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ABSTRACT
An increasing amount of applications build their function-
ality on the utilisation and manipulation of web resources.
Consequently REST gains popularity with a resource-centric
interaction architecture that draws its flexibility from links
between resources. Linked Data offers a uniform data model
for REST with self-descriptive resources that can be lever-
aged to avoid a manual ad-hoc development of web-based
applications. For declaratively specifying interactions be-
tween web resources we introduce Data-Fu, a lightweight
declarative rule language with state transition systems as
formal grounding. Data-Fu enables the development of data-
driven applications that facilitate the RESTful manipulation
of read/write Linked Data resources. Furthermore, we de-
scribe an interpreter for Data-Fu as a general purpose engine
that allows to perform described interactions with web re-
sources by orders of magnitude faster than a comparable
Linked Data processor.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Architectures

General Terms
Languages, Performance

Keywords
REST; Linked Data; Web Interaction; Rule Language; In-
terpreter

1. INTRODUCTION
There is a growing offer of functionality via web APIs1.

Increased value comes from combining data from multiple

1Alone http://programmableweb.com/ lists 7,991 APIs on
November 24th 2012, which is almost twice the number from
one year earlier.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

sources and functionality from multiple providers. The im-
portance of such compositions is reflected in the constant
growth of mashups – small programs that combine multiple
web APIs [33]. There is a strong movement in the web com-
munity toward a resource-oriented model of services based
on Representational State Transfer (REST [11]). Flexibil-
ity, adaptivity and robustness are the major objectives of
REST and are particularly useful for software architectures
in distributed data-driven environments such as the web [22].
However, data sources and APIs are published according to
different interaction models and with interfaces using non-
aligned vocabularies, which makes writing programs that
integrate offers from multiple providers a tedious task.

The goal of our work is to provide a declarative means
to specify interactions between data and functionality from
multiple providers. Such declarative specifications provide
a modular way of composing the functionality of multiple
APIs. Also, declarative methods allow for automatically
optimising a program and parallelising the execution.

In a REST architecture, client and server are supposed to
form a contract with content negotiation, not only on the
data format but implicitly also on the semantics of the com-
municated data, i.e., an agreement on how the data have
to be interpreted [32]. Since the agreement on the seman-
tics is only implicit, programmers developing client appli-
cations have to manually gain a deep understanding of the
provided data, often based on natural text descriptions. The
combination of RESTful resources originating from differ-
ent providers suffers particularly from the necessary manual
effort to use and combine them. The reliance on natural
language descriptions of APIs has led to mashup designs in
which programmers are forced to write glue code with little
or no automation and to manually consolidate and integrate
the exchanged data.

Linked Data unifies a standardised interaction model with
the possibility to align vocabularies using RDF, RDFS and
OWL. However, the interactions are currently constrained to
simple data retrieval. Following the motivation to look be-
yond the exposure of fixed datasets, the extension of Linked
Data with REST technologies has been explored [5, 34] and
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led recently to the establishment of the Linked Data Plat-
form2 W3C working group.

Several existing approaches recognise the value of combin-
ing RESTful services and Linked Data [17, 26, 30]. In this
paper, we go one step further and propose Data-Fu, a data-
and resource-driven programming approach leveraging the
combination of REST with Linked Data. Data-Fu enables
the development of applications built on semantic web re-
sources with a declarative rule language. The main goal of
Data-Fu is to minimise the manual effort to develop web-
based applications and the preservation of loose coupling by

• leveraging links between resources provided by Linked
Data, and

• specifying desired interactions dependent on resource
states, which is enabled by a uniform state description
format, i.e., RDF.

A further requirement for our programming approach in
a web-based environment is a fast and scalable execution
of the applications. While there has been recent work on
extending the Map/Reduce model for data-driven process-
ing [15, 4], these approaches are geared towards deployment
in data centers. In contrast, our approach operates on the
networked open web.

This paper is based on a previous publication on a data-
driven programming model for the web [27] and describes

• how self-descriptive resources can be designed to en-
able loosely coupled clients (Section 4.1);

• a service model for REST based on state transition
systems as formal grounding (Section 4.2);

• the Data-Fu language, a declarative rule-based exe-
cution language to allow an intuitive specification of
the interaction with resources from different providers
(Section 5);

• an execution engine as an artefact to perform the de-
fined interactions in a scalable manner (Section 6).

We provide a motivating scenario in Section 2. We eval-
uate our approach in two ways: (i) we describe throughout
the paper how our motivating scenario can be realised with
Data-Fu; and (ii) we conduct performance experiments with
the Data-Fu interpreter in Section 7. Section 8 covers exist-
ing work. We conclude in Section 9.

2. MOTIVATING SCENARIO
In our scenario, we consider the Acme corporation, a con-

sumer goods producer, that aims at extending their social
media activities to a broader range of dissemination channels
(for more on multi-channel communication see [7]). Acme’s
marketing department observes that while the number of po-
tential channels is constantly increasing, the channels can be
broadly categorised into micro blog services and social net-
works. Information about new products, special offers, and
other news should be disseminated in the following ways:
(i) posts on the company’s micro blogs; and (ii) messages to
social network users who are followers of the company.

We assume that the dissemination channels offer Linked
APIs, i.e., resources are exposed that offer read/write Linked
Data functionality.3

2http://www.w3.org/2012/ldp/charter
3If there is no Linked API available, the conventional APIs
can be easily wrapped to consume and produce RDF, see,
e.g., [29, 17]. Wrapping APIs is out of scope of this paper.

