(t) =
CDF(t)

1 −CDF(t)
. (2)

In this paper, for a set of n inter-event times {∆1,∆2, ...,∆n}, we

calculate the odds ratio for each percentile P1, P2, ..., P100 of the

data. This avoids that minor deviations in the data harms the good-

ness of fit test we perform, which we explain in Section 4.2.

Thus, in Figure 1-d, we plot the OR for the selected user. From

the OR plot, we can clearly see the cumulative behavior in the head

and in the tail of the distribution. Also, observe again that both

the exponential and the power law significantly deviate from the

real data. Moreover, we can also observe that the OR of the inter-

event times seems to entirely follow a linear behavior in logarithmic

scales, having, then, a power law behavior with OR slope ρ ≈ 1.

Again, in Figure 2, we plot the OR of a typical individual of

each dataset. The OR plots clearly show the cumulative behavior

in the head and in the tail of the distribution. Also, we can observe

that the OR of the inter-event times seems to follow entirely the

same linear behavior in logarithmic scales, having, then, an OR

power law behavior. This implies that the marginal distribution of

the IEDs is approximately equal to a log-logistic distribution [14],

since this distribution shows a OR power law behavior.

4.2 Goodness of Fit
In this section, we check whether the OR of the IEDs of all in-

dividuals of our datasets can be explained by a power law. We

perform a linear regression using least squares fitting on the OR of

the IEDs of all individuals. Since we consider every percentile and

the OR is a cumulative distribution, the linear regression is accu-

rate. We performed a Kolmogorov-Smirnov goodness of fit test,

but because of digitalization errors and other deviations, this test

presented biased results. For instance, it rejects all fittings on dis-

tributions where the data is rounded up from seconds to minute

values (e.g. 45 seconds to 60 seconds).

Figure 3 shows the histogram of the determination coefficient

R2 of the performed linear regressions. The determination coef-

ficient R2 is a statistical measure of how well the regression line

approximates to the real data points. A R2 = 1.0 indicates that the

regression line perfectly fits the data. We observe that for the vast

majority of individuals of our eight datasets, the R2 is close to 1.0.

More specifically, for the first group, the R2 averages 0.97 for the

Youtube, Askme and Digg datasets and 0.98 for the Mefi and Meta

datasets. For the second group, the R2 averages 0.99 for the phone

dataset, 0.96 for the SMS dataset and 0.97 for the e-mail dataset.

This allows us to state that for the vast majority of individuals, the

OR of their IEDs is well fitted by a power law.

4.3 Typical Behavior
Since the IED of the majority of individuals is well modeled by

an odds ratio power law, then we are able to characterize their be-

haviors by two values: the slope ρ and the median µ of the fitted

OR power law. Observe in Figure 4 the PDF of the slopes ρi mea-

sured for every individual i of our eight datasets. Except the SMS

dataset, the typical ρi for the majority of individuals is approxi-

mately 1. Moreover, observe in Figure 5 the PDF of the medians µi

measured for every individual i of our eight datasets. Observe that,

while the typical µi is around 1 hour for the second group, for the

first group it varies from 3 to 8 minutes.
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(a) Histogram (b) CDF (c) CCDF
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Figure 1: The inter-event times distribution of the most active individual of our eight datasets, with 44,785 SMS messages sent and

received. We observe that both the power law fitting (PL fitting) with exponent 2 and the exponential fitting, generated by a PP,

deviate from the real data. We also observe that the OR is very well fitted by a straight line with slope ≈ 1.
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Figure 2: The Odds Ratio plot for one typical active individual of each dataset. Observe that an odds ratio power law, represented

by a straight line with slope ρ in a log-log scale, is an appropriate fit for all individuals.

5. TEMPORAL CORRELATION
Although most previous analysis focus solely on the marginal

IED, a subtle point is the correlation between successive inter-event

times (∆k−1 and ∆k). What we illustrate here is that the indepen-

dence between ∆k and ∆k−1 does not hold for the eight datasets we

analyzed in this work.

