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ABSTRACT
How can web services that depend on user generated con-
tent discern fraudulent input by spammers from legitimate
input? In this paper we focus on the social network Face-
book and the problem of discerning ill-gotten Page Likes,
made by spammers hoping to turn a profit, from legitimate
Page Likes. Our method, which we refer to as CopyCatch,
detects lockstep Page Like patterns on Facebook by ana-
lyzing only the social graph between users and Pages and
the times at which the edges in the graph (the Likes) were
created. We offer the following contributions: (1) We give a
novel problem formulation, with a simple concrete definition
of suspicious behavior in terms of graph structure and edge
constraints. (2) We offer two algorithms to find such suspi-
cious lockstep behavior - one provably-convergent iterative
algorithm and one approximate, scalable MapReduce im-
plementation. (3) We show that our method severely limits
“greedy attacks” and analyze the bounds from the applica-
tion of the Zarankiewicz problem to our setting. Finally, we
demonstrate and discuss the effectiveness of CopyCatch
at Facebook and on synthetic data, as well as potential ex-
tensions to anomaly detection problems in other domains.
CopyCatch is actively in use at Facebook, searching for
attacks on Facebook’s social graph of over a billion users,
many millions of Pages, and billions of Page Likes.

Categories and Subject Descriptors
I.5.3. [Computing Methodologies]: Pattern Recogni-
tion—Clustering

Keywords
Anomaly detection; Social networks; Bipartite cores

1. INTRODUCTION
When on the web, how can we trust content generated

by other users? As the web has become an increasingly
integral part of our daily lives, from work to shopping to
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socializing, it has become a focus of spammers attempting
to make money off Internet users, even if it takes dubious
means.

In recent years, web services have increasingly relied on
social data to provide information to their users. For ex-
ample, Facebook users discover content based on what their
friends and other users like, and on Amazon users evaluate
potential purchases based on other users’ reviews. Unfor-
tunately, attackers attempt to skew content perception by
offering misleading feedback (through a variety of means),
with the goal of increased distribution for their content. The
challenge becomes distinguishing such “fake” feedback from
legitimate user feedback. This is a challenge for all ser-
vices that depend on user behavior for their algorithms and
recommendations, from stories on Facebook to products on
Amazon or reviews of businesses on TripAdvisor.

On Facebook, Pages are used by organizations to interact
with their fans. Users can “Like” a Page to let their friends
know about their interests and to receive content from that
Page in their News Feed, the primary distribution channel
on Facebook. Other users may interpret a high Like count
as a Page being popular and also will see their friends’ Page
Likes in their News Feeds.

Because of its utility as a distribution channel, attack-
ers frequently attempt to boost Page Like counts to get in-
creased distribution for their content. At Facebook, we have
found that attackers have attempted to inflate Like counts
through a variety of deceitful methods, including malware,
credential stealing, social engineering, and fake accounts.
We define an ill-gotten Like, including those from the meth-
ods named previously, as “a Like that doesn’t come from
someone truly interested in connecting with a Page” [12].
As Facebook Security recently posted:

Real identity, for both users and brands on Face-
book, is important to not only Facebook’s mis-
sion of helping the world share, but also the need
for people and customers to authentically con-
nect to the Pages they care about. When a Page
and fan connect on Facebook, we want to ensure
that connection involves a real person interested
in hearing from a specific Page and engaging with
that brand’s content. [12]

In this paper we focus on the problem of detecting ill-gotten
Page Likes on Facebook, and describe how our algorithm can
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Figure 1: A toy example of Page Likes over time with a subset of users and Pages organized to clearly show
two detected attempts to inflate Page Like counts.

also be used for detecting deceitful user feedback in many
other online settings such as product reviews. For all of
these problems the mission Facebook describes above holds
- user generated content must be honest and legitimate if
users are to trust and get value out of that web service.

In solving this problem, we attack the spammers at their
critical weakness. For spammers to be successful they need
many users to Like their Pages. However, Facebook already
has many anti-phishing [11] and anti-malware [10, 9] mech-
anisms making it difficult for real accounts to be compro-
mised, and many algorithms to detect fake accounts [25].
As a result, it is hard for an adversary to control many
accounts, and instead they need to use the same few to
Like many Pages. Therefore, we look for lockstep behavior
- groups of users acting together, generally Liking the same
Pages at around the same time. We call our algorithm to
detect such behavior CopyCatch and describe a process of
multi-user rate limiting where, because of our constraint on
Like times, we limit the rate at which a group of users can
perform actions together (much stricter than you can limit
individual users). Figure 1 demonstrates the challenge and
the strength of CopyCatch in detecting such behavior.

To detect attackers attempting to deceive users, we take
a graph based approach to the problem. As we see in Figure
1(c), in the case of Facebook Page Likes, we have a bipartite
graph between users and Pages, with the time at which each
edge (Page Like) was created. Our algorithm searches for
near-bipartite cores, where the same set of users Like the
same set of Pages, and add constraints on the relationship
between the edge properties (Like times) in this core. This
can be extended to the bipartite graph of users to products
where edges represent product reviews, or to general graphs
such as the user to user connections of Instagram followers.

Our paper offers a number of contributions, which build
toward solving this problem:

1. Problem Formulation: We offer a novel problem
formulation to a relevant, real-world challenge realized
at Facebook and relevant in many online settings. We
call our approach CopyCatch.

2. Algorithm: Pulling from work in one-class cluster-
ing and subspace clustering, we offer two algorithms
to spot lockstep behavior: a provably-convergent se-

rial iterative algorithm, and an approximate, scalable
MapReduce implementation.

3. Theoretical Analysis: We show that catching anoma-
lous behavior, as we have defined and as our algorithms
detect, severely limits the damage an adversary can
do when following a “greedy attack” strategy. We then
apply research on the Zarankiewicz problem to our set-
ting, showing that it is hard to find an optimal strategy
against CopyCatch.