Table 1: URI prefixes used throughout this paper

Prefix IRI
acme: http://acme.example.org/company/
p: http://acme.example.org/vocabulary/
sna: http://sna.example.org/lapi/
snb: http://snb.example.org/rest/
mb: http://mb.example.org/interface/

The marketing department orders a system from Acme’s
IT that manages the dissemination channels and automati-
cally disseminates a post to all available channels either as
a micro blog entry or as a personal message. Initially the
micro blog service MB and the social network SNA have
to be supported. Marketing will supply their posts in an
Acme-specific vocabulary as so-called InfoItems.

After a while, the marketing department decides to add
the new social network SNB as a dissemination channel,
which requires two steps: (i) the IT department extends the
dissemination system to support the interface of SNB; and
(ii) the marketing department adds Acme’s identity in SNB
to the dissemination channels.

Throughout the paper, we will illustrate our technical con-
tributions by realising bits and pieces of the proposed sce-
nario. When modeling services and interactions, we will use
a number of URI prefixes for brevity that are either com-
mon4 or listed in Table 1.

3. BACKGROUND
According to the Richardson maturity model [24] REST

is identified as the interaction between a client and a server
based on three principles:

• The use of URI-identified resources.
• The use of a constrained set of operations, i.e., the

HTTP methods, to access and manipulate resource
states.

• The application of hypermedia controls, i.e., the data
representing a resource contains links to other resources.
Links allow a client to navigate from one resource to
another during his interaction.

The idea behind REST is that applications, i.e., clients, us-
ing functionalities provided on the web, i.e., APIs, are not
based on the call of API-specific operations or procedures
but rather on the direct manipulation of exposed resource
representations or the creation of new resource representa-
tions. A resource can be a real world object or a data object
on the web. The representation of a resource details the
current state of the resource. A manipulation of the state
representation implies that the represented resource is ma-
nipulated accordingly. For brevity in this paper we often
talk about ”the manipulation of a resource”, when we actu-
ally mean ”the manipulation of the state representation of a
resource and the subsequent change of the resource itself”.

The flexibility of REST results from the idea that client
applications do not have to know about all necessary re-
sources. The retrievable representations of some known re-
sources contain links to other resources, that the client can

4See http://prefix.cc/ for their full URIs, accessed on
November 22nd 2012.

1226



discover during runtime. Clients can use such discovered
resources to perform further interaction steps.

The Linked Data design principles5 also address the use
of URI-identified resources and their interlinkage. However
Linked Data is so far only concerned with the provision-
ing and retrieval of data. In contrast to REST, Linked
Data does distinguish explicitly between URI-identified ob-
jects (i.e., non-information resources) and their data repre-
sentation (information resources). An extension of Linked
Data with REST to allow for resource manipulation leads to
read/write Linked Data, i.e., information resources can be
accessed and manipulated. REST furthermore implies that
a change of an information resource implies a change in the
corresponding non-information resource.

The development of applications in a REST framework
is especially challenging, since the links between resources
and the resource states can only be determined during run-
time, however, programmers have to specify their desired
interactions at design time.

Traditional service composition approaches that aim to
decrease the manual effort to use web-offered functional-
ity lead to a tight coupling between client and server, i.e.,
they sacrifice flexibility and are prone to failures due to
server-side changes. Traditional composition approaches of-
ten fail to leverage links between resources and do not pro-
vide straightforward mechanisms to dynamically react to
state changes of resources. The reaction on state changes
becomes especially important in a distributed programming
environment, since a client cannot ex ante predict the influ-
ence of other clients on the resources, i.e., REST does not
allow a client to make assumptions on resource states.

4. READ/WRITE LINKED DATA
In this section, we describe our approach for modelling of

RESTful services based on Linked Data. Our approach has
two layers:

• Individual Read/Write Linked Data Resources with
descriptions that allow predicting the effect of the exe-
cution of a functionality before invocation (Section 4.1);

• A formal REST Service Model. A single REST ser-
vice can consist of several resources, potentially spread
over different servers. The service model is the ground-
ing for describing the interactions that are offered by
the individual RESTful Linked Data resources and the
overall service (Section 4.2).

4.1 Read/Write Linked Data Resources
In a RESTful interaction with Linked Data resources only

the HTTP methods can be applied to the resources. The se-
mantics of the HTTP methods itself is defined by the IETF6

and do not need to be explicitly described.
Table 2 shows an overview of the most important HTTP

methods. We can distinguish between safe and non-safe
methods, where safe methods guarantee not to affect the
current states of resources. Further, some of the methods
require additional input data to be provided for their in-
vocation. The communicated input data can be subject to
requirements that need to be described to allow an auto-
mated interaction, e.g., the input data can be required to
use a specific vocabulary. Furthermore, the effect of a non-

5http://www.w3.org/DesignIssues/LinkedData.html
6http://www.ietf.org/rfc/rfc2616.txt

Table 2: Overview of HTTP methods
Method Safe Input

required
Intuition

GET x Retrieve the current
state of a resource.

OPTIONS x Retrieve a descrip-
tion of possible inter-
actions.

DELETE Delete a resource
PUT x Create or overwrite

a resource with the
submitted input.

