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ABSTRACT
The real-time information on news sites, blogs and social network-
ing sites changes dynamically and spreads rapidly through the Web.
Developing methods for handling such information at a massive
scale requires that we think about how information content varies
over time, how it is transmitted, and how it mutates as it spreads.

We describe the News Information Flow Tracking, Yay! (NIFTY)
system for large scale real-time tracking of “memes” — short tex-
tual phrases that travel and mutate through the Web. NIFTY is based
on a novel highly-scalable incremental meme-clustering algorithm
that efficiently extracts and identifies mutational variants of a sin-
gle meme. NIFTY runs orders of magnitude faster than our previous
MEMETRACKER system, while also maintaining better consistency
and quality of extracted memes.

We demonstrate the effectiveness of our approach by processing
a 20 terabyte dataset of 6.1 billion blog posts and news articles
that we have been continuously collecting for the last four years.
NIFTY extracted 2.9 billion unique textual phrases and identified
more than 9 million memes. Our meme-tracking algorithm was
able to process the entire dataset in less than five days using a single
machine. Furthermore, we also provide a live deployment of the
NIFTY system that allows users to explore the dynamics of online
news in near real-time.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Algorithms; Experimentation.
Keywords: Networks of diffusion, Information cascades, Blogs,
News media, Meme-tracking, Social networks.

1. INTRODUCTION
In less than a decade, the World Wide Web has transformed

from a large, static library that people only browse into a vast and
dynamic information resource. Today, for example, large media
houses and TV stations, small local newspapers, professional on-
line bloggers, as well as casual bloggers and citizen journalists are
continuously capturing the pulse of humanity: what we are think-
ing, what we are doing, and what we know.

Since the early days of the Web, online information content has
taken on increasingly dynamic forms, to the extent that the real-
time aspect of information has become one of the most pressing
concerns in the processing and tracking of Web content. Informa-
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tion on the Web changes rapidly over time due to the rate of pro-
duction, as well as the ways in which it is transmitted through the
network, from website to website. Developing methods for han-
dling such dynamic information at a massive scale poses many
challenges. For example, it requires us to think about how con-
tent varies and mutates as it is being transmitted over underlying
networks. A better understanding of how information spreads on
the Web has many practical applications in a wide range of fields,
such as social sciences, marketing, and politics.

The goal of this paper is to develop a system that is able to track
information as it spreads across billions of documents on the Web
and over time periods spanning many years. Studying the spread
of online information has been an active research area [1, 3, 15, 21,
39], but reliably tracking the content flow has been extremely chal-
lenging [3, 21]. While there has been work on tracking topics [5,
7, 36, 40], tags [13, 24], and keywords [8, 37], scaling difficulties
have made it harder to track information across whole websites or
across the entire Web.

Additional challenges stem from the fact that for such whole-
Web tracking, it is difficult to find the right granularity at which to
study the movement of information. For example, entire articles or
blog posts (except in rare cases) do not spread and propagate on
the scale of the whole-Web [3, 15, 21]. Similarly, terms [16, 18] or
topic clusters [7, 36, 40] (e.g. “the presidential election,” “the war
in Iraq”) are generally too broad to truly capture the fine-grained
elements of information mutation and diffusion.

In order to study the emergence and the dynamics of Web in-
formation, we need to identify the basic units of information that
propagate through the Web. We require a level of granularity that is
balanced between the coarse-grained structure of whole pages, ar-
ticles, or posts, and the fine-grained structure of terms, keywords,
or topic labels. And even if the basic units of information are suc-
cessfully identified, the challenge resulting from information that is
constantly evolving and mutating as it spreads on the Web remains.
Thus it is important to have a robust method to discover and track
different mutational variants of the same piece of information.

The sheer volume and time span of Web data requires a system
that can process tens of millions of documents per day and billions
of documents over several years. Traditional methods for track-
ing information flow have quadratic time complexity in the num-
ber of documents, which makes their running time prohibitively
large for practical use over longer time periods. Also, we cannot
hope to load all the data in memory, so efficient online incremental
algorithms for tracking information flow are needed. And as we
would like to run our system over periods spanning several years, a
challenge is that our method must not degrade in performance over
time.
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the evidence shows 
beyond any doubt that 
the u.s. postal service 
pro cycling team ran the 
most sophisticated, 
professionalized and 
successful doping 
program that sport has 
ever seen 

with all due respect, that’s a 
bunch of malarkey … not a 
single thing he said was 
accurate 

i went to a number of 
women’s groups and said, 
‘can you help us find folks?’ 
and they brought us whole 
binders full of women 

well, governor, we also 
have fewer horses and 
bayonets because the 
nature of our military’s 
changed. we have 
these things called 
aircraft carriers, where 
planes land on them 

this storm is 
dangerous and it’s 
critical to follow the 
advice of local 
emergency officials. 
if people are told to 
evacuate, they need 
to do it 

Figure 1: Visualization of the most popular memes in the month of October 2012, with notable memes labeled. Each band repre-
sents a meme and the height of the band corresponds to the number of mentions per hour. Real-time visualization is available at
http://snap.stanford.edu/nifty.

Overview of results. In this paper we present the News Informa-
tion Flow Tracking, Yay! (NIFTY) system for large scale real-time
tracking of new topics, ideas and “memes” across the Web. NIFTY
efficiently extracts and traces textual memes [20] — short phrases
that change, yet remain relatively intact as they propagate from
website to website and from blog to blog. NIFTY applies a novel
highly-scalable incremental meme-clustering approach for extract-
ing and identifying mutational variants of textual memes. Example
output of our system for October 2012 is displayed in Figure 1.
NIFTY clearly identified a number of popular memes from that
month, such as memes associated with the U.S. presidential elec-
tion (“binders full of women”, “horses and bayonets”) as well as
memes related to Hurricane Sandy (“this storm is dangerous”).

NIFTY builds on our previous MEMETRACKER [20] approach in
the sense that it operationalizes the notion of a meme through quo-
tations. Quotations appear in documents as quoted phrases or sen-
tences, operating at a level of granularity between that of individual
articles and broad topics. We define memes by combining similar
quoted phrases in clusters, each cluster representing one meme.