In Figure 6, we plot, for the same typical users of Figure 2, all

the pairs of consecutive inter-event times (∆k−1,∆k). We also show

the regression of the data points using the LOWESS smoother [8].

While the PP, as for any other i.i.d. process, the regression is a flat

line with slope 0, for the eight typical users ∆k tends to grow with

∆k−1. This means that if I called you five years ago, my next phone

call will be in about five years later. In short, there is a strong,

positive dependency between the current inter-event time (∆k) and

the previous one (∆k−1), clearly contradicting the independence as-

sumption.

We formally investigate if two consecutive inter-event times are

correlated analyzing the autocorrelation [4] of all the time series in-

volving the inter-event times ∆k of the individuals of our datasets.

Autocorrelation refers to the correlation of a time series with its

own past and future values. A positive autocorrelation, which is

suggested by Figure 6, might be considered a specific form of “per-

sistence”, i.e., a tendency for a system to remain in the same state

from one observation to the next.

We test if all the ∆k time series of every individual of our datasets

are random or autocorrelated. For this, we define the hypothesis test

H0 that a series S = {∆0,∆1, ...,∆n} of inter-event times is random.

If S is random, then its autocorrelation coefficient ACl ≈ 0 for all

lags l > 0, where a lag l is used to compare, in this case, values of

∆k and ∆k−l. More formally, if ACl is between the 95% confidence

interval for S to be random, then we accept H0 that S is random.

As we show in Figure 7, we reject the null hypothesis H0 that the

inter-event times of the individual of Figure 1 is random, since all

ACl, 1 < l ≤ 10 are outside the confidence interval.

Since we are interested only in the case where the lag l = 1, we

propose an alternative hypothesis test H1 that the first-order auto-

correlation coefficient AC1 is greater than 0. If AC1 is greater than

the confidence interval for randomness, then we accept H1 that the

series is not random, i.e., there is a dependence between ∆k and

∆k−1. In Figure 8, we show the empirical probability P(H1) of ac-

cepting H1 for individuals with a given number of events n of a

given dataset. As we observe, as the number of communication

events n grows and becomes significant, the probability of accept-

ing H1 increases rapidly. This strongly suggests that, on the con-
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Figure 6: I.i.d. fallacy: dependence between ∆k and ∆k−1. Each point represents a pair of consecutive inter-event times (∆k−1,∆k)

registered for a typical active individual of each dataset. The red line is a regression of the data points using the LOWESS smoother.
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Figure 3: The goodness of fit of our proposed model. We show

the histograms of the R2s measured for every user in the eight

datasets. These histograms consider bins of size 0.05. Thus,

observe that the R2 value for the great majority of individuals

is located in the last bin, from 0.95 to 1.

0 1 2
0

0.2

0.4

0.6

0.8

odds ratio slope ρ

d
e

n
s
it
y

 

 

Youtube

Mefi

Meta

Digg

Askme

mean ρ ≈ 1

for all datasets

(a) First group

0 1 2 3
0

0.1

0.2

0.3

0.4

odds ratio slope ρ

d
e

n
s
it
y

 

 

Phone

SMS

E-mail

mean ρ ≈ 1

for 2 datasets

(b) Second group
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of our eight datasets. Except the SMS dataset, the typical ρi for
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Figure 5: The PDF of the medians µi measured for every user of

our eight datasets. Observe that the typical µi is around 3 and

8 minutes for the first group and around 1 hour for the second

group.

trary of what happens with the i.i.d. inter-event times distribution

generated by the Poisson Process or simply sampling from a log-

logistic distribution, in real data there is a dependence between ∆k

and ∆k−1. This also agrees with a recent work [35], which reports

that daily series of calls made by a customer exhibits long memory.
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Figure 7: The sample autocorrelation for the same individual of

Figure 1 and for synthetic data generated by the SFP and a PP

with the same number of communication events and median.

Thus, in summary we can state that

E(∆k |∆k−1) = f (∆k−1) (3)

where f is a function that describes the dependency between ∆k

and ∆k−1.
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Figure 8: The empirical probability of an individual’s inter-

event times to be autocorrelated given his/her number of events.