POST x Send input as subor-
dinate to a resource
or submit input to
a data-handling pro-
cess.

safe method on the state of an addressed resource can de-
pend on the input data. The dependency between commu-
nicated input and the resulting state of resources also needs
to be described. Therefore, only the non-safe HTTP meth-
ods that require input data need further description mecha-
nisms. Note, the POST method can also influence the states
of not directly addressed resources. The precise effect of a
POST depends on the resource, since POST allows to send
input data to a data-handling process of a resource.

The state of a Linked Data resource is expressed with
RDF. It is sensible to serialise the input data in RDF as well,
i.e., data that is submitted to resources to manipulate their
state. To convey the resulting state change after application
of a HTTP method we use RDF output messages. In previ-
ous work [20] we analysed the potential of graph patterns,
based on the syntax of SPARQL7, to describe required input
as well as their relation to output messages. The resulting
graph pattern descriptions are attached to the resource and
can be retrieved via the OPTIONS method on the respec-
tive resource. Therefore the resources stay self-descriptive,
i.e., their current state can be retrieved with GET, the pos-
sibilities to influence their state with OPTIONS.
Example. Acme’s IT creates the resource acme:Acme rep-
resenting Acme. A GET on acme:Acme returns the following
initial description: acme:Acme rdf:type p:Company .
The marketing department updates the acme:Acme resource
with the dissemination channels SNA and MB by perform-
ing a PUT with the following input data:
acme:Acme rdf:type p:Company .
acme:Acme p:dissChannel sna:Acme, mb:Acme .
sna:Acme rdf:type p:SocialNetworkID .
mb:Acme rdf:type p:MicroBlogTimeline .

A subsequent GET on acme:Acme would result in exactly the
description that marketing supplied with their PUT request.

A GET on sna:Acme, Acme’s identifier in the social net-
work SNA, would result in a description of Acme in SNA’s
vocabulary including its fans:
sna:Acme rdf:type sna:CommercialOrganisation .
sna:Acme sna:founded "11/20/2012" .
sna:Acme sna:hasFan sna:User1, sna:User2, . . . .

The resources representing users in the SNA network provide

7http://www.w3.org/TR/rdf-sparql-query/
#GraphPattern
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functionality to send messages to the corresponding users.
A POST can be employed to send a message to a user re-
source (e.g., to sna:User1). The input data for the POST
contains its sna:sender and its sna:content, according to
the description of the user resource that can be retrieved
with an OPTIONS request:
INPUT: ?m rdf:type sna:Message .

?m sna:sender ?s .
?m sioc:content ?c .

OUTPUT: ?m sna:sender ?s .
?m sioc:content ?c .
?m sna:receiver sna:User1 .

Acme’s timeline mb:Acme on the micro blogging service
MB also supports the POST operation. Figure 1 illustrates
the timeline resource mb:Acme of our example, with a set
of entries in the current state and the graph pattern that
describe how a new entry can be POSTed.

Applying a DELETE on a blog post, e.g., one that ad-
vertises an expired sale, does not require input; its effect is
inherently defined by the method: the entry is erased.

4.2 REST Service Model
A REST service can be identified with the resources it

exposes. An interaction within a REST architecture is based
on the manipulation of the states of the exposed resources.

We develop a model, that allows to formalise the function-
alities exposed by a REST API based on read/write Linked
Data resources. A formal service model serves as rigorous
specification of how the use of individual HTTP methods
influences resource states and how these state changes are
conveyed to interacting clients.

We model a Linked Data-based RESTful service as a REST
state transition system (RSTS) similar to a state machine
as defined by Lee and Varaiya [18]. The behavior of the
clients themselves is not in the scope of this model, it rather
formalises all possible interaction paths of a client with the
resources.

Definition 1. A REST state transition system (RSTS)
is defined as a 5-tuple RSTS = {R,Σ, I,O, δ} with:

• A set of resources R = {r1, r2, ...}.
• A set of states Σ = {σ1, ...,σm}. Each state σk ∈ Σ

of the RSTS is defined as the union of the states of
all resources: σk =

⋃
ri∈R rki . The state of a single

resource ri ∈ R in a state σk is given by its RDF
representation rki ∈ G, where G is the set of all possible
RDF graphs.

• An input alphabet I = {(r, µ, g) : R ×M × G}, where
M = {GET,DELETE,PUT,POST} is the set of the
supported HTTP methods8.

• An output alphabet O = {(c, o) : C × G}, where C is
the set of all HTTP status codes.

• An update function δ : Σ × I → Σ × O that returns
for a given state and input the resulting state and the
output. We decompose δ into a state change function
δs : Σ× I → Σ and an output function δo : Σ× I → O,
such that δ(σ, i) = (δs(σ, i), δo(σ, i)). We define the

8For brevity we focus here on the four most important meth-
ods. Other methods can be added analougously.

state change function as

δs(σk, (ri, µ, g)) =






σk, if µ = GET

σk \ {rki }, if µ = DELETE

(σk \ {rki }) ∪ g, if µ = PUT

posti(σk, g), if µ = POST,

where the function posti encapsulates the resource spe-
cific behaviour of a POST request, as described by its
INPUT/OUTPUT patterns, which can be obtained via
an OPTIONS request on the resource. Let σl be the
new state as defined by δs, we define the output func-
tion as

δo(σk, (ri, µ, g)) =






(c , rki ), if µ = GET

(c , ∅), if µ = DELETE

(c ,σ l\σk), if µ = PUT

(c ,σ l\σk), if µ = POST.