NIFTY operates as follows. First, we extract quoted phrases from
input documents. Once the quoted phrases are extracted, we clus-
ter all the different mutational variants of the same quote to obtain
meme clusters. It is challenging to cluster phrases, given that we
are working with billions of them. As phrases are short textual frag-
ments containing very little information, traditional bag-of-words
representations do not work well. Moreover, we are not interested
in simply clustering together all the phrases on the same topic, but
rather we want to find all the phrases that evolved through one or
more mutational steps from the same original phrase.

Our approach to the problem of identifying meme evolution [20]
applies ideas from biological sequence analysis, where we aim to
“align” two given phrases using a form of string edit distance and
then determine whether one could have evolved from the other. We
build a giant phrase graph where phrase a has a directed edge to
phrase b if there is evidence that a could have evolved from b. We
then partition this graph into clusters, such that each cluster is a
directed acyclic graph (DAG) with a single root node. The clusters
then represent memes, each cluster root node is an original meme
phrase and the rest of the cluster nodes are mutational variants of
the original phrase. For example, Figure 2 shows a graph of the
mutational variants of a meme related to the discovery of the Higgs

  

we have a discovery - we 
have observed a new 
particle consistent with a 
higgs boson. but which 
one? that remains open

we have indeed 
discovered a particle 
consistent with the higgs 
boson

we have a discovery. we 
have observed a new 
particle that is consistent 
with a higgs boson

we have observed a new 
particle consistent with a 
higgs boson

we have a discovery 
[that is] consistent with a 
higgs boson

consistent with a higgs 
boson

we have observed a new 
particle that is consistent 
with a higgs boson

consistent with the higgs 
boson

how the discovery of the 
higgs boson could break 
physics

that remains open

Figure 2: A small subset of mutations of a meme about the
discovery of the Higgs boson particle.

boson particle. The advantage of using a graph of phrase variants is
that it automatically produces the lineage or ancestry information
(as illustrated in Figure 2).

An additional challenge when one works with phrases appear-
ing over longer time periods (e.g., several months or more) is the
formation of a “giant component” containing a significant fraction
of all phrases. A low distance between two phrases from different,
frequently occurring memes can cause their corresponding meme
clusters to fuse together, leading to one large cluster over time. As
this obscures the structure we are trying to identify, we developed
a novel incremental clustering approach to finding mutational vari-
ants of a single meme. We keep a dynamic version of the phrase
graph and we constantly add new phrases to it. By maintaining the
dynamic structure of the phrase graph, we achieve both run time
efficiency as well as improved cluster quality. A second essen-
tial innovation is that we also continuously remove finalized meme
clusters and their corresponding phrases. This means that memes
(phrase clusters) that stopped evolving get removed from the graph
before a “giant” meme could start swallowing all the phrases.

We demonstrate the effectiveness of our approach by process-
ing a 20 terabyte dataset of 6.1 billion blog posts and news articles

1238



that we have been collecting for the last four years. This dataset
essentially represents complete online news coverage during those
four years. NIFTY extracted 2.9 billion unique textual phrases and
identified more than 9 million unique memes. Our efficient on-
line incremental algorithm was able to process the massive 20TB
dataset in less than five days using a single machine and only 60GB
of main memory. Incremental meme-clustering has linear runtime
in the number of phrases while maintaining cluster consistency and
quality provided by MEMETRACKER. Since the input data is pro-
cessed incrementally, clustering time depends only on the volume
of new data, which is practically constant per time unit, and not on
the increasing size of the entire dataset as is the case with the offline
batch methods. NIFTY thus allows us to quickly process datasets
that are beyond the reach of the offline batch methods.

Last, we also deployed our system so that it processes Web doc-
uments in near real-time. The system extracts and clusters memes
and then employs data visualization and data exploration techniques
that allow users to explore the ongoing dynamics of online news.
For example, Figure 1 is a screenshot of our interactive data visu-
alization across a one month period, October 2012.

To the best of our knowledge, the present study analyzes one of
the largest collections of news media documents and blog posts. In
fact, the largest existing study [20] analyzed 90 million documents.
Here we increase the scale of the analysis by 60 fold to 6 billion
documents, while requiring approximately the same time and hard-
ware resources. More broadly, we believe that our investigations
have the potential to transform our understanding of how to man-
age real-time Web information, as well as our understanding of the
evolving landscape of online news and commentary. The contribu-
tions of our present work are the following:

• A novel highly-scalable incremental meme-tracking approach
for extracting and identifying mutational variants of short
textual phrases that spread through the Web.
• A system level implementation of the incremental meme-

tracking approach.
• An application of meme-tracking on 6 billion news articles

and blog posts that we collected over the past 4 years.
• A live deployment of the NIFTY system to allow users to

explore the dynamics of online news in real-time, available
at http://snap.stanford.edu/nifty.

Further related work. Taken more broadly, our work here con-
tributes to the growing literature on tracking and studying infor-
mation dynamics on the Web. Two dominant themes in this work
have been the use of algorithmic tools for organizing and filter-
ing news, and the dynamics of online media content. Some of the
key research issues concern the filtering and aggregation of online
news [6, 12, 14]. While entity based [19, 22] as well as whole-
document based [4, 25, 29, 30] approaches have been considered in
the past, our work provides a new dimension in which we consider
using short textual phrases to track related pieces of information.
Another important distinction is that our methods scale to a truly
massive dataset, while requiring only modest hardware resources
for processing.

Meme-tracking has been successfully applied to other domains
and use cases as well. For example, meme-tracking has been used
to identify temporal variation of online media news content [10,
28, 39] as well as to reason about the dissemination and mutation
of online information [2, 27, 31, 38]. NIFTY complements this line
of work as we show that meme-tracking can be efficiently applied
to billion-document datasets in order to gain insights about the dy-
namics of online information.

Spam	  Detec*on	  

Duplicate	  Removal	  

Language	  Detec*on	  

Phrase	  Graph	  Crea*on	  

Graph	  Par**oning	  

Cluster	  Cleanup	  

Cluster	  Archiving	  

Phrase	  Filtering	  

Phrase	  Clustering	  

Cluster	  Processing	  

Visualiza*on	  

Web	  Interface	  

Con*nuous	  Stream	  	  
of	  Documents	  

Phrase	  Extrac*on	  

Figure 3: Overview of the NIFTY pipeline.

2. PROPOSED METHOD
NIFTY tracks memes by partitioning quoted phrases from in-

put documents into clusters, such that each cluster represents one
meme and the phrases in the cluster are mutational variants of a sin-
gle original phrase. We now discuss the methods that NIFTY uses
to track memes, including our approach to incremental clustering.

