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ABSTRACT
Every day millions of crowdsourcing tasks are performed in
exchange for payments. Despite the important role pricing
plays in crowdsourcing campaigns and the complexity of the
market, most platforms do not provide requesters appropri-
ate tools for effective pricing and allocation of tasks.

In this paper, we introduce a framework for designing
mechanisms with provable guarantees in crowdsourcing mar-
kets. The framework enables automating the process of pric-
ing and allocation of tasks for requesters in complex mar-
kets like Amazon’s Mechanical Turk where workers arrive in
an online fashion and requesters face budget constraints and
task completion deadlines. We present constant-competitive
incentive compatible mechanisms for maximizing the num-
ber of tasks under a budget, and for minimizing payments
given a fixed number of tasks to complete. To demonstrate
the effectiveness of this framework we created a platform
that enables applying pricing mechanisms in markets like
Mechanical Turk. The platform allows us to show that the
mechanisms we present here work well in practice, as well as
to give experimental evidence to workers’ strategic behavior
in absence of appropriate incentive schemes.

Categories and Subject Descriptors
H.0 [Information Systems]: General

General Terms
Algorithms, Economics, Human Factors, Theory

Keywords
Crowdsourcing, Mechanism Design, Human Computation,
Mechanical Turk, Mechanical Perk

1. INTRODUCTION
The advancement of the internet in the past decade cre-

ated a platform for a new form of labor markets known as
crowdsourcing markets where cognitive work can be dis-
tributed to hundreds of thousands of geographically dis-
parate workers. In contrast to traditional procurement mar-
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kets that rely on specialized contractors, requesters in crowd-
sourcing markets typically outsource large quantities of sim-
ple tasks to anonymous, unspecialized workers. Typical ex-
amples of crowdsourcing tasks include image labeling, senti-
ment analysis, content generation, listing verification, image
moderation, transcription, and other forms of tasks that are
impossible, difficult or too expensive to automate.

There are several crowdsourcing platforms that provide
workers with non-monetary incentives like entertainment [9],
educational opportunities [5], information [27], and altru-
ism [17] in exchange for their efforts. Despite the success of
these platforms, it is often difficult to engineer non-monetary
incentive schemes for tedious and repetitive work. There-
fore an overwhelming majority of crowdsourcing tasks are
performed in exchange for payments [1, 4, 8, 2, 6, 3, 7].
In such markets, implementing a campaign successfully re-
quires pricing and allocating tasks effectively.

Designing effective pricing and allocation schemes presents
a challenging problem due to requesters’ constraints and the
realities of crowdsourcing markets. Requesters often face
task completion deadlines and budget constraints, and must
account for dramatic elasticity in the workforce supply. Fur-
thermore, there is a large variance in effort required to com-
plete different tasks, which also largely depends on the skills
and background of workers who are often based in multi-
ple geographical locations. Despite this difficulty in pricing
tasks, most crowdsourcing markets provide requesters sur-
prisingly limited tools for pricing tasks effectively.

In this paper we address the problem of pricing and allo-
cating tasks in crowdsourcing markets. We develop a the-
oretical framework and design mechanisms that work well
in practice and have provable guarantees. In addition, we
describe a platform which we implemented that enables re-
questers to automate the process of pricing in crowdsourc-
ing markets using the mechanisms we present here as well as
other pricing schemes. The framework is primarily designed
for tasks where the quality of the worker’s performance does
not yield additional utility to the requester once above a
certain quality threshold. Although there are crowdsourc-
ing tasks that do not fall into this category like predicting
future events, designing a logo, or writing an introduction
to an academic paper, a large fraction of the work in crowd-
sourcing markets typically fits this criterion. For such tasks
requesters often use various methods to ensure the thresh-
old quality is met like injecting gold standards [29], majority
voting, and more sophisticated cross-validation methods [31,
36, 30, 35, 28]. Since workers receive payments after re-
questers’ approval in crowdsourcing platforms, we assume
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requesters have access to such verification schemes and fo-
cus on efficiently pricing and allocating tasks, independent
of their quality.

We take a mechanism design approach to the pricing prob-
lem and enable workers to bid on work by expressing their
cost for performing tasks and the number of tasks they wish
to perform. Although most crowdsourcing platforms do not
provide workers such level of expressiveness, existing APIs
make this feature easy to integrate into most platforms as we
further describe. This relatively minor modification enables
designing powerful mechanisms.