A client interacting with a service modelled by anRSTS =
{R,Σ, I,O, δ} creates an input i = (ri, µ, g) for RSTS by in-
voking the HTTP method µ on the resource ri and passing
the potentially empty RDF graph g in the request body. De-
pending on the current state σk of the service the following
happens:

1. The service transitions into the state δs(σk, (ri, µ, g)).
2. The client gets an HTTP response with the HTTP

code c and the RDF graph g′ in the body, where (c, g′) =
δo(σk, (ri, µ, g)).

Safe methods that do not change any resource states, de-
scribe self-transitions, i.e., transitions that start and end in
the same state.

The output function in the case of PUT and POST report
to the client the effect the invocation of the method had on
the state of the RSTS (i.e. σl\σk).

Resources do not necessarily allow the use of all HTTP
methods. Note that all state change functions are defined
for every resource, i.e., every resource can be addressed with
all methods: If a resource does not allow for the application
of a specific method, the state change function describes a
self-transition.

The defined service model serves as formal grounding of
the execution language described in Section 5. However, the
self-descriptive resources provide sufficient information for
the interaction with the exposed resources.

• The current state of Linked Data resources – and there-
fore the state of the RSTS – can be accessed as RDF.

• The possible transitions and the state they result in are
independent of the specific resource, except for POST
transitions. The effect of POST transitions is declared
with graph pattern descriptions (see Section 4.1).

Example. Figure 2 illustrates a state transition in RSTS
where an entry is POSTed to mb:Acme. Note, that a client
could derive the input for the POST method from the states
of other resources (e.g., from Acme InfoItems).

5. THE DATA-FU LANGUAGE
In this section, we present Data-Fu9, an execution lan-

guage to instantiate a concrete interaction between a client

9We use the name Data-Fu in adaption of the term google-
fu, which adopts the suffi xFu of from Kung Fu, implying
great skill or mastery. Thus Data-Fu hints at the mastery
of data interaction that can be achieved with the language.
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Figure 1: Self-descriptive resource: current state can be accessed with GET, input/output description with
OPTIONS

Figure 2: State transition of a RSTS, with excerpts of two states.

and resources, which preserves the adaptability, robustness
and flexibility of REST.

In a resource-driven environment, applications retrieve
and manipulate resources exposed on the Web. Since the re-
sources can potentially be accessed by a multitude of clients,
applications have to react dynamically on the state of the re-
sources. Therefore, an important factor in the development
of resource-driven applications is the dependency between
the invoked transitions and resource states. The dependency
between the invoked state transitions (i.e., applied HTTP
methods) and the states of resources is that

1. input data for the transition is derived from RDF de-
tailing the states of resources and/or

2. the transition is only invoked, if resources are in a spec-
ified state.

Data-Fu, a declarative rule-based execution language, en-
ables programmers to define their desired state transitions.
Data-Fu rules specify the interaction of a client with REST-
ful Linked Data resources and congruously a path through
the RSTS. Further Data-Fu allows to specify the conditions
under which a specific transition is to be invoked as subject
to the states of resources.

Definition 2. A rule ρ is of the form µ(r, g) ← q,
where µ ∈ M is an HTTP method, r ∈ R ∪ V is a resource
or a variable with V the set of all variables, g ∈ G ∪ P is a
(potentially empty) RDF graph or graph pattern, and q ∈ P
is a conjunctive query with P the set of all possible RDF
graph patterns. If r is a variable, it must be bound in q. If
g is a graph pattern, all its variables must be bound in q.

The head of a rule corresponds to an update function of
the RSTS in that it describes an HTTP method that is to
be applied to a resource. The rule bodies are conjunctive
queries that allow programmers to express their intention
under which condition a method is to be applied. Thus,

programmers can define an interaction pattern with a set of
rules for their client applications.

The use of conjunctive queries is motivated by the idea
that clients have to maintain a knowledge space (KS) in
which they store their knowledge about the states of the re-
sources they interact with [17, 25]. KS is filled with the RDF
data the client receives after applying an HTTP method, as
defined by the output functions of the RSTS. The output
always informs the client about the current state after the
application of the method.

Concretely N3 graph patterns are employed as queries q,
which are evaluated over KS. If the evaluation of q is suc-
cessful, i.e., matches are found in KS, the defined HTTP
method µ is applied to r with input g. The query q can also
be used to dynamically (i.e., during runtime)

1. derive input data from the states of other resources, as
stored in KS and

2. identify the resource to which an HTTP method has
to be applied, i.e., leveraging hypermedia controls.

Regarding 1: Instead of specifying the input data g explicitly
as RDF graph, a graph pattern can be used. If a match is
found for q in KS, the identified bindings for q are used to
replace the variables in g to establish the input data for the
interaction (with HTTP method µ at resource r). g as graph
pattern and q act together similar to a SPARQL construct
query over KS, where the result of the query is used as input
data for the invocation of the method µ.