Note that as the number of events grows, the probability of

having an autocorrelated series increases rapidly for the eight

datasets.

6. THE SELF-FEEDING PROCESS
Given all the above evidence (OR power law; i.i.d. fallacy) and

all the previous evidence (power law tails by Barabási; short-term

regular behavior as the PP), the question is whether can we design a

generator which will match all these properties? Our requirements

for the ideal generator are the following:

R1: Realism – marginals The model should generate OR power

law marginal IED;

R2: Realism – locally-Poisson: The model should behave as a Pois-

son Process within a short window of time;

R3: Avoid the i.i.d. fallacy Two consecutive inter-event times should

be correlated;

R4: Parsimony It should need only few parameters, and ideally,

just one or two.

At a high level, our proposal is that the next inter-arrival time will

be an exponential random variable, with rate that depends on the

previous inter-arrival time. It is subtle, but in this way our genera-

tor behaves like Poisson in the short term, gives power-law tails in

the long term, generates OR power law marginals and is extremely

parsimonious: just one parameter, the median µ of the IED. We call

this model the Self-Feeding Process (SFP).

We propose the generator as follows

Model 1. Self-Feeding Process SFP (µ).

//µ is the desired median of the marginal PDF

∆1 ← µ

∆k ← Exponential (mean β = ∆k−1 + µ/e)

where µ is the only parameter of the model, being the desired me-

dian of the IED. The part µ/e has to be higher than 0 to avoid ∆k

to converge to 0 and has to be divided by the Euler’s number e to

make the median of the generated IED around the target median µ

(more details in the Appendix A). This type of model is not new

in the literature [41, 10] but they have not been extensively stud-

ied, perhaps due to the lack of empirical data fitting the implied

distribution.

In Figures 9-a and 9-b we compare, respectively, the histogram

and the OR of the inter-event times generated by the SFP model,

all values rounded up, with the inter-event times of the individ-

ual of Figure 1. Notice that the distributions are very similar and

both are well fitted by a log-logistic distribution, which looks like

a hyperbola, thus addressing both the power-law tail, as well as

the “top-concavity” that real data exhibits. For a generalized SFP

model, that generates IEDs with different OR slopes, and more de-

tails about the log-logistic distribution, please see the Appendix B.

Moreover, for an analysis over the temporal correlations generated

by the SFP, see the Appendix A.4.
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Figure 9: Comparison of the marginal distribution of the inter-

event times generated by the SFP model with the inter-event

times of the user of Figure 1. Observe that both the histogram

(a) and the OR (b) are almost identical.

The SFP model naturally generates an odds ratio power law with

slope ρ = 1, which is the slope that characterizes the majority of the

users of our datasets (see Figure 4). To the best of our knowledge,

this is the first work that studies the IED of human communications

using such a varied, modern and large collection of data. Despite

the fact that the means of communications are intrinsically differ-

ent, having their own idiosyncrasies, we have observed that the IED

of individuals of these systems have the same characteristics, i.e.,

they follow an odds ratio power law behavior. Moreover, when the

OR slope ρ = 1, the power law exponent of the PDF is α = −2

(see the Appendix B.5 for details). This is the same IED slope α

reported in [18, 40] as a result of fluctuations in the execution rate

and in particular periodic changes. It has been argued that sea-

sonality can only robustly give rise to heavy-tailed IEDs when the

exponent α = 2. However, we again point out that the proposed

(Generalized) SFP model (see the Appendix A) can generate IEDs
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with power-law slopes α varying in the range (−∞,−1), agreeing

with all the empirical studies we are aware of. Moreover, we point

out that the typical values of the parameters µ and ρ can be easily

extracted from the distributions shown in Figures 5 and 4.

7. THE UNIFYING POWER OF THE SFP
Finally, we would like to emphasize the unifying power of the

SFP. Several works [21, 32, 31, 30, 25, 23] claim that in the short

term, real data behave as regular as a PP. Our model also cap-

tures that, since successive inter-event times are exponentially dis-

tributed, with similar (but not identical) rates. Thus, one of the ma-

jor contributions of this work is the unification of the two seemingly-

conflicting viewpoints we mentioned earlier. The proposed SFP

model unifies both theories by generating Poisson-like traffic in

the short term, with smoothly varying rate, like the second view-

point, and also generates a power-law tail distribution (see the Ap-

pendix B.5), even matching the top-concavity that power laws can-

not match, like the first modern approach of Barabási [2].