NIFTY processes documents through the pipeline of steps illus-
trated in Figure 3. We start with phrase extraction and proceed with
filtering, which removes spam and duplicate content. The filtering
step is often underappreciated, yet it is crucial for achieving high
quality output. Next in the processing pipeline is phrase cluster-
ing, which groups phrases (i.e., mutational variants) that belong to
the same meme. Here, the key challenge is that memes experience
significant mutations, so usual text-based distance measures and
standard clustering approaches do not work well [20]. The last two
steps of the processing pipeline are cluster processing and visual-
ization. The cluster processing step performs final quality checks
of the output, removes old clusters, archives finalized clusters, and
provides data updates for incremental clustering. Then, the visu-
alization step uses the finalized cluster archive to present meme
clusters via a Web interface.

Next we describe each of these steps in more detail. For ease
of exposition we describe the pipeline as if the system operates in
a batch setting. Later we discuss how NIFTY extends this batch
setting to an incremental, stream based model.

2.1 Phrase Extraction
The input of NIFTY is a set of documents D, where each docu-

ment in D represents an item from the Web, such as a news report
or a blog post. A document contains the document URL, an es-
timated document publish time, and a list of phrases found in the
document.

NIFTY operationalizes the notion of a meme through the extrac-
tion of short quoted phrases [20]. Building memes from quotes is
natural since quotes are an integral aspect of journalistic practice;
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even if a news story is not specifically about a particular quote,
quotes are deployed in essentially all stories, and they tend to travel
relatively intact through iterations of the story as it evolves [34].
They are also fairly unambiguous and readily identifiable, so that
we are studying elements recognizable to consumers of the media,
rather than the output of a complex clustering procedure.

2.2 Document and Phrase Filtering
Input documents for NIFTY are crawled off the Web and col-

lected using RSS feeds. Such a data gathering procedure is focused
on high coverage and volume. However, this means our data is in-
undated with spam, duplicates, and irrelevant information. Thus,
the task of the filtering step is to clean up the input and select only
English phrases, since we want to study only memes in English.

The filtering step passes over data twice. The first pass applies
a number of simple heuristics to quickly eliminate as many bad
documents and phrases as possible. With fewer documents and
phrases, the second pass can use more computationally demanding
methods to apply additional filtering criteria.

First pass: Filtering documents and phrases. Documents are
eliminated during the first pass, if they are duplicates or their URLs
are found on a manually maintained, short blacklist. Phrases are
eliminated based on their length and on the portion of ASCII char-
acters.

Phrase length. Intuitively, short phrases do not provide any use-
ful information, while long phrases tend to not be memes. We ex-
perimented with different thresholds and found that the best bal-
ance between eliminating redundant phrases and preserving useful
ones is to discard phrases with less than 3 or more than 30 words.

ASCII characters. As a quick test for English phrases, we apply
a simple heuristic that requires at least 50% of the characters in the
phrase to be ASCII characters.

Second pass: Advanced phrase filtering. During the second pass,
the phrases and their corresponding documents are eliminated based
on the phrase frequency, language filtering and URL to domain
name ratio.

Infrequent phrases. To further remove noise and spam, we dis-
card all phrases that appear in fewer than 5 distinct documents.

Language filtering. As mentioned, we are interested only in En-
glish phrases. To further filter only English documents, we com-
pute for every phrase p the percentage of its words that appear in
a list of the 1000 most common English words [35]. After exper-
imenting with a range of values, we found that the best results are
obtained by discarding all phrases where the percentage is less than
75%.

URL to domain name ratio. Spam is frequent in our dataset. One
property of spam phrases is that they occur frequently but come
from a small number of domains. We found the following rule to
be our best strategy to remove spam phrases, as most spammers use
only a few select domains to publish. If a phrase p appears at more
than 20 URLs, we compute a ratio of unique URLs to the number
of their unique host names (e.g. “www.cnn.com”). We remove p if
this ratio is greater than 6.

Output. At the end of our filtering step we have a sanitized set of
documents D, referred to as the document base, and a post-filtered
set of phrases P , referred to as the phrase base. These two sets are
used in the subsequent phrase clustering step.

2.3 Phrase Clustering
As memes spread through the Web, they change and mutate. For

example, Figure 2 displays a sample of mutational variants of a
meme concerning the discovery of the Higgs boson particle. Thus,

  

A B S C D E

D E F G SC D E F G

B C D E

S C D S E F G S H I I S J K E F G S

K S D S E F SA B S C D I J K E S G

K S D EB C D K E GJ K D E

E GJ K D

Figure 4: Example phrase graph, in which letters represent
words. The letter ‘S’ indicates a stop word. Directed edges in-
dicate the source phrase is approximately included in the desti-
nation phrase. For this example, the edge weight is inversely
proportional to the substring edit distance between the two
phrases, and is indicated by the thickness of the edge. Delet-
ing the crossed-out edges gives the optimal clustering, shown
by the dotted boundaries.

our next goal is to partition the phrase base P into meme clusters,
so that the phrases from the same meme are combined into a single
cluster. The clustering of phrases requires a non-traditional clus-
tering approach, since two phrases might have only few words in
common, yet they could belong to the same meme.

NIFTY extends and heavily improves the phrase clustering algo-
rithm first proposed by MEMETRACKER [20]. The central concept
of the algorithm is a phrase graph, which is a directed weighted
acyclic graph. Each phrase in the phrase base P is a node in the
graph and weighted edges are formed between the nodes based
on the textual similarity of the corresponding phrases. After the
graph is created, edges are pruned from the graph in order to split
the graph into disconnected components with a single root phrase.
Each disconnected component then corresponds to a meme where
all the nodes (phrases) in the component are meme’s mutational
variants. In the following, we provide details about the phrase
graph creation and partitioning steps.

Phrase graph creation. The purpose of the phrase graph creation
step is to construct a directed weighted acyclic graph where phrases
are nodes and pairs of similar phrases are connected by directed
edges, pointing from shorter phrases to longer ones (Figure 4). The
edges capture the intuition that quoted phrases are generally being
shortened as they spread over the Web. At the end of this step,
every phrase will be connected to a set of its potential “parents”,
i.e., phrases from which it could have mutated.