Regarding 2: To preserve the flexibility provided by REST
our execution language has to be able to make use of links
in the resource states to other resources. Rather than spec-
ifying the addressed resource r of a rule explicitly as URI,
a variable can be used. If a match is found for q in KS, an
identified binding for a variable q is used for the variable r.
r as variable and q act together as a SPARQL select query
to identify the targeted resources of method µ.
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A Data-Fu program terminates when there are no active
transitions and no rules can be activated that could trig-
ger new transitions. In general, termination of a program
cannot be guaranteed, as every transition can result in data
that triggers new transitions. However, the termination of a
program is not necessarily intended by a programmer, in the
case of applications that are supposed to continuously inter-
act with resources. Furthermore, the deletion and change of
resources can lead to applications with a non-deterministic
execution behavior. For discussions about properties of rule
sets in related languages that guarantee termination and de-
terminism, we refer the reader to [2].
Example. The IT department of Acme creates the dis-
semination system with four Data-Fu rules. The market-
ing department has simply to create new InfoItems and the
system automatically distributes the information over the
dissemination channels of Acme. The rules are defined as
follows:

1. Whenever a InfoItem is found, retrieve the resource
acme:Acme to get an up-to-date list of the current dis-
semination channels.
GET (acme:Acme, {}) ← { ?x rdf:type p:InfoItem }

2. If a p:MicroBlogTimeline is found (from the retrieved
dissemination channels), post a new entry to the time-
line using the content from the InfoItem.
POST (?mb, { [] rdf:type sioc:Post ;

sioc:content ?c . } )
← { ?x rdf:type p:InfoItem .

?x p:content ?c .
?mb rdf:type p:MicroBlogTimeline } .

3. If a social network ID of Acme is found (from the re-
trieved dissemination channels), retrieve the represen-
tation of Acme from the social network to get a list of
Acme’s followers.
GET (?sid, {})

← { ?sid rdf:type p:SocialNetworkID } .

4. Post to every found follower of Acme on SNA a mes-
sage with the content of the InfoItem.
POST (?f, { [] rdf:type sna:Message ;

sna:sender sna:Acme ;
sna:content ?c . })

← { sna:Acme sna:hasFan ?f .
?x rdf:type p:InfoItem .
?x p:content ?c }.

The described rules disseminate new information items au-
tomatically to social network SNA and the micro blog MB.
IT deploys the dissemination system itself as a read/write
Linked Data resource under acme:Dissemination. Market-
ing uses the dissemination service by POSTing a graph to
the dissemination resource that corresponds to the following
input pattern:
{ ?x rdf:type p:InfoItem. ?x p:content ?c } .

Other dissemination channels can easily be added to the
system, simply by adding corresponding rules in the system.
For example, we consider that IT adds support for social
network SNB by adding a rule that uses SNB’s vocabulary
for retrieving followers and sending a message:

POST (?f, { [] rdf:type snb:PrivateMsg ;
snb:origin snb:ACME ;
snb:text ?c . })

← { snb:ACME snb:followedBy ?f .
?x rdf:type p:InfoItem .
?x p:content ?c }.

The new dissemination channel is active when marketing
PUTs Acme’s identifier in SNB’s network to acme:Acme.

6. THE DATA-FU INTERPRETER
The Data-Fu interpreter is an execution engine for service

interactions specified as a set of Data-Fu rules. The engine
implements the KS as well as the functionality to invoke in-
teractions with resources as defined in the rules. In practice,
we translate a Data-Fu program into a logical dataflow net-
work, which is then optimised (e.g., re-using triple patterns
and joins). The optimised logical network is then trans-
formed into an evaluator plan that actually implements the
dataflow network.

We realise the evaluator plan for the Data-Fu engine as
a streaming processor that can process several queries in
parallel. We implement the processor as a multi-threaded
component with one thread evaluating individual triple pat-
terns, and separate threads for each join operator and for
each rule head, i.e., the component that performs the state
transitions by invoking the corresponding HTTP methods
on resources. The joins are implemented as symmetric hash
join operators [35]. The implemented dataflow network is
similar to a parallel version of the Rete algorithm [12].

To enable a wide variety of applications the engine can
include an extension to support the interaction with REST
resources that are not based on Linked Data. The engine can
store data entities (e.g., binaries, JSON documents) received
from such services separately. A triple pointing to a received
non-RDF entity can be included in KS, thus the entities can
be used in the logic of the execution rules. However, an
interaction with such non-RDF entities requires to fall back
to a more mashup-like programming approach.
Example. The dataflow network shown in Figure 3 evalu-
ates the plan generated for the Data-Fu program for Acme’s
dissemination system. We can see that joins (e.g., the join
on ?x) are re-used, i.e., have multiple outgoing edges. The
triple stream is initialised by the service input, which is sent
by the client via a POST request. If the input data con-
tains a description of an information item, it will trigger
the rule retrieving Acme’s description containing links to
its dissemination channels. The social networks will fire a
rule, which then retrieves the social network id’s of Acme
and thus retrieve the corresponding followers. Both social
network followers and micro blog timelines will then trigger
the corresponding POST actions that will sent the informa-
tion item in the appropriate vocabulary to the dissemination
channels, i.e., as micro blog posts or personal messages to
the followers.