In Section 2 we describe related work in local clustering,
subspace clustering, MapReduce, and anomaly detection. In
Section 3 we give our problem formulation. In Section 4 we
formulate the problem as an optimization problem, describe
our serial algorithm, and prove that it converges. In Section
5 we describe our MapReduce algorithm and implementa-
tion. Finally in Section 6 we discuss the worst case damage
an adversary could inflict, in Section 7 we offer experiments
demonstrating the usefulness of our implementation at Face-
book and on synthetic data, and in Section 8 we discuss the
applicability of our approach to problems in other domains.

2. RELATED WORK
Our work pulls from many different fields of research. We

describe a few below and mention others later in the text.

2.1 Local clustering
Clustering is one of the classic problems in both machine

learning and data mining, with a wide range of methods still
being developed. In this research, we build off Crammer et
al.’s work on local one-class optimization and related work
[6, 15], which focuses on finding dense clusters in noisy data
through local search. Our algorithm also operates similarly
to mean-shift clustering with a flat kernel [5].

2.2 Co-clustering and subspace clustering
For our problem we aim to find sets of users Liking the

same set of Pages at around the same time. Given a data
matrix of users × Pages, this requires clustering both the
rows and columns of the matrix. The problem of parti-
tioning both the rows and columns of a matrix is known
as co-clustering or bi-clustering. The problem is NP-hard,
so many approaches use an approximation of the problem.
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There has been extensive research on co-clustering includ-
ing [3, 4, 8, 21], with applications ranging from collabora-
tive filtering [14] to anomaly and intrusion detection [20].
Papadimitriou et al. [19] offer an iterative distributed algo-
rithm for performing co-clustering with MapReduce.

Similarly, there has been much work on the general prob-
lem of clustering high dimensional data. Within this work,
subspace clustering focuses on finding subsets of features
that are relevant for clustering a subset of the data. [16]
gives a good comprehensive survey of the recent research in
clustering high-dimensional data.

2.3 MapReduce
To make our algorithm scale to large, web-scale data, we

implement our algorithm in the MapReduce framework [7].
Hadoop [1] is an open source implementation of the MapRe-
duce framework that is widely used. Facebook has a large
Hadoop installation on which we built our implementation.
In general, Hadoop and the Hadoop file system (HDFS) offer
a distributed platform to store data and run parallel algo-
rithms over a cluster of computers. We will give more details
about the data flow and capabilities of Hadoop in Section 5.

2.4 Graph-Based Anomaly Detection
There has been extensive work in anomaly detection on

web data, and much of it has focused on using graphs for
spotting anomalies. For example, [17, 23] focus on finding
novel subgraphs in large networks. In this work we focus on
finding near bipartite cores with certain edge constraints.
[18] uses belief propagation to find near bipartite cores on
the eBay graph, and [24] takes an SVD-like approach to find
similar interesting patterns in phone call data. Our problem
formulation differs from such prior work in our novel use of
edge constraints to discern normal behavior from suspicious
behavior.

3. PROBLEM FORMULATION
We now describe the mathematical details of our prob-

lem. Table 1 gives a list of the different symbols we will use
throughout the paper. In general scalars will be denoted by
italic letters e.g. N or ρ, vectors will be denoted by low-
ercase boldface characters e.g. c, matrices will be denoted
by uppercase boldface characters e.g. L, and sets will be
denoted by script characters e.g. P. We use subscripts to
index into vectors and matrices, where cj is the scalar in the
jth position of c, Li,j is the scalar in the ith row and jth
column of L, and Li,∗ is a vector of the ith row of L.

As we previously described, Facebook has the challenge
of preventing adversaries from artificially inflating a Page’s
“Like count” in an effort to try to improve the Page’s legiti-
macy and get distribution through the site. Since each user
can only Like each Page once, a Page’s Like count can only
be increased through many users Liking the same Page.

Unfortunately, there is no ground truth to whether any in-
dividual Page Like is legitimate or not. Therefore, we take
an unsupervised approach and only define suspicious behav-
ior in terms of graph structure and edge creation times. Al-
though our methods can be easily extended to many other
settings, we will often describe the work in terms of Face-
book users, Pages, and Likes for simplicity and clarity.

Before defining suspicious lockstep activity, we must give
some notation surrounding our problem. We assume we have
a set of users indexed from 1 to N , U = {i}Ni=1 and a set

Table 1: Symbols and Definitions
Symbol Definition and Description

N and M Number of nodes on either side of the
bipartite graph (users and Pages)

L N ×M data matrix of edge data (Like
times)

I N ×M adjacency matrix
U and P Set of indices of rows and columns (in-

dexed users and Pages)
n and m Number of nodes necessary to be consid-

ered suspicious for each side of the bipar-
tite core

P ′ Subset of columns (Pages) that are sus-
picious

c Vector of times for each column around
which there are suspicious rows (users)

2∆t Width of time window
ρ Percent of P ′ for which an suspicious

user must be within the time window
φ Thresholding function to compare two

data points
s Number of clusters being search for in

parallel
P Set of P ′ for multiple clusters
C Set of c for multiple clusters

of M pages P = {j}Mj=1 similarly indexed. We define E as
the set of edges in the graph, where (i, j) ∈ E is user i has
Liked Page j. We also define an indicator matrix I such that
Ii,j = 1 if (i, j) ∈ E , and Ii,j = 0 otherwise. Last, we define
our data matrix L such that Li,j = ti,j for all (i, j) ∈ E ,
where ti,j is the time at which user i Liked Page j.

We can now broadly define our problem as:

Given: A graph of Likes between users and Pages I and the
edge creation times L
Find: Suspicious lockstep behavior - Bipartite cores of at
least size (n,m) such that for each of the m Pages, all n
users Liked that Page in a 2∆t time window. We call this
an [n,m,∆t]-temporally coherent bipartite core (TBC).

We define suspicious lockstep behavior precisely below.

Definition 1. We define an [n,m,∆t]-temporally coher-
ent bipartite core (TBC) as a set of users U ′ ⊆ U and a set
of Pages P ′ ⊆ P such that

|U ′| ≥ n Size (1)

|P ′| ≥ m (2)

(i, j) ∈ E ∀i ∈ U ′, j ∈ P ′ Complete (3)

∃tj ∈ R s.t. |tj − Li,j |≤∆t ∀i ∈ U ′, j ∈ P ′ Temporal (4)

We consider users in an [n,m,∆t]-TBC to be in lockstep
behavior and thus suspicious.