In Figure 10, we explicitly show the SFP’s unifying power. We

compare synthetic data generated by the SFP model using the same

odds ratio slope ρ, median µ and number of events of the user of

Figure 1 with the real data from this user. Notice the bursts of activ-

ity and also the long periods of inactivity, in the first two columns

of Figure 10. Also notice that both synthetic and real traffic signif-

icantly deviate from Poisson (sloping lines in Figures 10-b and 10-

f) but are similar between themselves. However, in the short term,

both real and synthetic data behave like Poisson, being practically

on top of the black dashed lines of Figures 10-d and 10-h.

8. CONCLUSIONS
In this paper, we propose the SFP model, which reconciles pre-

vious approaches for human communication dynamics. The SFP is

a parsimonious generator that requires at most two intuitive param-

eters, and yet it has several desirable properties:

• Realism: it matches very well the properties of the IEDs of

eight large, diverse and real systems, such as online forums,

Youtube comments, online news, e-mails, SMSs and phone

calls;

• Unification Power: it reconciles seemingly-contradicting the-

ories on human communication dynamics. Our model ex-

hibits power law tail behavior and burstiness in the long term,

as well as Poisson-like behavior in the short term;

• It avoids the “i.i.d. fallacy”: inter-event times are not in-

dependent, i.e., the time needed for the next event to arrive

depends on the time the previous event took to arrive. Our

model is the first to capture this very subtle point.

Moreover, there are two additional contributions: (i) the proposal

to use the so-called “Odds Ratio” function using the cumulative dis-

tribution function – most of our real data seems to obey a power-

law in their Odds-Ratio function, even when their PDF deviates

from a power-law; (ii) the proposal to use the log-logistic distri-

bution, which has power-law tail, but also exhibits the so-called

“top-concavity”, that real data seem to have.

9. REFERENCES
[1] L. Akoglu, P. O. S. Vaz de Melo, and C. Faloutsos.

Quantifying reciprocity in large weighted communication

networks. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD), 2012, Kuala Lumpur,

2012.

[2] A. Barabási. The origin of bursts and heavy tails in human

dynamics. Nature, 435:207–211, May 2005.

[3] S. Bennett. Log-logistic regression models for survival data.

Journal of the Royal Statistical Society. Series C (Applied

Statistics), 32(2):165–171, 1983.

[4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series

Analysis, Forecasting, and Control. Prentice-Hall,

Englewood Cliffs, New Jersey, third edition, 1994.

[5] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun. Internet

traffic tends to poisson and independent as the load increases.

Technical report, Bell Labs Technical Report, 2001.

[6] F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlos. Are

web users really markovian? In Proceedings of the 21st

international conference on World Wide Web, WWW ’12,

pages 609–618, New York, NY, USA, 2012. ACM.

[7] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law

distributions in empirical data. SIAM Review, 51(4):661+,

Feb 2009.

[8] W. S. Cleveland. Robust Locally Weighted Regression and

Smoothing Scatterplots. Journal of the American Statistical

Association, 74(368):829–836, 1979.

[9] D. Cox and V. Isham. Point Processes. Monographs on

Applied Probability and Statistics. Taylor & Francis, 1980.

[10] D. R. Cox. Some Statistical Methods Connected with Series

of Events. Journal of the Royal Statistical Society. Series B

(Methodological), 17(2):129–164, 1955.

[11] M. De Choudhury, H. Sundaram, A. John, and D. D.

Seligmann. Social synchrony: Predicting mimicry of user

actions in online social media. In Proceedings of the 2009

International Conference on Computational Science and

Engineering - Volume 04, pages 151–158, Washington, DC,

USA, 2009. IEEE Computer Society.