In order to create edges between phrases that could have evolved
from one another, we apply ideas from biological sequence analy-
sis. We aim to “align” two given phrases using a variant of string
edit distance and then determine whether one could have evolved
from the other.

Phrase distance. We expand the string edit distance to substrings
and determine phrase distances in NIFTY by using what we call
substring edit distance, an extension of the Levenshtein distance
algorithm. Given two strings, we define the substring edit distance
to be the minimum number of word insertions, deletions or substi-
tutions needed to transform one string into a substring of the other
string. We compute the substring edit distance by using a variant of
the dynamic programming algorithm for the Levenshtein distance,
removing stop words and using stemmed words during this compu-
tation.
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Algorithm 1 Decision tree to determine if an edge should be cre-
ated between phrases in the phrase graph
Require: Phrases p1 and p2

(1) Set lp to the minimum number of words in p1 or p2.
(2) Compute s1 and s2 by stripping the stop words from p1 and
p2, respectively.
(3) Set ls to the minimum number of words in s1 or s2.
(4) Set d to the substring edit distance between s1 and s2.
if ls ≥ 2 and d = 0 then

return True
else if lp = 4 and ls = 4 and d ≤ 1 then

return True
else if lp = 5 and ls > 4 and d ≤ 1 then

return True
else if lp = 6 and ls ≥ 5 and d ≤ 1 then

return True
else if lp > 6 and ls > 3 and d ≤ 2 then

return True
else

return False

Edge creation. Next, given a pair of phrases and their substring
edit distance, we must determine whether one of them is derived
from the other one and thus should be connected by an edge. We
hand labeled 1,000 pairs of phrases that are mutational variants of
each other as well as 1,000 phrases that are textually similar but
are not mutational variants. We then trained a decision tree to dis-
tinguish between these two classes of phrases (Algorithm 1). An
edge is created between two phrases in the graph, if the decision
tree returns True.

Speeding up phrase graph creation. A straightforward approach
to edge creation performs a pair-wise distance calculation between
all the phrases in the phrase base, requiring quadratic number of
calculations. This approach is prohibitively slow given the scale of
our problem and the size of our dataset.

NIFTY drastically reduces the required number of distance calcu-
lations by using locality-sensitive hashing [17] (LSH), an efficient
algorithm for identifying candidate pairs of phrases that could po-
tentially be textually similar. LSH uses hash functions to place
items into a number of buckets, so that similar items are placed in
the same bucket with high probability. Since good locality sensitive
hashing functions for substring edit distance are not available, we
use shingling [23] with min-hashing [9] (see [26] for an overview)
to find candidate pairs of phrases. Although min-hashing is com-
monly used to identify pairs of phrases with low Jaccard distance,
our approach of applying it for substring edit distance makes intu-
itive sense. We use Jaccard distance as a lower bound for substring
edit distance, as high Jaccard distance implies also high edit dis-
tance. Our experimental results in Section 3.1 confirm this intuition
that LSH with min-hashing works well for substring edit distance
and meme clustering.

We create four-character shingles from phrases, perform min-
hashing by randomly shuffling unique shingles into bands of shin-
gle permutations, and compute phrase signatures. The signature
value for each permutation is the index of the first shingle in the
permutation that exists in that phrase. Finally, each pair of phrases
that have a signature band in common is tested for an edge exis-
tence, using the decision tree in Algorithm 1.

Assigning edge weights. Next, edges in the phrase graph are as-
signed weights based on findings by Yang [39] that most news fol-
low a predictable popularity cycle with two main peaks, one from

traditional news reporting and one from blog posts. For an edge
from node ps to pd, NIFTY uses time and substring edit distance
between the nodes and calculates weight for the edge as follows:

w(ps, pd) = c · |pd|
(Dedit(ps, pd) + 1) · (Tpeak(ps, pd) + 1)

.

|pd| is the number of documents containing pd, Dedit(ps, pd) is
the substring edit distance between the phrases, and Tpeak(ps, pd)
is the time difference between the first volume peaks for each of
the two phrases. We chose this formula so that the edge weight
w(ps, pd) is proportional to the popularity of pd and the likelihood
that ps and pd are mutational variants of the same original meme
phrase. Intuitively, if ps and pd have a small edit distance and their
frequencies first peaked at about the same time, they are more likely
to be mutational variants of the same original meme phrase.

At the end, we have a directed acyclic graph G = (P, E) where
each phrase p ∈ P is a node and pairs of similar phrases have
weighted edges between them, connecting a phrase to all its poten-
tial parents. To obtain clusters, we next partition the phrase graph.

Phrase graph partitioning. Ideally, the creation step produces a
phrase graph, such that the connected components of the graph cor-
respond to memes and thus all mutational variants of a single meme
are connected together. However, we find that similar phrases may
not belong to the same meme and thus the phrase graph needs to be
further partitioned.

Traditional graph partitioning criteria (such as the normalized cut
or the min cut) are not appropriate here as our aim is to discover
all mutational variants of a single meme. With this in mind, our
goal can be rephrased as finding clusters in the phrase graph such
that each cluster has a single root node. The root node acts as the
original phrase from which all other phrases in the cluster evolved
through a series of mutations.

Thus more formally, given a weighted directed acyclic graph, our
goal is to delete a set of edges with a minimum total weight, so that
each of the resulting components is single-rooted. Given that the
problem is NP-hard [20], we use the following method.

We partition the phrase graph by repeatedly removing edges from
the graph until all outgoing edges for each node belong to the same
cluster. This constraint on the outgoing edges follows intuitively
from the concept that many phrases are derived from one original
phrase, referred to as the root phrase. These derived phrases are
normally shorter phrase segments that various news sources use.
Once all outgoing edges for each node belong to the same cluster,
the resulting phrase graph is naturally partitioned into individual
meme clusters, where each connected component is considered a
meme cluster.

We implement the algorithm by recursively building clusters,
starting with a working set that includes all the root phrases, which
are nodes in the graph with zero outdegree. At this step, each clus-
ter contains only a single root phrase. Repeatedly, when a node is
not in the working set, but all its outgoing neighbors are, we assign
the node to a cluster as follows.

For each of the node’s neighbors, we find the cluster that the
neighbor has been assigned to, then for each cluster found we sum
up the edge weights for all the neighbors in this cluster. The node is
attached to the cluster with the largest sum and added to the work-
ing set; edges to other clusters are removed from the graph. When
all the nodes are in the working set, the algorithm terminates (Fig-
ure 4).