This can be interpreted a number of different ways, each
of which we will use later in the paper. From the graphical
perspective, our indicator matrix I is an adjacency matrix
for the bipartite graph between users and Pages, and our
data matrix L contains the edge creation time. A depiction
of L pointing out clusters of users in near temporally coher-
ent bipartite cores can be seen in Figure 1(a-b). In terms of
the graph, we have defined suspicious behavior to be bipar-
tite cores of size greater than (n,m) in the Facebook graph
where all edges going into the same Page were created in
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Figure 2: An example of a subspace in which we find
a clear clustering of Page Likes in time. Blue dots
are normal users and black dots are suspicious users
part of a [8, 3,∆t]-TBC.

a small time window. This graphical view of the data and
anomalous behavior is shown on a subset of the nodes in
Figure 1(c).

A second interpretation can be of L as a data matrix
where each user represents a point in M dimensional space,
Li,∗ ∈ RM . (Because users do not necessarily Like all Pages,
they would often fall in a subspace of the M dimensional
space, but thinking about each user as a point in the M
dimensional space can provide good intuition.) We then
consider a group of users to be part of an [n,m,∆t]-TBC
and suspicious if there exists a hypercube of width 2∆t in
at least m dimensions such that at least n users fall within
that hypercube. Framing the problem this way is more simi-
lar to the standard clustering literature in machine learning
and the subspace clustering problem. A depiction of a 3-
dimensional subspace of the M dimensional space is shown
in Figure 2, where a cluster of users are all found in the same
small hypercube.

Later, we will show experimentally that, for appropriate
values of n, m, and ∆t, such behavior is extremely uncom-
mon and thus in fact suspicious. We additionally will show
the advantage of defining it this particular way as compared
to other formulations, such as only looking for bipartite cores
where all edges come from one time window. This particular
formulation, with constraints on the inbound edges of each
node, is novel in the literature, includes these other formula-
tions as special cases, and provides a number of advantages
for preventing fraudulent behavior.

4. METHODOLOGY
With Definition 1 of suspicious lockstep behavior, the

challenge remains to detect when it occurs. As shown in
[22], finding bipartite cores in a graph is NP-hard. To cre-
ate an algorithm to find clusters of this type, we define the
problem as an optimization problem. From here we offer
an iterative algorithm, which monotonically improves our
results, and in Section 5 we offer an approximate MapRe-
duce implementation that searches for many bipartite cores
in parallel.

4.1 Optimization Formulation
To formulate the problem succinctly we must add addi-

tional notation. We define c ∈ RM to be a vector for the

center of our cluster, such that cj = tj where tj comes from
Definition 1.

We also relax our definition of suspicious lockstep behavior
to include users that are part of temporally-coherent near
bipartite cores (TNBC). We introduce the term ρ ∈ [0, 1],
which broadly describes how many of the Page Likes a user
must match (in time) to be considered suspicious. More
precisely, we say that a user is suspicious if he Likes at least
ρ|P ′| of the Pages in P ′ in the designated time window. This
is clearly a relaxation since all of the users in any [n,m,∆t]-
TBC would also be in a [n,m,∆t, ρ]-TNBC. We give the
formal definition of [n,m,∆t, ρ]-TNBC below.

Definition 2. A set of users U ′ ⊆ U and a set of Pages
P ′ ⊆ P comprise an [n,m,∆t, ρ]-temporally coherent near
bipartite core (TNBC) if there exists P ′i ⊆ P ′ for all i ∈ U ′
such that:

|U ′| ≥ n Size (5)

|P ′| ≥ m (6)

|P ′i| ≥ ρ|P ′| ∀i ∈ U ′ Near (7)

(i, j) ∈ E ∀i ∈ U ′, j ∈ P ′i Complete (8)

∃tj ∈ R s.t. |tj − Li,j |≤∆t ∀i ∈ U ′, j ∈ P ′i Temporal (9)

Given these definitions our goal broadly is to maximize
the number of suspicious users and the number of Page Likes
of suspicious users that are suspicious (fall within the desig-
nated time window). Since we are ultimately trying to catch
as many suspicious users as possible, we set |P ′| = m and
only try to grow U ′.

The optimization problem is given specifically below:

max
c,P′:|P′|=m

∑
i

q(Li,∗|c,P ′) (10)

where

q(u|c,P ′) =

{
σ if σ =

∑
j∈P′ Ii,jφ(cj ,uj) ≥ ρm

0 otherwise
(11)

φ(tc, tu) =

{
1 if |tc − tu| ≤ ∆t
0 otherwise

(12)

This is a simple formulation of the problem described previ-
ously. The difference is under this formulation we are trying
to find c and P ′ to maximize the number of users and their
Likes inside the cluster centered at c in subspace P ′.

Additionally, because we expect most users to not be en-
gaging in fraudulent Liking, we frame the problem similar
to one-class clustering literature or to a flat kernel, where
our optimization only focuses on data points in the cluster,
and there is no penalty for data points outside the cluster.

4.2 A Serial Algorithm
To optimize this objective function, we must set both c

and P ′. Placing c is similar to many density-seeking clus-
tering problems in machine learning and data mining. Like-
wise, selecting P ′ from P is similar to subspace clustering.
Therefore, we offer an iterative algorithm that in each step
alternates between updating the center c and the subspace
choice P ′, while holding the other variable constant. Note,
given c and P ′, the users that fall within the cluster are fully
determined. The algorithm can be seen in Algorithm 1.

In the step UpdateCenter we keep P ′ constant and up-
date c. This update is performed iteratively over each di-
mension j ∈ P ′. For each such dimension, we find all users
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U ′ that fall within the cluster but loosen the width to β∆t
for the current dimension we are adjusting, where β > 1 thus
including users who are just outside of the time window in
dimension j. Given these users we find a new center in di-
mension j with subroutine FindCenter. We can sort the
points in U ′ based on their position in dimension j, and then
in one pass, weighting users by the number of Likes from P ′
they have, find the 2∆t span for which we capture the most
users and the most Likes. We use this span to update cj .
We note that UpdateCenter runs in O(m(mN + log(n)))
where we assume clusters are on the order of O(n) in size.