[12] J.-P. Eckmann, E. Moses, and D. Sergi. Entropy of dialogues

creates coherent structures in e-mail traffic. Proceedings of

the National Academy of Sciences of the United States of

America, 101(40):14333–14337, October 2004.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law

relationships of the internet topology. In SIGCOMM ’99:

Proceedings of the conference on Applications, technologies,

architectures, and protocols for computer communication,

pages 251–262, New York, NY, USA, 1999. ACM.

[14] P. R. Fisk. The graduation of income distributions.

Econometrica, 29(2):171–185, 1961.

[15] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp,

D. Mazières, and H. Yu. Re: Reliable email. In Proceedings

of the Third USENIX/ACM Symposium on Networked System

Design and Implementation (NSDI’06), pages 297–310,

2006.

[16] S. S. Gokhale and K. S. Trivedi. Log-logistic software

reliability growth model. In HASE ’98: The 3rd IEEE

International Symposium on High-Assurance Systems

Engineering, pages 34–41, Washington, DC, USA, 1998.

IEEE Computer Society.

[17] F. A. Haight. Handbook of the Poisson distribution [by]

Frank A. Haight. Wiley New York„ 1967.

[18] C. A. Hidalgo. Scaling in the inter-event time of random and

seasonal systems. PHYSICA A, 369:877, 2006.

[19] M. Jamali, G. Haffari, and M. Ester. Modeling the temporal

dynamics of social rating networks using bidirectional effects

of social relations and rating patterns. In Proceedings of the

1325



Long term behavior Short term behavior

Real data

50 100 150
0

500

1000

# o
f e

v
e

n
ts

time (days)

Poissonian behavior

(a)

50 100 150
0

1

2

3

4

x 10
4

c
u

m
u

la
ti
v
e

 # o
f e

v
e

n
ts

time (days)

 

 

data

Poisson

Poissonian
behavior

(b) (c)

70 72 74 76 78
2.2

2.4

2.6

x 10
4

c
u

m
u

la
ti
v
e

 # o
f e

v
e

n
ts

time (days)

 

 

data

Poisson

Poissonian behavior

λ = 600 events/day

(d)

SFP data

50 100 150
0

500

1000

# o
f e

v
e

n
ts

time (days)

Poissonian behavior

(e)

50 100 150
0

1

2

3

4

x 10
4

c
u

m
u

la
ti
v
e

 # o
f e

v
e

n
ts

time (days)

 

 

SFP

Poisson

Poissonian
behavior

(f) (g)

48 50 52 54

1.8

1.9

2

2.1
x 10

4

c
u

m
u

la
ti
v
e

 # o
f e

v
e

n
ts

time (days)

 

 

SFP

Poisson

Poissonian Behavior

λ = 500 events/day

(h)

Figure 10: Unification Power of SFP: non-Poisson/bursty in the long term, but Poisson in the short term. Real data: Traffic of the

user of Figure 2-1, showing event-count per unit time (a and c) and respective cumulative event-count (b and d). SFP data: synthetic

traffic generated by the SFP model (with matching µ, ρ and event-count). Observe that (1) both time series are visually similar; (2)

both are bursty in the long run (spikes; inactivity) (3) both are Poisson-like in the short term (last two columns)
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APPENDIX

A. THE GENERALIZED SFP MODEL

A.1 Model Definition
In Figure 4 we showed the slopes ρ of the OR fitting for the IEDs

of all individuals of our datasets. It is fascinating that the typical ρi

for the individuals of seven of our eight datasets is approximately

1, the same slope generated by the SFP model. Several individuals

though, mainly from the SMS dataset, have a much higher value of

ρ, close to ρ ≈ 2. To accommodate that and all the variance seen

in the data, we introduce our Generalized SFP model, which needs

just one parameter more, ρ. Thus, we have:

Model 2. Generalized Self-Feeding Process S FP(µ, ρ).

δ1 ← µ

δt ← Exponential (mean: β = δt−1 + µ
ρ/e)

∆k ← δ
1/ρ
t .

Note the auxiliary variable δt, which stores the inter-event times

without the influence of ρ.