The final output of our phrase graph partitioning algorithm is a
set of clusters, referred to as the cluster base C. Clusters have an
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easily followable acyclic structure that demonstrates how the root
phrases branch into different child phrases.

2.4 Cluster Processing
The phrase graph partitioning creates a number of non-meme

clusters such as movies, TV shows or song titles currently being
promoted in the online media. To address non-memes and any re-
maining spam clusters, we next describe how the cluster processing
step improves the clusters by filtering them by phrase mutations and
the number of peaks. Peaks are defined as spikes in the number of
phrase mutations within a time period.

Filtering by phrase mutations. This filtering strategy removes
all clusters that include a single phrase mutation. Because many
movie, TV show and song titles are frequently short and exhibit
little to no variation, this strategy removes many non-memes as
desired.

Filtering by peaks. As mentioned earlier, most news follow a pre-
dictable popularity cycle with at most two main peaks [39]. A clus-
ter that has many peaks is most likely not a meme, so this step
removes clusters with more than five peaks.

To identify peaks, our approach is to find points that are 1 stan-
dard deviation higher than the average frequency. The point with
the highest frequency in each consecutive sequence of such points
is marked as a peak. We use a sliding window of 9 days for these
calculations.

Filtering by peaks was effective in both removing spam, since it
was less likely to follow the news popularity cycle, as well as non-
memes (e.g. “The Dark Knight Rises”) that otherwise consistently
produced large clusters due to active media promotion efforts.

2.5 Incremental Phrase Clustering
So far, we described a batch approach to clustering. Now, we

describe how NIFTY extends this batch approach with incremental
clustering.

Motivation. We want NIFTY to be able to update the meme clus-
ters with new stories each day and also to process our entire dataset,
spanning more than four years. We need NIFTY to be fast and scal-
able while maintaining consistent meme clusters over time.

To achieve these objectives, we developed an incremental clus-
tering approach that quickly and consistently creates clusters over
arbitrarily long periods of time. Our incremental clustering ap-
proach is based on the phrase graph of the batch approach, how-
ever, we extended the phrase graph creation and partitioning steps
for incremental operation. We also introduced two new steps, clus-
ter completion and removal.

Algorithm overview. While the batch clustering processes all the
input documents together, the incremental clustering processes the
documents in small batches, which we call mini-batches. The pro-
cessing of each mini-batch of documents takes the phrase graph
from the previous mini-batch as input and adds the phrases from
the current mini-batch to the graph. The resulting phrase graph is
saved as input for the next mini-batch of documents. We extended
the phrase graph creation and partitioning steps, so that consistent
clusters are maintained across mini-batches.

We also expanded the algorithm with cluster completion and re-
moval steps, which make certain that old clusters do not impact
cluster quality and are removed from the phrase graph when they
stop evolving. These steps are necessary to maintain cluster qual-
ity over a large number of mini-batches and to keep the processing
resources from growing over time.

A natural choice for the mini-batch size in NIFTY is one day and
this is what we use here. The algorithm can be easily used for other
mini-batch sizes, if needed. We provide the details of our algorithm
next.

Phrase graph creation. Our incremental clustering approach cre-
ates daily phrase graphs by building upon the previous day’s phrase
graph. We attach each newly created phrase to the graph. An im-
portant detail here is that we only consider edges between phrases
where at least one phrase is new. This constraint guarantees that
new edges will not be added between previously existing phrases,
which could disrupt the existing cluster structure. Edges for new
phrases can be freely added to the graph, since they did not ex-
ist the previous day. Besides improving the cluster consistency,
this constraint also drastically reduces the number of comparisons
needed in comparison to the batch approach and thus speeds up the
processing.

Phrase graph partitioning. During the phrase graph partitioning,
we want to preserve existing clusters by preserving all edges that
existed in the graph the day before. Our partitioning strategy re-
mains the same - edges are removed until all outgoing edges for
each node belong to the same cluster. For incremental clustering,
we require that an edge is selected over other edges and kept in
the graph if both its phrases already existed the day before. Only
edges of newly added nodes can thus be removed from the graph.
Otherwise, we proceed as before, computing edge weights for all
outgoing edges and keeping only the edges from the cluster with
the highest edge weight.

This approach guarantees that all edges from the previous day’s
phrase graph are preserved, which maintains cluster consistency.
Furthermore, bypassing the edge weight computation for existing
edges allows incremental clustering to further reduce the system
run time.

Cluster completion and removal. If incremental clustering is run
without ever removing old clusters, the cluster base grows over
time, which reduces cluster quality and increases running time.
Common but not overly popular phrase clusters (e.g. “I love you”)
accumulate similar phrases over time, artificially inflating the clus-
ter popularity. To solve this problem, we introduce the concepts
of cluster completion and removal, which allow the cluster base to
retain only clusters that are alive and active.

NIFTY treats a cluster as completed if its average document fre-
quency within the last three days is less than 20% of its frequency
at its highest peak. After a cluster is completed, no new phrases are
added to the cluster. However, the document frequencies of existing
phrases in the cluster are still updated, so that the full lifecycle of
the cluster is recorded. As an example, cluster completion prevents
phrases such as “a step in the right direction,” a commonly used
political phrase, from getting mixed in with older and unrelated
phrases such as “a move in the right direction,” a phrase describing
a Christian novel. By the time “a step in the right direction” ap-
pears, the cluster with “a move in the right direction” would have
fallen past its peak popularity and therefore would be completed,
preventing “a step in the right direction” from being incorrectly
added to it.

A cluster is removed from the phrase graph, if its highest peak
is more than seven days old. We consider such clusters final and
remove them and their associated phrases and documents from the
current cluster base and the phrase graph. Cluster removal helps to
maintain a relatively constant and therefore scalable cluster base,
which enables NIFTY to be run over datasets with a large time
span. It also prevents a previously mentioned problem of inflated
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cluster popularity from occurring. Clusters that remain after the re-
moval step contain memes that are active and relevant to the present
time. If newer phrases are similar to some phrases from a removed
cluster, they are either being mentioned due to a new and different
event, or are spoken under different contexts. These new phrases
should therefore be considered a different meme cluster, which is
what NIFTY achieves with cluster removal.