In the step UpdateSubspace we keep c constant and up-
date P ′. Given the previous values of c and P ′ we can find
the users currently in the cluster and attempt to improve
our choice of P ′, such that more Likes are included for the
same current set of users in the clusters. Here we take an
incremental approach. For each j ∈ P ′ we search among
all j′ ∈ P. We say a user i is covered by a column j if
Ii,jφ(cj ,Li,j) = 1. We only consider those columns j′ for
which every user covered by column j is also covered by col-
umn j′. We can then replace column j by column j′ that has
the most users covered. As such, any user that was covered
previously will still be covered, but we can also be adding
additional coverage (for more Likes) to other users. This is
not necessarily the optimal choice, but it does improve our
objective and runs in O(nmM) time.

We repeatedly update c and P ′ until neither change and
the algorithm has converged, or simply for some fixed num-
ber of rounds.

4.3 Proof of Convergence
We now prove that our algorithm converges. It should be

clear that our objective function is bounded, as there are a
limited number of users and Page Likes, and therefore there
is a maximum or set of local maxima. Therefore, we must
merely show that both UpdateCenter and UpdateSub-
space monotonically improve our objective function.

Lemma 1. UpdateCenter, as defined in Algorithm 1,
monotonically improves our objective function in (10).

Proof. UpdateCenter works by updating each dimen-
sion’s center one at a time, holding the others constant. For
each update in each dimension, we take all the points within
β∆t of the previous center and find the center that will
most improve our objective. Of course, all points previously
covered will be included in this width of β∆t since β > 1.
Since we find the location for which we cover the most points
weighted by the number of Likes for each point, we will only
move the center if we find a location that covers more points
with more Likes than before. Therefore, if our center moves
the objective function must increase, and if it does not move
then the objective function stays constant.

Lemma 2. UpdateSubspace, as defined in Algorithm 1,
monotonically improves our objective function in (10).

Proof. As was described previously, UpdateSubspace
only replaces a j ∈ P ′ with a j′ if all Likes covered by Page j
are also covered by Page j′. Therefore, we can only improve
our objective function or stay constant. Therefore Update-
Subspace monotonically improves our objective.

Because UpdateCenter and UpdateSubspace mono-
tonically improve our objective, the algorithm converges.

Algorithm 1 Serial CopyCatch

function S-CopyCatch(x, j)
Require: Preset parameters ∆t, n, m, and ρ
Initialize c = x, P ′ = {j}
repeat
P ′` = P ′
c` = c
c = UpdateCenter(c,P ′)
P ′ = UpdateSubspace(c,P ′)

until c = c` and P ′ = P ′` // Run to convergence
return [c,P]
end function

function UpdateCenter(c,P ′)
U ′ = FindUsers(U , c,P ′) // Get current users
Set c′ to the average of Li,∗ for all i ∈ U ′
for j ∈ P ′ do // Update center for each Page

[U ′,w] = FindUsers(U , c,P ′, j, β∆t)
[U ′′, tj ] = FindCenter(U ′,w, j)
c′j = tj

end for
return c′

end function

function UpdateSubspace(c,P ′`)
P ′ = P ′`
U ′ = FindUsers(U , c,P ′`) // Get current users
for j′ ∈ P ′` do

j′′ = j′

U ′j′′ = FindUsers(U ′, cj′′ , {j′′})
for j ∈ P \ P ′ do // See if another Page is better
U ′j = FindUsers(U ′, cj , {j})
if U ′j′′ ⊂ U ′j then

j′′ = j, U ′j′′ = U ′j
end if

end for
P ′ = (P ′ \ {j′}) ∪ {j′′}

end for
return P ′
end function

// Find weighted center of U in dimension jc
function FindCenter(U ,w, jc)

Sort U by Li,jc for i ∈ U
Scan sorted U for 2∆t-width subset U ′

s.t.
∑

i∈U′ wi is maximized
Set cj to the center of this subset U ′

return [U ′, cj ]
end function

// Find users from U based on c and P ′
function FindUsers(U , c,P ′, jc,∆t′)
U ′ = {}, w = 0
for i ∈ U do

for j ∈ P ′ do
if Ii,j = 1 ∧ (|cj ,Li,j |<∆t ∨

(j=jc ∧ |cj ,Li,j |<∆t′)) then
wi = wi + 1

end if
end for
if wi ≥ ρm then
U ′ = U ′ ∪ {i}

end if
end for

return [U ′,w]
end function
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5. A MAPREDUCE IMPLEMENTATION
Although Algorithm 1 works well theoretically, it has in-

efficiencies in both speed and convergence. To address these
issues we offer here a new algorithm similar to the serial al-
gorithm, which operates in the MapReduce framework. This
implementation operates under the trade-off of making the
algorithm scalable to massive data sets and trivially paral-
lelizable, such that we can search for many clusters simul-
taneously, with the cost of the algorithm not provably con-
verging. However, the heuristics used here have performed
well in practice on real world data and converge quickly, as
will be demonstrated in Section 7.

Unlike many optimization problems, where the goal is to
find the global maximum, here we want to find all local max-
ima that meet our criteria (as there could be many attacks
happening simultaneously with different users on different
Pages). Therefore, the ability to run the algorithm from
many starting points in parallel is both useful and more ef-
ficient than running from different starting points serially.

5.1 Algorithm
Because we now would like to run the algorithm for mul-

tiple clusters in parallel, we must introduce some additional
notation. We define s to be the number of clusters being run
simultaneously. Each cluster has a center c(k) ∈ RM and a
set of currently selected columns P ′k ⊆ P (each defined as

before). We define C to be the set of all c(k) and P to be the
set of all P ′k, both for k = 1 . . . s.