A.2 Parameters
Before reaching the full SFP model described in the paper, we

had a simpler version of it, relying on a different parametrization

scheme:

Model 3. Self-Feeding Process SFP (C,a).

δ1 ← C

δt ← Poisson Process(β = δt−1 +C)

∆k ← δa
t ,

(4)

where C is the location parameter and a is the shape parameter

that defines the odds ratio slope ρ. An easy and direct way to define

the relationships between this model’s parameters and the distribu-

tion properties µ and ρ is through simulations.

Thus, the first point we consider is the median µ of the inter-event

times generated by the SFP model when a = 0. When OR(x) = 1, x

is the median µ of the distribution. Thus, in Figure 11-a, we plot the

OR for different values of C. We observe that changing the value

of C changes µ and, consequently, the location of the distribution,

but maintains its slope. We also see that µ is close but different than

the value of C.

In order to investigate the relationship between C and µ, we

run simulations of the model for all integer values of C between

[1,10000]. As we observe in Figure 11-b, the median µ of the inter-

event times distribution (IED) varies linearly with C according to a

slope of ≈ 2.72, that can be approximated by Euler’s number e, in

a way that µ ∝ e × C. This allows us to generate inter-event times

with a determined µ when the slope ρ = 1. We ignore the constant

factor 3.8 because its 95% confidence interval is (−8.596, 16.3),

which contains zero.

(a) The OR of the IED for dif-
ferent values of C

(b) µ as a function of C

Figure 11: Changing the value of C changes the location of the

distribution. The median of the distribution µ varies linearly

with C, µ = a×C + b, with a = 2.719 and b = 3.8. The 95% con-

fidence interval for a is (2.715, 2.723) and for b is (−8.60, 16.3).

Since the confidence interval for b contains 0, b is not signifi-

cant.

Now we know how to generate inter-event times with different

medians µ using the parameter C = µ/e of SFP. The next step is to

verify how the SFP model can generate IEDs with a desired slope

ρ , 1. Considering that up to this point the SFP model generates

a set of inter-event times I1 with a slope 1, the idea is to use an

exponent a to transform I1 into Iρ, which is an IED with a different

slope ρ. When we elevate each ∆k ∈ I1 to the power of a , 1, the

resulting slope ρ becomes different than 1, as we see in Figure 12-a.

In the same way we did for C, we run simulations of the model for

1000 different values of a ∈ [0.1, 2]. As we observe in Figure 12-

b, there is an inverse relationship between a and ρ, i.e., ρ = a−1.

Moreover, since the median of the distribution is also elevated to

the power of a, we have to elevate the parameter µ to the power of

ρ = a−1 to preserve the median.

A.3 The need for the constant µ/e in SFP

Lemma 1. The constant C = µ/e > 0 of Model 3 is needed to

assure that the inter-event times generated by the SFP model will

not converge to zero.

Proof. If we remove the constant C from Model 2, ∆k = (∆k−1)×
(− ln(U(0, 1))), or ∆k will be equal to ∆k−1 multiplied by a random

number X extracted from the exponential distribution with param-

eter β = λ = 1. If (X = 1
k
| k > 1), then ∆k will be equal to ∆k−1

divided by k. The probability of X to be 1
k

is P(X = 1
k
) = e−

1
k = 1

k√e
.

On the other hand, the probability of multiplying ∆k by k and, there-

fore, return ∆k+1 to ∆k−1 value is P(X = k) = e−k = 1

ek . Given
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(a) The OR of the IED for dif-
ferent values of a

(b) ρ as a function of a

Figure 12: Changing the value of a changes the slope ρ of the

distribution in a way that ρ = a−1.

these probabilities, observe that P(X = 1
k
) = 1

k√e
> P(X = k) =

1

ek ,∀k > 1. From this, we conclude that the expected value of ∆k

when t → ∞ is 0. With C in the equation, even when ∆k−1 = 0,

∆k = −C × ln(U(0, 1), that is a classic Poisson process with β = C,

and, obviously, does not converge to 0.