7. EVALUATION
To evaluate the scalability of the Data-Fu engine we com-

pared execution times for different numbers of interactions
and rules with Cwm10, a data-processor for the Semantic
Web. Cwm uses a local triple store that supports the full
N3 language to save data and intermediate results. The local

10http://www.w3.org/2001/sw/wiki/CWM
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Triple Stream

?x rdf:type p:InfoItem ?x p:content ?c

?x

?sid rdf:type p:SocialNetworkIDGET(?sid, {})

GET(acme:Acme, {})

POST(?f, { [] rdf:type snb:PrivateMsg ;
POST(?f, { [] snb:origin snb:ACME ;
POST(?f, { [] snb:text ?c .          })

?mb rdf:type p:MicroBlogTimeline

sna:Acme sna:hasFan ?f

X

X

X snb:ACME snb:followedBy ?f

?x

pattern

Data-Fu Rule Head

Join on variable ?x

Triple pattern matcher

Dataow

Service Input

X Cross-product

POST(?mb, { [] rdf:type sioc:Post ;
POST(?mb, { [] sioc:content ?c .     })

POST(?f, { [] rdf:type sna:Message ;
POST(?f, { [] sna:sender sna:Acme ;

POST(?f, { [] sna:content ?c .      })

Input POSTed to Service

Figure 3: Dataflow network of Acme’s dissemination system

triple store of Cwm uses seven indices to allow for a rapid
readout of the local data with almost every combination
of subject, predicate and object patterns. For inferencing
Cwm uses a forward chain reasoner for N3 rules. The pat-
tern matching for the rules is done by recursive search with
optimisations, such as identifying an optimal ordering for
the evaluation of the rules and patterns.

Cwm is built as a general purpose tool to query, process,
filter and manipulate data from the Semantic Web. As such,
the motivation behind Cwm is closest to the Data-Fu engine,
compared with any other rule engines or reasoning systems,
to the best of our knowledge. However, Cwm is not tar-
geted on the direct RESTful manipulation of web resources,
but their retrieval and the local manipulation of the data.
Therefore to make the systems comparable we limit the eval-
uated interactions to GET transitions, i.e., we use only rules
that retrieve resources, if a match for the rule body is found.
Please note that the limitation to GET transitions does not
influence the validity of the evaluation: Since additional ex-
ecution time when using non-safe interactions (e.g., PUT,
POST) only results from time required to transmit data to
resources and the subsequent time necessary to process this
data by the server, where the resource resides. This time
overhead caused by non-safe transitions is neither influenced
by the Data-Fu engine, nor could it be avoided by any other
system that we could use as comparison.

We conducted the experiments on a 2.4 GHz Intel Core 2
Duo with 4 GB of memory (2 GB assigned to Java virtual
machine on which the experiments run). Thus we evaluate
the Data-Fu engine on commodity hardware with the intent
to show the parallelisation-based scalability of the Data-Fu
engine not only on high-end industrial machines.

We deploy Linked Data resources used for the interactions
locally on an Apache Tomcat11 server to further minimise
execution time variations caused by establishing HTTP con-
nections and retrieving data over the web. In the rules used
by the Data-Fu engine and Cwm the resources are addressed
with their localhost address. Every deployed resource repre-
sents a number. Every number resource is typed as number
and contains its value as literal and a link to the successor
of the number:

11http://tomcat.apache.org/

local:1 rdf:type local:number.
local:1 local:value "1".
local:1 local:successor local:2.

We chose this design to easily keep track of the number
of performed interactions.

For the evaluation we start with the resource number 0,
which we manually inject into the Data-Fu engine and Cwm.
We identify and retrieve the successor of the number. The
successor of a number yields a new successor to retrieve,
and so on. The interactions of this set-up are illustrated in
Figure 4.

Figure 4: Interactions of evaluation set-up with one
rule

We realise the interactions with the Data-Fu Engine and
Cwm (for the latter in two different ways) as follows:

• Data-Fu: For the Data-Fu engine we use a rule:

GET (?suc, {}) ← {?n rdf:type local:number
?n local:value ?v
?n local:successor ?suc}

The rule body queries for a resource (variable ?n) that
is typed as number, has a value and a successor. If
a match is found, a GET transition is triggered at
whatever URI is identified to be the successor of the
matched number. The Data-Fu engine adds the re-
trieved representation of the successor to the data flow
network, which results in the identification of the next
successor to retrieve. Thus, all numbers are iteratively
found and retrieved.

• Cwm direct: Cwm offers built-in functions to perform
web-aware queries in rules. The keyword log:semantics
in a query of a rule allows to resolve a URI and bind
the retrieved RDF data to a variable as formula. The
formula bound to a variable can then be used to con-
struct triples in the rule head. We used the following
rule to perform the desired interaction:
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{{ :n rdf:type local:number.
:n local:value :v.
:n local:successor :suc }

local:is local:known. }
:suc log:semantics :sem.
⇒

{ :sem local:is local:known. }
Like in the approach for the Data-Fu engine we query
for the successor of a number. The successor is re-
trieved and bound as formula in subject position to a
new triple that is written to the triple store. Since the
retrieved representation of the number appears only as
formula in triples we have to extend the query in the
rule body to search for the successor of a number in
a formula in subject position of a triple, thus making
the query slightly more complicated than in the case of
the Data-Fu engine. Cwm repeatedly applies the rule
to the triple store, thus retrieving all numbers.