Like the serial algorithm, the MapReduce CopyCatch
algorithm operates by updating c and P ′ iteratively. The
core of the algorithm can be seen in Algorithm 2, where we
note that we run one MapReduce job per iteration, each
time updating C and P. As in the serial algorithm, we can
keep iteratively updating C and P until no changes are made.
In practice, we will merely run a fixed number of iterations.

MapReduce: It is worth taking a moment to note the
data flow in a MapReduce job before describing the details
of our algorithm. In the Map step, our input is split among
many mappers. Each mapper gets a pair of data of the
form 〈Keymap,Value〉 and can output zero or more results
of the form 〈Keyreduce,Value〉. In the reducer step, for
each unique Keyreduce a reducer is formed which takes as
an input 〈Keyreduce,Values〉, where Values is a set of the
Value outputs from the mapper step which correspond to
that reducer’s particular Keyreduce. The reducer can then
output data to disk. Aside from this data flow, we make use
of Hadoop’s Distributed Cache, which lets us store data as
global read-only data. For more information on MapReduce
and Hadoop see [7, 1].

In our implementation, the mapper for the MapReduce
job UserMapper is shown in Procedure 3, the reducer
AdjustCluster-Reducer is shown in Procedure 4, and C`

and P` are stored in the Distributed Cache.
UserMapper finds which users are currently in which

clusters based on C and P and maps those users to a reducer
based on which cluster it is within. More specifically, the
Map step takes as input L and I, where each (Li,∗, Ii,∗) for
all i ∈ U is input to a mapper. Each mapper checks the
Li,∗ across all s clusters to see if it falls within that cluster
following the definition given in our optimization objective
(10). If it does, it emits an output where the key is the
cluster ID k, and the value is the row (user) information
Li,∗ and Ii,∗. Each mapper runs in O(sm) time, and since

this is being run over all data the entire step takes O(smN)
not taking into account parallelization.

AdjustCluster-Reducer takes in all of the users cur-
rently in a given cluster k and updates c(k) and P ′k. Each
reducer takes as an input 〈k,U ′〉, where U ′ here contains
pairs (Li,∗, Ii,∗) for all users in the cluster (as was output by
the mappers). As shown in Procedure 4, we must be care-
ful to only use values from each user in the dimensions for
which it falls within the cluster. However, beyond this, the
update generally works fairly simply. The center c is up-
dated by merely taking an average of the points in the clus-
ter, similar to a mean-shift algorithm with a flat kernel [5].
The selected columns are chosen based on which columns
cover the most users from the previous cluster parameters,
and then by which columns have the lowest variance among
these users. By using the previous centers for this update,
we can do the calculation online, passing over each user only
once. Because we assume each cluster is O(n) in size, each
reducer takes O(nM) time, and the reduce step as a whole
takes O(snM) when not considering parallelization. The
reducers output the updated C and P to be placed in the
Distributed Cache in subsequent iterations.

Algorithm 2 MapReduce CopyCatch

1: Require: Preset parameters ∆t, m, and ρ
2: C,P = Initialize()
3: repeat
4: C` = C, P` = P

5: C,P = MapReduceJob(C`,P`)
6: until C` = C ∧ P` = P

7: return [C,P]

Procedure 3 UserMapper(〈Null, (Li,∗, Ii,∗)〉)
1: Globals: C,P
2: for k = 1 . . . s do
3: σ =

∑
j∈P′

k
Ii,j · φ(c

(k)
j ,Li,j)

4: if σ ≥ ρ|P ′k| then
5: emit 〈k, (Li,∗, Ii,∗)〉
6: end if
7: end for

Procedure 4 AdjustCluster-Reducer(k,U ′)
1: Globals: C,P
2: Initialize c = 0, p = 0, v = 0
3: for all map values (Li,∗, Ii,∗) ∈ U ′ do
4: for j = 1 . . .M do

5: if Ii,j = 1 ∧ φ(c
(k)
j ,Li,j) = 1 then

6: cj = cj + Li,j

7: pj = pj + 1

8: vj = vj + (c
(k)
j − Li,j)

2

9: end if
10: end for
11: end for
12: c(k) = c/p
13: v = v/p
14: Sort {j}M1 by p (decreasing), then v (increasing)
15: Set P ′k to top m columns from previous sort
16: return Updated c(k) and P ′k
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5.2 Implementation Optimizations
While the description above gives the general overview of

the algorithm, there are a number of implementation details
that make the algorithm run efficiently on huge data sets.

Data Format Because L is expected to be very large and
sparse, we do not want to, nor need to, store the full data
matrix. Instead, we store the matrix as an adjacency list.
For each user i ∈ U , we store on one line the user ID i, a list
of page IDs j where Ii,j = 1, and the value Li,j . As a result,
Null values were Ii,j = 0 do not take up space or time.

C and P are stored similarly where each line of a data file
is indexed by the cluster ID k, and then contains the Page

IDs j, the times c
(k)
j and a 1 if j ∈ P ′k.

Seeds and Initial Iterations Figuring out where to
start the clusters can be very difficult. To avoid any bias,
we sample seeds randomly from the list of all edges in the
graph, using the edge’s Page and Like time to initialize both
P ′ and c. (While we could use suspicious users from one
of Facebook’s many other security mechanisms, this would
introduce prior assumptions about attackers that are unnec-
essary and could make it easier for an adversary to hide.)

As a result, in the initial iterations users only need to have
Liked a single Page at around the same time, which is not
uncommon. There are often so many users found in these
initial iterations that we sample a small percentage of them
at random to keep the algorithm efficient. Even with the
sampling, this method lets us quickly find lots of users that
Liked one Page around the same time, and then see what
else they have in common. This sampling is performed in
the first two iterations until |P ′| = m.

Page sampling Because C and P are stored in the Dis-
tributed Cache, they are passed to every MapReduce node.
This communication time slows the algorithm down if the
data becomes too large. To avoid this we limit the length of
c(k) by including only Pages from P ′k, Pages that were close
to being in P ′k in the last iteration, and a random sampling
of the other Pages. With this method we can still find users
that are similar, but without the risk of becoming too slow.