Our final addition of cluster completion and removal to the sys-
tem allows us to achieve the goal of making NIFTY clustering fast,
scalable, and consistent. Incremental clustering can be run over any
period of time, which was practically impossible before with batch
approaches. Detailed speed and quality experiments and compar-
isons between MEMETRACKER and NIFTY are given in Section 3.

2.6 Visualization
The last step in NIFTY is to rank the clusters by popularity so

that the most popular clusters can be visualized (Figure 1). Each
cluster c is assigned a time-based popularity score S(c) based on
the number of document mentions and cluster recentness using the
following exponential decay formula:

S(c) =
X
p∈c

tcX
t=tp

exp

»
−
j tc − t

48

k–
·Mp(t)

p is a phrase in c, tp is the time of the earliest mention of phrase p,
tc is the current time, and Mp(t) is the number of document men-
tions of p at time period t. All time entities have one hour resolution
with units being hours, so 48 in the formula corresponds to two
days. This score ensures that more recent mentions are weighted
more heavily than older mentions.

With a popularity score assigned to each cluster, the visualization
step simply sorts the clusters by their popularity score to obtain the
top clusters for each day.

3. NIFTY SYSTEM EVALUATION
In the following, we evaluate the NIFTY system performance.

We discuss experimental results that establish the performance of
NIFTY and evaluate our most important design decisions when con-
structing the NIFTY system. Then we present a series of exper-
iments where we compare the system performance and resource
consumption of NIFTY and MEMETRACKER. We establish that
NIFTY runs faster than MEMETRACKER, while simultaneously pro-
ducing meme clusters of higher quality.

The experimental results were obtained using a dataset that we
describe in more detail in Section 4.

3.1 Evaluation of NIFTY
In the following we evaluate particular design decisions we made

when building NIFTY. First we demonstrate that locality sensitive
hashing speeds up the clustering step by reducing the number of
comparisons, while still preserving the structure of the graph as
created by using brute force with pairwise comparisons. We then
evaluate different methods for phrase graph partitioning and find
the best performing one.

Candidate pair creation. The Locality Sensitive Hashing (LSH),
used in the phrase clustering step (Sec. 2.3), significantly speeds
up the algorithm, but is an approximate method. The balance be-
tween the quality of approximation and speed is determined by the
band size parameter k and the number of bands n. The band size
k determines for one band the number of equal hash results that
are required for two phrases to be placed in the same bucket. The
number of bands n determines how often the process is repeated,

baseline size 1 size 2 size 3
#Compares 1.8× 108 8.7× 107 2.6 ×107 6.4× 106

Run Time 34m38s 31m28s 6m56s 4m01s
Pre Precision 1.00 1.00 1.00 1.00
Pre Recall 1.00 0.99 0.80 0.57
Pre F1 score 1.00 0.99 0.91 0.72
Post Precision 1.00 0.99 0.96 0.89
Post Recall 1.00 0.99 0.95 0.83
Post F1 score 1.00 0.99 0.95 0.86

Table 1: Comparison of LSH band sizes.

once for each band. A smaller k therefore results in more compar-
isons (increasing running time) but also increases the likelihood of
finding all similar edges. A larger n gives two phrases more oppor-
tunities to be placed in the same bucket, increasing the quality of
approximation and increasing running time.

While fixing the number of bands to 20, we experimented with
different band sizes to find the optimal value. These experiments
were done over one week of data with 38,000 phrases. Without
LSH, these phrases require over 721 million pairwise comparisons.
Using LSH, the number of comparisons is reduced to only 26 mil-
lion.

Table 1 gives detailed results. The baseline performance is based
on an index of shingles. We compare each pair of phrases that
shares a shingle, which guarantees that all similar phrases are com-
pared. The precision of a phrase graph is calculated as the fraction
of edges in the graph that exist also in the baseline graph. The re-
call is the fraction of edges from the baseline graph found in the
phrase graph. The F1 score is computed as the harmonic mean of
precision and recall. “Pre” values are calculated before the parti-
tioning step. “Post” values are calculated after the partitioning step
has been performed.

The results in Table 1 show that setting the band size k to 2
achieves the optimal balance between speed and quality. Setting
k to 1 achieves barely any time gain over the baseline method. On
the other hand, k equal to 3 produces clusters of significantly lower
quality (low edge recall) than k equal to 2, while time gain is lim-
ited.

It is interesting to observe that the final post scores improved
significantly after the partitioning step (“Post” scores are generally
higher than “Pre” scores). This improvement demonstrates the ro-
bustness of our phrase graph partitioning method — even though
there is some noise in the graph creation step, the final clusters
practically remain unchanged.

Phrase graph partitioning. Next, we investigate different edge se-
lection methods for our phrase graph partitioning algorithm. Start-
ing from the roots of the phrase graph, children repeatedly select
a single outgoing edge or a set of edges to determine their par-
ents, and thus the cluster they belong to. We evaluate the following
methods for selecting these outgoing edges:

• Baseline: Randomly pick an outgoing edge for each node.
• Method 1: Pick the outgoing edge with the highest edge

weight (break ties arbitrarily).
• Method 2: Pick the outgoing edges from the cluster with the

most neighbors to the node.
• Method 3: Pick the outgoing edges from the cluster whose

neighbors of the node have the highest total edge weight.

We compare the methods using two metrics: the fraction of edges
in the pre-partitioned graph that connect nodes assigned to the same
cluster, and the ratio of the total edge weight of these edges com-
pared to the total edge weight in the pre-partitioned graph. The re-
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% edges kept % edge weight kept
Baseline 13.41 70.96
Method 1 17.02 95.38
Method 2 23.62 80.60
Method 3 21.03 95.48

Table 2: Comparison of edge selection methods.
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Figure 5: MEMETRACKER and NIFTY resource usage.

sults are in Table 2. We observe that Method 3 performs best over-
all. While Method 2 is more successful in retaining edges within
clusters, and Method 1 optimizes for the total edge weight, we find
Method 3 to give the most balanced performance.

3.2 NIFTY vs. Memetracker
NIFTY builds on MEMETRACKER and we next compare the per-

formance of the two systems. In particular we are interested in
comparing resource usage and speed as well as clustering quality.

Resource usage. First in Figure 5 we compare the run time as
well as memory usage of the incremental NIFTY algorithm with the
batch MEMETRACKER algorithm. Incremental clustering in NIFTY
takes on average 1 minute daily to cluster new phrases and docu-
ments. As expected, this daily time does not increase over longer
time periods, so the total running time increases linearly with the
amount of data. Also, because NIFTY archives completed clusters,
the amount of memory it requires stabilizes at about 3GB.