• Cwm import: To compare the performance of Cwm
with the Data-Fu engine, where the queries of the rules
are equally complex, we implemented the desired re-
trieval with another approach, with the following rule:

{ :n rdf:type local:number.
:n local:value :v.
:n local:successor :suc }

⇒
{ :n owl:imports :suc. }

We use the same query to identify the successor of
a number as for the Data-Fu engine. For every found
match we write a triple to the Cwm store, that marks
the identified successor with owl:imports. Cwm of-
fers a command to retrieve all resources marked with
owl:imports. This allows us to programmatically in-
struct Cwm to apply the rule and retrieve the suc-
cessor, as many times as needed. Note, that this im-
plementation of the interaction does not deliver the
same functionality as with the Data-Fu engine: We
have to manually define how often the rule followed by
the retrieve command is to be applied (once for every
number), rather then having the engine automatically
retrieve all the numbers.

We evaluate the execution time of the interaction with
all three setups for sets of 20, 40, 60, 80 and 100 numbers.
With the approaches Data-Fu and Cwm direct the interac-
tion ends when the last number in a set does not refer to a
next successor to retrieve. For Cwm import we had to decide
manually how often the rule is applied and thus how many
numbers are retrieved and when the interaction stops. The
results are shown in Table 3 and Figure 5. We provide the
average execution times from ten runs to reduce variations.

Table 3: Average execution time from ten runs for
different evaluation set-ups with one rule

number set size Data-Fu Cwm direct Cwm import
20 342 ms 1549 ms 468 ms
40 371 ms 5144 ms 976 ms
60 500 ms 11272 ms 1595 ms
80 555 ms 21005 ms 2309 ms
100 594 ms 32213 ms 3688 ms

Figure 5: Average execution time from ten runs for
different evaluation set-ups with one rule

The Data-Fu engine is able to execute the interaction by
orders of magnitude faster than the other two approaches
with Cwm. Also the growth-rate of the execution time with
the increasing size of number sets is much lower with Data-
Fu compared to the Cwm approaches (note the log scale in
Figure 5). The Data-Fu engine achieves this time saving by
leveraging the data flow network: Data-Fu has just to put
the new results after an interaction through the data flow
network to find new bindings. Cwm on the other hand has
to apply the rules repeatedly over the increasing dataset in
its triple store.

To evaluate the capabilities of the Data-Fu engine with re-
gard to parallelisation we run the same interaction of retriev-
ing successors of numbers again, with ten different ”kinds”
of numbers (A-J) in parallel. The numbers are distinguished
by different namespaces. Each of the three evaluation set-
ups requires ten rules for the interaction (each addressing
another namespace), analog to the previously shown rules.
Figure 6 illustrates this evaluation set-up.

Figure 6: Interactions of evaluation set-up with one
rule

The results for the different evaluation set-ups are shown
in Table 4 and Figure 7 as average from ten runs. Again
Data-Fu executes the interaction significantly faster with a
lower growth rate than Cwm in the other set-ups: In the case
of the most interactions (10 x 100) Cwm direct requires over
17 minutes and Cwm import over 32 seconds, the Data-Fu
engine handles the same interactions in under 4 seconds.
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Table 4: Average execution time from ten runs for
different evaluation set-ups with ten rules in parallel

number set size Data-Fu Cwm direct Cwm import
20 1833 ms 22513 ms 2836 ms
40 2421 ms 108421 ms 7067 ms
60 2916 ms 310498 ms 13518 ms
80 3889 ms 621798 ms 21729 ms
100 3944 ms 1038524 ms 32983 ms

Figure 7: Average execution time from ten runs for
different evaluation set-ups with ten rules in parallel

Comparing the results of the interactions with a single rule
and the interactions with ten rules in parallel we note, that
the Data-Fu engine suffers less than Cwm from the ten times
increased workload when executing ten rules in parallel. On
average for the individual sizes of number sets

• Data-Fu requires 6.2 times longer,
• Cwm direct requires 25 times longer,
• Cwm import requires 8 times longer,

when running with ten rules compared to one single rule.
The reason for this time advantage is the capability of the

Data-Fu engine to execute several components of the inter-
action in parallel, e.g., the evaluation of the triple patterns
of the queries and the communication with several web re-
sources. Note, that the theoretically possible speedup due
to parallelisation on a dual core system implies that a 10
times increased workload results in a 5 times longer execu-
tion time. However, the Data-Fu engine cannot quite reach
this optimal speedup, since not all parts in the interaction
can be completely parallelised, e.g., the management of the
individual threads. These parts of an interaction that can-
not be completely parallelised result in a slightly diminished
speedup, as stated by Amdahl’s Law [3].

Following the results of the evaluation in comparison with
Cwm, we devise a final evaluation setting to test the scala-
bility of the Data-Fu engine when performing large amounts
of interactions. Similar to the previous evaluation setting we
retrieve number resources that are identified during runtime
as successor of an already found number. We fix the size
of the number sets to 100, i.e., we deploy sets of 100 con-
secutive number resources that are distinguished with their
namespace. Then we retrieve the numbers of every set with
a respective rule. We evaluate the runtime of the Data-Fu

engine with 20, 40, 60, 80 and 100 rules/number sets, thus
performing between 2 000 and 10 000 interactions. Addition-
ally we measure the time needed to calculate the evaluation
plan separately to compare it with the total execution time.
The results are shown in Table 5 and Figure 8.