6. AN ADVERSARIAL CHALLENGE
Given our definition of suspicious lockstep behavior and

our approach to detecting spam, how much damage could an
adversary do without appearing suspicious? We will again
discuss this in the context of Facebook, although it can be
extended to other applications.

To be more concrete, we can frame the question as follows:
If an adversary controls N ′ accounts and wants to Like M ′

Pages, for N � N ′ � n and M � M ′ � m, how long
would it take the adversary to Like all M ′ Pages with all
N ′ accounts without creating an [n,m,∆t, ρ]-TNBC? (For
this analysis we assume that we catch all lockstep behavior
meeting Definition 2.) It turns out this is an extension of
an old open problem in extremal graph theory. We analyze
below a couple different approaches to this problem.

6.1 “Greedy Attacks”
We first analyze the consequences of an adversary per-

forming a näıve greedy attack, particularly because it matches
a common business model for adversaries, demonstrates the
difficulties for an adversary, and shows the strength of our
security approach.

In this initial example, we assume that the adversary has
from the start the set of M ′ Pages he wants to Like, and we

n− 1

m− 1

M ′ Pages

N ′ Users

Figure 3: Illustration of a greedy attack - N ′ ×M ′
adjacency matrix I′ of all Likes, where grey cells
denote I′i,j = 1, and white cells denote I′i,j = 0.

analyze the effect if he iteratively Likes each Page with as
many accounts as he can without getting caught. That is,
for the first Page the adversary will Like the Page using as
many accounts as possible without getting caught. He will
then move onto the second Page and do the same thing, etc.
In this case, we are unconcerned with the time component
of our bipartite core definition because we assume the ad-
versary will add all of the Likes instantaneously. Therefore,
an adversary will be caught if he creates an (n,m) com-
plete bipartite core in the graph. If we look at the N ′ ×M ′
adjacency matrix of Likes added by the adversary, this is
equivalent to creating an n,m submatrix filled with ones.
We will call this N ′ ×M ′ adjacency matrix I′.

Lemma 3. We assume there is an adversary with N ′ ac-
counts performing a greedy attack on M ′ Pages. Catching
and preventing all behavior meeting Definition 1 limits the
adversary to obtaining (m−1)N ′+ (n−1)M ′− (n−1)(m−1)
Likes at a rate greater than n−1

2∆t
per Page per unit time.

Proof. A simple pattern created by following the greedy
approach can be seen in Figure 3. We see here for the first
m − 1 pages, the adversary can Like the Page with all N ′

accounts. This is because we will only detect the accounts
if at least m pages have been Liked, so there is no harm
in Liking the first m − 1 Pages with as many accounts as
possible. However, for the mth Page, if any n users Like
that page in a 2∆t time window, then he will have created
an n×m full submatrix. This is true for all Pages ≥ m. As a
result, following this greedy approach we can only Like each

Page an average of (m−1)N′+(n−1)M′−(n−1)(m−1)
M′ times.

While not a complex example, the results are quite in-
teresting. First, we see that as an adversary adds more
accounts, the average number of Likes added by each ac-
count asymptotically approaches m − 1. Similarly, as the
accounts Like more Pages, the average number of Likes per
Page asymptotically approaches n− 1.

We have so far focused on how many Likes can an adver-
sary add instantaneously, but it is worth looking at the effect
of our time constraint. To illustrate the impact of our tem-
poral coherence restriction, we look at the case where an ad-
versary sells Likes on eBay, promising to add the Page Likes
within some time period (as some adversaries are known to
do). As new orders come in, the adversary must add those
Page Likes within the requested amount of time. Because
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we have a distinct time window for each Page j (centered
around cj), waiting to add Likes to a new Page does not
help an adversary avoid being caught. That is, if an adver-
sary gets m− 1 orders in January and adds all N ′ Likes as
the greedy attack suggests, then even if he does not get any
more orders until July he still cannot add more than n − 1
Likes in a 2∆t time window without being caught.

This is in contrast to previous research, which could set a
time window for the entire bipartite core (through limiting
the input), and thus merely waiting out that time window
gave accounts a clean slate. As a result of our construction,
once the greedy attack has been run, the adversary can only
continue to add Page Likes to each Page at a rate slower
than n

2∆t
. We call this effect multi-user rate limiting.

To make the effect of these restrictions clear and concrete,
let’s look at the example limits n = 20 accounts, m = 5
Pages, and 2∆t = one week. (Note, for security reasons
these are not the actual limits used at Facebook.) Any ad-
versary performing a greedy attack with N ′ = 1000 accounts
can on average only like up to 5 Pages per account for 980 of
his accounts. Similarly, if the adversary wants to boost the
Like counts for more than 5 Pages, he can on average only
Like the Pages 20 times. To add additional likes to any given
Page can only be done at a rate slower than 20 accounts

1 week
≈ 3

Likes per Page per day. This is clearly much harsher rate-
limiting than we could enforce on a single user, but when
looking at the group acting together makes sense.

6.2 Optimal Strategy: An Open Problem
It should be clear from the previous analysis that greedy

attacks do not work well for spammers. Ideally, we would
like to find an upper bound for the amount of damage an
adversary could inflict. However, this turns out to be an old,
open problem in extremal graph theory. In 1951 Kazimierz
Zarankiewicz posed the following problem [27]: how many
edges can there be in a bipartite graph G of size N ′ ×M ′
without creating a complete bipartite core of size n × m?
This is known as the Zarankiewicz problem, and the maxi-
mum number of edges is denoted as z(N ′,M ′, n,m).

Although the problem is old, little progress has been made
in solving it for the general case. Füredi [13] is currently
known to have the best general upper bound

z(N ′,M ′, n,m)≤(n−m+ 1)
1
mN ′M ′1−

1
m +M ′m+mN ′2−

2
m

for n > m. However, this is only known to be asymptotically
optimal for m = 2 and n = m = 3. If we use larger values
of n and m and reasonable values of N ′ and M ′, then z >
N ′M ′ and thus offers us no information.