On the other hand, MEMETRACKER time complexity and run-
ning time is quadratic with respect to the number of days of data
that it is processing. Since MEMETRACKER’s implementation is
less complex than NIFTY’s, MEMETRACKER is faster for small
datasets. However, we can see that NIFTY is faster once we have
at least 8 weeks’ worth of data. MEMETRACKER’s memory usage
is linear with respect to the dataset size because MEMETRACKER
must load the whole dataset into memory for clustering.

These results demonstrate that it would be impossible to run
MEMETRACKER over our 6 billion document dataset. NIFTY’s
constant memory usage and linear scaling are the key advantages
that allow us to run NIFTY on this large dataset, covering a period
of 4 years.

Meme cluster quality. Next we compare the quality of MEME-
TRACKER and NIFTY clusters. Our first and most important obser-
vation is that NIFTY does not suffer from MEMETRACKER’s “gi-
ant cluster” problem. When MEMETRACKER is run over datasets
of non-trivial size, it tends to create a giant cluster that contains a
large number of similar phrases that occur over long time periods
(“a move in the right direction” vs. “a step in the right direction”).
In the giant cluster, multiple phrases are chained together via long
and intricate strings of spurious mutations.

For our comparison, we ran NIFTY and MEMETRACKER over
the same 1 week input dataset of 102,000 phrases spanning the time
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Figure 6: NIFTY vs. MEMETRACKER cluster size distribution.
MEMETRACKER produces a giant cluster of 10,000 phrases.

period from Jan 1, 2012 to Jan 7, 2012. As shown in Figure 6,
MEMETRACKER identified 5,000 nontrivial clusters, but the largest
cluster contained more than 10,000 phrases. On the other hand,
NIFTY identified 10,000 clusters (twice as many) and the largest
NIFTY cluster contained only 112 phrases. MEMETRACKER fused
together 10,000 different phrases into a single giant meme cluster,
while NIFTY was able to assign those phrases to separate small
meme clusters, which is what we want.

We also found that NIFTY and MEMETRACKER produce very
similar small clusters except for those that MEMETRACKER folds
into the giant cluster. Larger clusters differ more, and a manual
inspection shows that MEMETRACKER clusters, when different,
combine phrases that do not belong to the same meme. For exam-
ple, “there is nothing we can do from here” is combined with “we
don’t care about data or figures, there’s nothing we can do about
pollution even it exceeds the limit”. In conclusion, there are sev-
eral clustering concerns with MEMETRACKER that we successfully
address in NIFTY.

4. PROCESSING 6B DOCUMENTS
Having established the performance of NIFTY we are now ready

to run the system over the full 4 year dataset of over 6 billion docu-
ments. Here we briefly describe our massive dataset characteristics
and give some details of the NIFTY implementation and execution
on the dataset.

Data description. Our dataset covers the online media activity
since August 1, 2008. It includes posts from the mainstream pub-
lishers, blogs, forums and other media sites. At the time of this
writing in mid November 2012, the dataset contains over 6.1 bil-
lion documents and 2.8 billion unique quoted phrases. Around 3.2
million new documents and 1.5 million unique phrases are added
to the dataset daily. The total size of our dataset is 20TB.

We use Spinn3r [33] to obtain new documents. Spinn3r is a ser-
vice that monitors over 20 million Internet sources, retrieves any
new posts and makes them available via an API. The breadth of
Spinn3r sources provides essentially complete coverage of online
media.

Implementation. The NIFTY pipeline starts with a client that down-
loads new documents from Spinn3r. The client extracts quoted
phrases, which are defined as any string in the document that is
enclosed by quotation marks, the URL and an estimated publish
time for all new documents. The rest of the pipeline reads the out-
put from the Spinn3r client and implements the methods described
in Section 2. The pipeline is initialized with two weeks of data,
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Figure 7: Basic properties of input data. (a) Number of quotes
per document vs. number of such documents. (b) Quote fre-
quency vs. number of such quotes.

processed by our batch clustering algorithm. Afterwards, our in-
cremental clustering algorithm is used to add daily updates.

The entire pipeline is implemented in C++ and uses the open
source SNAP software for text and graph manipulation [32]. As
part of NIFTY, several novel algorithms were developed. We are
in the process of integrating these algorithms in SNAP and making
them publicly available as open source.

Execution. Although the main purpose of NIFTY is to process new
documents as they become available, its ability to work incremen-
tally allows us to run the pipeline over the entire dataset in our news
archive. The processing of 20TB of data with 6.1 billion of docu-
ments collected over 4 years took less than five days on a single
machine.

Figure 7 shows characteristics of our input data. We note that
the distribution over the number of quotes per document (Fig. 7(a))
as well as the quote frequency both exhibit a heavy tailed distri-
bution. While documents contain less than hundred quotes, quotes
themselves are heavily popular on the Web and some quotes get
mentioned hundreds of thousands of times.

The filtering step (Sec. 2.2) starts with 2.9 billion quoted phrases
in 6.1 billion documents. The first filtering pass keeps 0.9 billion
unique phrases in 0.5 billion documents. The second filtering pass
ultimately selects for further processing 378 million phrases in 133
million documents, which means an average of 2.9 phrases per doc-
ument. 33 million of those phrases are unique.

The filtering step takes, on average, 7 minutes and 6 GB of mem-
ory to filter a day’s worth of data. To reduce execution time, we
run 10 instances of filtering concurrently on a single multicore ma-
chine, which brings the total filtering time for the entire 4 year
dataset to 17 hours.

The clustering step (Sec. 2.3) creates 9 million meme clusters
from 33 million unique phrases. An average number of phrase men-
tions for a meme is 42. The clustering step takes four days at a rate
of 8.5 million phrases clustered per day, running as a single thread.

5. ANALYSIS OF MEMES
By extracting memes from our massive 6 billion document 20TB

dataset spanning 4 years, we also learn interesting facts about the
characteristics and dynamics of online memes. We examine some
of our findings here.

Properties of meme clusters. We observed several interesting
trends illustrated in Figure 8. First, NIFTY outputs between 6 and
10 thousand clusters per day (Fig. 8(a)). While the number of
unique extracted quoted phrases varies between 20 and 50 thou-
sand per day, the number of identified meme clusters is about 5
times smaller, which means an average meme has between 3 to 5
mutational variants found on the Web.