Table 5: Average execution time from ten runs of
Data-Fu engine with number sets of size 100

rules/number sets execution time evaluation plan
20 8357 ms 4 ms
40 17195 ms 6 ms
60 30767 ms 7 ms
80 49430 ms 8 ms
100 75764 ms 9 ms

Figure 8: Average execution time from ten runs of
Data-Fu engine with number sets of size 100

The results of the evaluation for large amounts of interac-
tions show that the Data-Fu engine scales well up to thou-
sands of interactions even on commodity hardware. The
Data-Fu engine is capable of interacting with 10 000 web
resources in about 1:15 min. The necessary time required
to establish the evaluation plan increases with the number
of rules, but remains a very small fraction of the overall
execution time and is therefore negligible.

The evaluation shows the advantages of the parallel pro-
cessing of queries and interactions and provides evidence
that the Data-Fu engine is capable of performing rapid inter-
actions with web resources as desired. We did not consider
the necessary time to establish HTTP connections on the
web and the response time of the servers, where resources
are deployed, since these additional time requirements would
be the same for any employed interaction system. Note how-
ever, that due to its parallel processing nature, the Data-Fu
engine could further benefit from longer response times of
servers compared to other systems: At the same time as the
Data-Fu engine performs the manipulations and retrieval of
resources other rules can be evaluated, thus the overall exe-
cution time can be minimised.

We provide the data used for the evaluation and an exe-
cutable jar online12 to re-run the experiments.

12http://people.aifb.kit.edu/sts/datafu/evaluation/
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8. RELATED WORK
Pautasso introduces an extension to BPEL [21] for a com-

position of REST and traditional web services. REST ser-
vices are wrapped in WSDL descriptions to allow for a BPEL
composition. Our approach focuses on a native composition
of REST services, rather than relying on technologies of tra-
ditional web services. For a comparison between RESTful
services and “big” services see [23].

There exist several approaches that extend the WS-* stack
with semantic capabilities by leveraging ontologies and rule-
based descriptions (e.g., [28, 10, 8]) to achieve an increased
degree of automation in high level tasks, such as service
discovery, composition and mediation. Those approaches
extending WS-* became known as Semantic Web Services
(SWS). An Approach to combine RESTful services with
SWS technologies in particular WSMO-Lite [31] was inves-
tigated by Kopecky et al. [16]. In contrast to SWS, REST
architectures do not allow to define arbitrary functions, but
are constrained to a defined set of methods and are built
around another kind of abstraction: the resource. There-
fore our approach is more focused on resource/data centric
scenarios in distributed environments (e.g., in the Web).

Active XML introduces service calls as XML nodes that
are placeholders for new XML documents that can be re-
trieved from the service [1]. The service calls are compara-
ble to hypermedia links in resource descriptions and the ac-
tive XML document corresponds to the knowledge space. In
contrast to Active XML, our work discovers links to new re-
sources instead of links to function calls. The resource model
provides more flexibility, e.g., a Data-Fu program could per-
form a DELETE on a discovered resource, whereas the Ac-
tive XML equivalent would be constrained to the predefined
operations in the original link.

The scripting language S [6] allows to develop Web re-
sources with a focus on performance due to parallelisation
of calculations. Resources can make use of other resources in
descriptions, thus also enabling a way of composing REST
services. S does not explicitly address the flexibility of REST
and has no explicit facilities to leverage hypermedia controls
or to infer required operations from resource states.

RESTdesc [30] is an approach in which RESTful Linked
Data resources are described in N3-Notation. The composi-
tion of resources is based on an N3 reasoner and stipulates
manual interventions of users to decide which hypermedia
controls should be followed.

Hernandez et al. [14] proposes a model for semantically
enabled REST services as a combination of pi-calculus [19]
and approaches to triple space computing [9] pioneered by
the Linda system [13]. They argue, that the resource states
can be seen as triple spaces, where during an interaction
triple spaces can be created and destroyed as proposed in an
extension of triple space computing by Simperl et al. [25].
Our service model is in contrast to this approach more fo-
cused on the composition of data driven interactions.

Similar to the idea of triple spaces is the composition of
RESTful resources in a process space, proposed by Krum-
menacher et al. [17] based on resources described using
graph patterns. Speiser and Harth [26] propose similar de-
scriptions for RESTful Linked Data Services. Our approach
shares the idea that graph pattern described resources read
input from and write output to a shared space. We improve
on this approach by providing a service model and a more
explicit way of defining the interaction with resources.

9. CONCLUSION
In this paper, we addressed the problem of creating value-

added compositions of data and functionalities. As a unify-
ing model for both static data sources and dynamic services,
we described how Linked Data Resources can be extended
with descriptions for RESTful manipulation. The natural
extension of Linked Data with RESTful manipulation of re-
sources enables a framework with uniform semantic resource
representations for REST architectures. We have proposed
to exploit the advantages resulting from the combination of
REST and Linked Data in a programming framework for the
Semantic Web. We have introduced Data-Fu, a declarative
rule-based execution language with a state transition system
as formal grounding, and the challenges we address with this
language, i.e., achieving scalability and performance while
preserving the flexibility and robustness of REST. Further-
more, we described our implementation of an execution en-
gine for the Data-Fu language.

For future work, we plan to extend our approach in the fol-
lowing directions. First, we will add capabilities to improve
handling of failures of resource interactions. Second, we will
extend our formal model of Data-Fu to provide clearly de-
fined semantics in the presence of non-deterministic rules.
Third, we will integrate support for rule-based reasoning into
the execution engine. The rules bring useful expressivity for
aligning different vocabularies and can be easily supported
in the engine by introducing triple-producing rule heads in
addition to the current state transition handlers.
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