Additionally, the proof offered by Füredi [13], as well as
most work surrounding the Zarankiewicz problem, uses non-
constructive methods. That is, although the proof finds an
upper bound for z(N ′,M ′, n,m), it does not give any in-
formation about how to actually add edges to reach that
bound without being caught. It would therefore be a chal-
lenge for an adversary to optimally add edges (and would be
interesting for the field of extremal graph theory if solved).

It is worth noting that our problem deviates from the
classic Zarankiewicz problem in two regards: (1) we look for
near-bipartite cores, and (2) we require temporal coherence.
With respect to the first point, by looking for near bipartite
cores and not just complete bipartite cores, we would also
catch cases where certain 1’s were missing from the n ×m
submatrix of I′. We call this the approximate Zarankiewicz

problem. While any upper bound for the Zarankiewicz prob-
lem is also an upper bound to this approximate Zarankiewicz
problem, the maximum number of edges added without cre-
ating a [n,m,∆t, ρ]-TNBC would be lower, and thus this is
an even harder problem for an adversary.

Second, we require temporal coherence in our bipartite
cores for the behavior to be considered suspicious. This
helps us more accurately and flexibly discern normal behav-
ior from illegitimate behavior and effectively rate limits an
adversary, forcing them to add Likes very slowly if they do
not want to be caught. As we saw in our analysis of a greedy
attack, this multi-user rate limiting is significantly stricter
than a rate limit we could enforce on individual users. When
generalizing this concept to the Zarankiewicz problem, the
constraint adds complexity to an already challenging prob-
lem. While we cannot find a precise optimal rate at which
adversaries can add edges without knowing an optimal strat-
egy for the Zarankiewicz problem, it should be clear that the
multi-user rate limiting principle holds. Setting 2∆t = ∞
restricts an adversary to solving the Zarankiewicz problem;
decreasing ∆t allows an adversary to exceed the maximum
solution to the Zarankiewicz problem but at a slow rate.

7. EXPERIMENTAL ANALYSIS

7.1 Experimental Setup
CopyCatch was written in Java 1.6.0 14 with Hadoop

0.20.1, generally matching the algorithm outlined in Section
5. The experiments were run on one of Facebook’s Hadoop
clusters, running Hadoop, Hive, and HDFS on over 1000
machines. More information about Facebook’s infrastruc-
ture can be found in [26]. Our MapReduce jobs ran with
3000 mappers and 500 reducers. We ran the algorithm on
a few different datasets from Faceboook as well as synthetic
data to demonstrate a number of different properties.

The Facebook datasets used come from real Likes between
users and Pages on the site. We pull data from periods of
time ranging from weeks to multiple months, where the data
has not already had Likes removed by this particular method
(although of course many other security measures already
keep malicious users and fake Likes off the site). For our
scalability tests, data ranged from approximately 760 million
Page Likes (25 gigabytes on HDFS) to 10.4 billion Page Likes
(294 gigabytes on HDFS). When not testing scalability over
data size, we used an intermediate dataset of 3.3 billion Likes
(100 gigabytes on HDFS). Our parameter choices for n, m,
and ∆t are those used currently on Facebook systems, but
can not be given for security reasons.

We also ran our discoverability experiments on synthetic
data so that results could be replicated by other researchers.
Our synthetic data was generated following the RTM method
[2], where the time evolving graph is generated with a re-
peated Kronecker product. The code used to generate the
time evolving graph, including our initial generator/tensor,
can be found online at alexbeutel.com/l/www2013. The
generated graph is a bipartite graph between 38 million and
10 million nodes with 410 million edges. After our data
formatting, the graph is 10 gigabytes on HDFS.

7.2 Scalability
Facebook now has over a billion users and is continuing to

grow. Therefore, it is important that our algorithm scales
well to large datasets. We test this a few different ways.
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Figure 4: Scalability experiments: (a) shows the linear increase in computation time as the graph grows
into the billions of Page Likes, (b) shows the increase in computation time as the number of seeds increases.
Running time for is based on the total time for the first three iterations of CopyCatch.

A necessary preprocessing step to keep our algorithm ef-
ficient is to format the data similar to an adjacency list as
described in Section 5.2. This takes approximately 45 min-
utes for our 100GB Facebook dataset. Because this is merely
formatting and not required each time we run the algorithm,
we do not consider this time in future tests.

For each of our timing experiments, we run our algorithm
on the on the 100GB Facebook dataset and time the first
3 iterations, which includes the initial iterations of starting
with individual Likes as seeds. We chose to run these tests
on the Facebook data because run time is heavily influenced
by the size of the data and the size of clusters. Since we
do not know a-priori where large clusters are, we sample our
seeds randomly so that we get the same distribution of small
and large clusters that we would get in our real runs.

Even with large Hadoop clusters, it is important that the
algorithm can scale as the data scales. We test this by run-
ning our implementation over Page Likes from increasingly
large periods of time. As we explained previously, this data
ranges from 25GB with 760 million Page Likes to 294GB
with 10.4 billion Page Likes. We ran the algorithm with 100
seeds, 3000 mappers, and 500 reducers. The run time for
the first 3 iterations can be seen in Figure 4(a). As seen in
the plot, the run time increases approximately linearly with
the number of edges (Page Likes). However, we note that
only after a greater than 10 times increases in data size does
our running time double. Therefore as our data grows, the
running time of CopyCatch grows at a much slower rate.

As the data scales, we also face the challenge of having to
use more seeds to sufficiently sample the space. Therefore,
we also tested how the run time increases as the number of
clusters being run in parallel increases. We time the first 3
iterations for running the algorithm on the 100GB Facebook
dataset with 3000 mappers and 500 reducers. We vary the
number of seeds used from 100 to 5000. As can be seen in
Figure 4(b), we find a similar linear relationship between
number of seeds and run time. We note that 50 times in-
crease from 100 clusters to 5000 clusters takes only a little
over twice as much time. This is again reassuring that our
implementation exploits the parallelism of the problem and
can continue to scale as the data scales.