A.4 Lower Temporal Correlation
The SFP model is build upon a direct dependence between con-

secutive inter-event times. Because of that, the correlation between

consecutive inter-event times is significantly higher than real data.

While the average Pearson’s correlation coefficient for real data is

approximately 0.4, for synthetic data generated by the SFP model

it is approximately 0.7. In order to generate more realistic data,

we suggest a slight modification of the SFP process. Instead of

generating the next inter-event time (∆k) based on the immediate

previous one (∆k−1), we propose that it should be generated from a

ǫ-th previous one (∆k−ǫ). This can be done by extracting ǫ from an

exponential distribution with mean β = 1 and making its ceiling, so

the lower bound for ǫ is 1. In summary, the SFP model is changed

as follows:

Model 4. Self-Feeding Process* SFP*(µ).

//µ is the desired median of the marginal PDF

∆1 ← µ

ǫ ← ⌈Exponential (mean β = 1)⌉
∆k ← Exponential (mean β = ∆k−ǫ + µ/e)

Observe in Figure 13 that the synthetic data generate by the SFP*

has a lower correlation (0.43) between consecutive inter-event times

than the original one (0.70). Despite of that, the odds ratio gener-

ated by the SFP* is still a power law with slope ρ ≈ 1.

B. THE SFP STATIONARY DISTRIBUTION

B.1 Analytical Result
The SFP model is within the general class of Wold processes

defined as processes with Markov-dependent interevents intervals

[41, 10]. These processes have not been extensively studied in the

literature, perhaps due to the mathematical difficulties in deriving

their probabilistic properties. Consider the existence of a stationary

distribution for the generalized SFP model. A stationary PDF f (x)

(a) Correlations in SFP (b) Correlations in SFP*
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Figure 13: Comparison between the synthetic data generated

by the SFP and the SFP*. Observe that the synthetic data gen-

erate by the SFP* has a lower correlation (0.43) between con-

secutive inter-event times than the SFP (0.70). Despite of that,

the odds ratio generated by the SFP* is still a power law with

slope ρ ≈ 1.

of the Markov chain δt must satisfy

f (x) =

∫ ∞

0

f (y→ x) f (y)dy

=

∫ ∞

0

1

y + µρ/e
exp(−x/(y + µρ/e)) f (y)dy

This integral equation has no obvious analytical solution but in the

next sections we show via simulations of the point process that f (x)

is very well approximated by a log-logistic density. This mathemat-

ical difficulty is common in the previous attempts to model data

with Wold processes. Even if a consistent density f (x) and a tran-

sition kernel f (y→ x) are given, properties are, in general, difficult

to obtain [9].

B.2 Fitting Synthetic Data
In Figure 14-a, we plot the histogram of 100,000 time intervals

∆k generated by the SFP model with µ = e. Moreover, in Figure 14-

b, we plot the OR for the same time intervals. While a classic PP

generates an exponential distribution, we observe that the generated

data by the SFP perfectly fits a distribution with an Odds Ratio

function that is a power law with slope ρ = 1. Thus, we propose

the following conjecture:

Conjecture 1. The SFP model generates a log-logistic distri-

bution with ρ = σ = 1,

where σ is the shape parameter of the log-logistic distribution.

We have several and significant evidences that the SFP generates

a log-logistic distribution, but at this moment we do not have a

formal analytical proof that this is true.

B.3 The SFP Markov Chain
The SFP can be naturally considered as a Markov Chain (MC),

since it is a sequence of random variables ∆1,∆2,∆3, ... with the
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Figure 14: Inter-event times ∆k generated by the SFP. The gen-

erated ∆ks are perfectly fitted by a log-logistic distribution with

the slope ρ = σ = 1.

Markov property, namely that, given the present inter-event time,

or state, the future and past inter-event times, or states, are inde-

pendent. Thus, here we model the SFP as a time-homogeneous

Markov chain with a finite state space to give another evidence that

the SFP has a stationary distribution and that it is very likely that

this distribution is the log-logistic.