 0

 2

 4

 6

 8

 10

 12

 14

2009 2010 2011 2012 2013

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs
 [
x
1
0

3
]

Time [year]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
1

10
2

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

Cluster size (Number of quotes)

y ∝ x
-4.3

(a) Clusters over time (b) Cluster size

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
2

10
3

10
4

10
5

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

Cluster volume (Number of mentions)

y ∝ x
-2.7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

Cluster lifespan [days]

y ∝ e
-0.48x

(c) Cluster volume (d) Cluster lifespan

Figure 8: NIFTY meme clusters over a 4 year period.

In terms of the meme cluster size measured in the number of
phrases contained in the cluster, we observe a nice heavy tailed
distribution with the largest clusters containing slightly fewer than
100 variants (Fig. 8(b)). Similarly, the cluster volume measured as
the total number of mentions of all the phrases in the cluster follows
a power-law like distribution (Fig. 8(c)). We also observe that the
most popular memes on the Web are mentioned tens of thousands
of times.

Last, we examine the distribution of meme lifetimes. Here we
quantify the lifetime of a cluster simply as the time difference be-
tween the 5th and 95th percentile of all mentions of phrases in the
cluster. Such a definition is more robust than taking the difference
between the time of the first and the time of a last mention of any
phrase in the cluster. In Figure 8(d) we note an interesting expo-
nential decay in meme lifetime. While most memes live only for
a day or two, long-lasting memes remain for about 1 month. This
nicely agrees with previous works on human attention and patterns
of temporal variation in online media [39].

Properties of phrases inside clusters. Next we examine how
properties of meme clusters vary as a function of the phrases that
are part of the same meme cluster. In particular, we characterize
every meme cluster in two different ways: by its most mentioned
phrase, referred to as the popular phrase, and also by its root phrase
(i.e., the root node of the cluster). Figure 9 plots various charac-
teristics of clusters based on the word length of the most popular
phrase (left column) as well as the word length of the root phrase
(right column).

We observe that most popular phrases as well as root phrases
are short in most meme clusters (Figures 9(a),(b)). There is sur-
prisingly little difference between the two distributions. However,
we observe an interesting distinction between the length of the root
vs. most popular phrase when we compare the cluster sizes (i.e.,
the number of mutational variants in the cluster). Here we notice
memes mutate the most when the most popular phrase is relatively
short (Fig. 9(c)) and the root phrase is long (Fig. 9(d)). This is in-
teresting as it suggests that memes that mutate a lot contain short
catch phrases that appear in the context of a larger phrase.

We observe similar behavior when investigating meme lifespan.
We observe that memes with shorter most popular phrases survive
longer (Fig. 9(e)), while memes with short roots diminish sooner
(Fig. 9(f)). Such behavior is consistent with our explanation above.
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Figure 9: Global characteristics of meme clusters and phrases.
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Figure 10: Phrase word length and volume as a function of
order of the appearance.

Memes with short catch phrases that are parts of longer narratives
survive longer and are also more diverse [11].

Properties of phrases. We also compare how properties of phrases
change as the memes evolve over time. Here we simply order the
phrases belonging to the same meme cluster in order of their first
appearance. Figure 10 shows the results, from which we make
several interesting observations. We plot the average phrase word
length as a function of the order in which the phrases inside the
same cluster appear (Figure 10(a)). We observe that phrases that
get mentioned first are generally much shorter than phrases that
appear later in the meme lifetime. This phenomenon is consistent
with the fact that blogs and social media sites react to trends and
news quickly, and mention memes before the mainstream media
does [20, 39]. Social media sites tend to mention a shorter and more
impactful version of the meme. For example, during the 2012 U.S.
presidential election campaign, a popular meme “binders full of
women” emerged. This catchphrase version of the meme was men-
tioned much before the original long version of the meme which
was: “I went to a number of women’s groups and said, can you help
us find folks? And they brought us whole binders full of women.”

Meme property Popular Unpopular
Most popular phrase length 7.49 11.64
Root phrase length 11.46 11.94
#Phrase variants 2.84 1.10
Meme lifespan [days] 8.66 1.33
#Peaks 2.62 1.85

Table 3: Comparison of popular and unpopular meme clusters.

When focusing on the number of mentions a phrase receives as a
function of the order of appearance (Figure 10(b)), we notice that
a phrase variant that appears 5th tends to be the most popular. The
popularity quickly drops off with phrases that appear later in the
cluster lifetime receiving less and less attention (i.e., volume).

Comparison of popular and unpopular memes. Last, we also
examined the differences between memes that get at least some
popularity vs. memes that receive little or no attention. For the
purpose of this experiment we call a meme popular if it was men-
tioned at least 350 times, and we call all other memes unpopular.

Table 3 shows that the average length of the most frequently
mentioned phrase in a cluster is significantly shorter in popular
clusters in comparison to unpopular ones. On the other hand, the
root phrase length does not change excessively. This suggests that
popular phrases are significantly more likely to be shortened into
more memorable sound bites [11]. The fact that popular clusters
contain significantly more phrase variants on average supports this
hypothesis. We also noticed that popular memes live significantly
longer than unpopular ones on average. This also explains why
popular memes exhibit more peaks in their volume, as the temporal
dynamics of online media tends to follow a strong daily cycle [39].

6. CONCLUSION
In this paper we have developed NIFTY, a system for tracking

short, distinctive textual phrases that travel relatively intact through
online text. We presented a highly scalable algorithm for meme-
tracking which identifies and clusters mutational variants of tex-
tual phrases. Our system scales to a collection of 6 billion articles,
which makes the present study one of the largest analyses of online
news in terms of data scale. Moreover, we provided a live deploy-
ment of the NIFTY system which allows users to explore the dy-
namics of information dissemination and mutation in mainstream
and social media.

Our approach to meme-tracking opens a range of opportunities
for future work. For example, how can we understand the dynamics
of the mutation of memes over both time and space? Given that
our data essentially covers the entire online media landscape over
the last four years, it may be possible to more generally identify
and model the way in which the essential “core” of a widespread
meme emerges and enters popular discourse. Similarly, the long
time period that our dataset encompasses may ease studies on the
evolution of online media commentary and practices, as well as on
the kind of collective behavior that leads directly to the ways in
which all of us experience news and its consequences.
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