7.3 Convergence
Because our MapReduce implementation is not provably

convergent, we also test our algorithm’s convergence. We
ran the algorithm on the 100GB Facebook dataset, starting
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Figure 5: The convergence of the CopyCatch
MapReduce implementation over 10 iterations on
Facebook data.

with 1000 seeds and tracked the sum of the values of the ob-
jective functions per iteration, starting at the third iteration
when |P ′| = m. As can be seen in Figure 5, the algorithm
quickly converges in only a few iterations as desired.

7.4 Discovery
The effectiveness of the algorithm is measured by its abil-

ity to detect fraudulent behavior. This is difficult to gauge
in the real world where there isn’t labelled data, and it can
be impossible to know if a user intentionally, honestly Liked
a given Page. Here we take two different approaches to eval-
uate our method.

First, we analyze the success of the algorithm in finding
suspicious groups of users on Facebook. Our goal is for the
algorithm to find as many of the [n,m,∆t, ρ]-TNBC’s in the
Facebook data as possible. To test CopyCatch’s success,
we run the algorithm repeatedly and check that we even-
tually are mostly finding users we had caught in previous
runs. In our experiment we run the algorithm 20 times for 5
iterations, each run starting from 1000 seeds on the 100GB
data set. In Figure 6(a) we see that over the course of 20
iterations we quickly decrease to finding mostly the same
users repeatedly, and only catching a small percentage of
new users with each successive run. More precisely, after
the eleventh run, the average percent of caught users that
are new is only 13% percent. Because we use random inde-
pendently drawn seeds for each run, this test suggests that
the algorithm has found most of the attacks in the dataset.

For a more precise analysis we use our synthetic dataset
to test the algorithm’s ability to find attacks in the graph.
We set n = 50, m = 25, ∆t = 50, and ρ = 0.9. For our
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Figure 6: Plots demonstrating the effectiveness of CopyCatch in discovering attacks. (a) shows the total
number of users caught after multiple runs of CopyCatch. (b) shows the success in finding planted attacks
in synthetic data after one run. (c) shows the decrease in attacks on Facebook over the last 3 months.

tests we add 20 randomly-placed attacks to the graph, and
test the ability of the algorithm to find the attacks after one
run starting with 5000 randomly chosen seeds. We vary our
attack size as a multiple of our defined suspicious lockstep
behavior, ranging from 50 users and 25 Pages to 1000 users
and 500 Pages. In each case the time of the attack for each
Page is chosen at random, and each user’s Likes falls within
the 2∆t time window for 95% of the Pages being attacked.
The percent of attackers caught after 1 run for each attack
size are plotted in Figure 6(b). Also we note that 0% of our
caught users were false positives. As we see in the plot, small
attacks exactly at our threshold size were hard to spot, but
as attacks grow in size in just one run we catch nearly all
of the attackers. It is worth noting that because we choose
seeds randomly, running the algorithm again should catch
an independent set of the attackers, and thus merely running
the algorithm a few times should catch a high percentage of
the attackers even in cases where 1 run does not. Overall,
this experiment shows the algorithm is generally successful
in detecting a few relatively small attacks in large graphs.

7.5 Deployment at Facebook
CopyCatch is run regularly at Facebook, searching for

new attacks. Parameters have been chosen to significantly
distinguish natural user behavior from ill-gotten Page Likes.
In practice at Facebook, false positives are very rare due
to the sparsity of the Page Like matrix. In particular, we
labelled 22 randomly selected clusters caught in February
2013. After intensive manual investigation, we found that
100% of the clusters were caught due to Likes generated
through deceitful means - 5 from fake accounts, 13 from
malicious browser extensions, 1 from OS malware, 2 from
credential stealing, and 1 from social engineering. When
caught, users that have contributed to ill-gotten Page Likes
have a portion of their past month’s Likes removed and are
prevented from Liking pages for the next month. This re-
moval of Page Likes are reflected in the Like counts of the
Pages that benefited. As shown in Figure 6(c), we have seen
a general decrease in ill-gotten Page Likes since the start of
this method. Overall, this method, in combination with the
numerous other measures at Facebook mentioned in Section
1, has proved effective in decreasing ill-gotten Page Likes.

8. DISCUSSION: APPLICATIONS
As mentioned previously, the algorithm can be used in

a number of settings including Twitter followers and Ama-
zon product reviews. The use case at Twitter demonstrates

the ability of the algorithm to be applied to non-bipartite
graphs. However, in this case the general structure of the
algorithm is the same - we look for some set of users that
follow another set of users at around the same time.

In this case of product reviews, we again have a bipartite
graph between users and products where edges represent a
review that was given to the product. However, in the case
of product reviews, edges have much more meta-information
beyond just timestamps, such as the IP address the review
was written from, review tone, and linguistic cues. While
this paper describes the edge constraints in terms of time,
the algorithm only requires some center c and a comparison
function φ. Therefore, we could extend the formulation as
applied to Page Likes to use multiple linguistic and behav-
ioral cues when attempting to find near bipartite cores in
settings with more metadata.

9. CONCLUSIONS
In this paper we have attacked the problem of detecting

fraudulent user feedback through the context of catching
lockstep behavior in Facebook Page Likes. Our main con-
tributions are:

1. Problem Formulation: We offer a novel definition
of suspicious behavior based only on graph structure
and edge constraints.

2. Algorithm: We describe two new algorithms to find
lockstep behavior ([n,m,∆t, ρ]-TNBC’s) - one prov-
ably convergent serial algorithm and one scalable, ef-
ficient MapReduce implementation.

3. Theoretical analysis: We show that catching lock-
step behavior limits the damage an adversary can do.
By analyzing the effect of a “greedy attack” and by
applying the 60 year old Zarankiewicz problem to our
setting, we show that finding an optimal adversarial
attack is very hard.

Finally, we experimentally demonstrate on Facebook and
synthetic data that CopyCatch is scalable, generally con-
verges, and effective in catching lockstep behavior.

Acknowledgments: We would like to thank Dr. Tao Stein,
Kristie Chow, and Jieqi Yu for their valuable help and guidance
in pursuing this project while at Facebook, and Professor Geoff
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