Originally, the SFP can be considered as a continuous-time MC,

but for simplicity, we build a discrete-time Markov chain in a way

that each state ∆i = {∆1,∆2,∆3, ...} represents the inter-event times

with values within the interval (i − 1, i]. For instance, considering

the granularity in seconds, if the current inter-event time is 3.8 sec-

onds, then the MC is in the state ∆4. Also for simplicity, we build a

finite-state MC with a maximum number of states n, i.e., the states

go from ∆1 to ∆n. The MC will be in state ∆n every time the current

inter-event time is within the interval (n,∞).

Thus, considering a n-state MC build from the SFP model, the

transitions probabilities pi, j of going from state ∆i to ∆ j are given

in the following way:

pi, j =

{

CDFexp(x=j,β=i+C) −CDFexp(x=j-1,β=i+C) if j<n

1 −CDFexp(x=j,β=i+C) if j=n,

where CDFexp(x, β) is the cumulative distribution function of the

exponential distribution on x with mean β and C = µ/e, given by

the SFP (Equation 1). Observe in Figure 15 that the probability

density function of the log-logistic is virtually identical to the one

of the stationary distribution of the SFP Markov Chain. This is an-

other strong indication that the SFP generates log-logistically dis-

tributed data.

Figure 15: The probability density function of the log-logistic

distribution and the stationary distribution of the SFP MC.

It is important to point out that in [6] the authors showed that the

behavior of Web users is not Markovian, i.e., a user’s next action

does not depends only on her/his current state. Our assumption

differs from this one because we assume that users have Markovian

behavior in communications, while [6] studied whether users have

Markovian behavior while navigating on the Web.

B.4 Log-logistic Distribution
The log-logistic distribution was first proposed by Fisk [14] to

model income distribution, after observing that the OR plot of real

data in log-log scales follows a power law OR(x) = cxρ. In sum-

mary, a random variable is log-logistically distributed if the log-

arithm of the random variable is logistically distributed. The lo-

gistic distribution is very similar to the normal distribution, but it

has heavier tails. In the literature, there are examples of the use

of the log-logistic distribution in survival analysis [3, 29], distribu-

tion of wealth [14], flood frequency analysis [33], software relia-

bility [16] and phone calls duration [38]. A commonly used log-

logistic parametrization is [26]:

PDFLLG(x) = ez

σx(1+ez)2 ,

CDFLLG(x) = 1
1+e−z ,

z = (ln(x) − ln(µ))/σ,

(5)

where σ = 1/ρ, the slope of our SFP model, and µ is the same.

Moreover, when σ = 1, it is the same distribution as the Gener-

alized Pareto distribution [28] with shape parameter κ = 1, scale

parameter µ and threshold parameter θ = 0.

B.5 SFP has Power Law Tail
The universality class model proposed by Barabási [2] states that

the IED has a power law tail. The proposed SFP model agrees with

this model in a way that:

Lemma 2. If Conjecture 1 is correct, then the SFP model gen-

erates an IED that converges to a power law when x → ∞, i.e.,

limx→∞
PDFLLG (x)

x−α = k, where k is a constant greater than 0.

Proof. Considering the Probability Density Function of the log-

logistic distribution showed in Equation 5, if we set the location

parameter µ = 1 for simplicity, ez = x1/σ. Then, PDFLLG(x) can be

simplified to

PDFLLG(x) =
x

1
σ −1

σ(1 + x
1
σ )2
.

When x → ∞, the addition of 1 in the denominator can be disre-

garded, resulting in the following simplification:

PDFLLG(x) =
x−(1+1/σ)

σ
, x→ ∞.

Thus, when x→ ∞, the IED generated by the SFP model is a power

law with slope

α = −(1 + 1/σ) = −(1 + ρ). (6)

Observe again Figure 14-a and note the power law tail.

C. SFP CODE
Below we show the Python code for the SFP generator.

def SFP(n, mu, rho=1):

#first inter-event time

deltat = mu

#list of inter-event times

Deltat = []

for i in range(1, n):

#Poisson Process which Beta=deltat+mu/e

deltat = -(deltat+(mu**rho)/math.e)

deltat = deltat * math.log(random.random())

Deltat.append(deltat**(1/rho))

return Deltat
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