The mechanisms we present here are designed for two
main objectives: maximizing the number of tasks performed
under budget, and minimizing payments for a given number
of tasks. We consider requesters that impose a deadline for
the completion of tasks and workers who arrive i.i.d. ac-
cording to some known distribution and can strategically
misreport their cost or number of tasks they wish to per-
form. We therefore design incentive compatible mechanisms
that ensure that the allocation and pricing are such that it
is in every worker’s best interest to bid truthfully.

1.1 Related Work
The problem of designing mechanisms for pricing tasks in

crowdsourcing markets has been addressed using different
models and different techniques, such as bargaining between
requesters and workers to minimize work [26] and recently
using bandit algorithms to maximize tasks [34]. While both
are natural approaches, they leave room for frameworks that
allow better theoretical guarantees as used here. In [24]
the authors study an orthogonal problem and present an
algorithmic framework for matching workers with with re-
questers based on their skills.

The approach in this paper advocates for eliciting work-
ers costs via incentive compatible protocols. A different ap-
proach is that of developing a model for workers’ effort and
learning its parameters from data as done in [25, 13]. The
problem of designing mechanisms for procurement has been
extensively studied by the algorithmic game theory com-
munity over the past decade. The earlier line of frugality
first suggested in [10] focuses on minimizing payments for
complex objective functions. Recently, the budget feasibil-
ity framework has been initiated in [32], where the goal is
to design incentive compatible mechanisms that maximize
a requester’s objective under a budget. The framework has
been adapted to various settings [33, 19, 16, 15, 18] and we
follow it in this paper.

In our model we account for the online arrival of workers,
which raises a significant challenge. There is substantial
literature on online mechanism design where workers arrive
according to a given distribution [21, 22, 23, 12, 11]. In
our case we consider mechanisms for buying items (rather
then selling) from strategic agents which requires different
machinery. In [14] the authors study online procurement
though the emphasis there is on a different model of posted
prices.

2. MODEL
In our model we consider a single requester and multi-

ple workers. The requester has a task completion deadline
T ∈ N+ by which his tasks need to be allocated. Each worker
arrives at some time step t ∈ {1, . . . , T} i.i.d. according to
some distribution. Each worker ai associates a cost ci ∈ R+

for performing a single task posted by the requester and a
number of tasks she can complete vi ∈ N+. The requester
does not know ci, vi, or the total number of workers that will
appear by T . We assume the requester knows the distribu-
tion of the arrival of workers.1 The requester either aims to
maximize the number of tasks allocated under some budget
B ∈ R+, or alternatively complete L ∈ N+ tasks while mini-
mizing payments, in which case we assume

∑
i∈N vi ≥ 100L.

One can adversarially assume that the workers knowB,L, T
and the objective of the requester. When allocated w̄i tasks
at pi per task, the worker’s utility is simply w̄i(pi − ci).
We assume that workers are rational in that they wish to
maximize their utility.

The protocol. At the time of her arrival, each worker ai

submits a bid indicating her cost per task and the maximal
number of tasks she wishes to perform, denoted as bi and wi

respectively, which do not necessarily correspond to ci, vi.
The mechanism must decide how many tasks to allocate to
the worker and the price for each task upon her arrival, after
processing her bid. The bid on the maximal number of tasks
is abiding and if a worker completes less than the number of
tasks allocated to her, the requester does not pay the worker.

2.1 Design Objectives
Our goal is to design mechanisms that perform well. A

mechanism is simply an algorithm that decides how many
tasks each worker performs and how she is paid. Since work-
ers may report false costs, we will seek incentive compatible
(truthful) mechanisms for which reporting the true costs is
a dominant strategy. Formally, a mechanism is incentive
compatible if for every ai ∈ N with cost and limit ci, vi
and bid bi, wi, and every set of bids by N \ {ai} we have
xi(pi − ci) ≥ x′

i(p
′
i − ci), where pi, p

′
i are the payments and

xi, x
′
i indicate the number of tasks ai is allocated, when bid-

ding ci, vi and bi, wi, respectively. Since an incentive com-
patible mechanism guarantees that the bids are truthful, its
performance over the bids can be compared against a theo-
retically optimal algorithm that knows workers’ true values.

Maximizing Tasks. Under this objective we are given
a fixed budget by the requester and seek to maximize the
expected number of tasks performed without exceeding the
budget, where the expectation is over the random arrival or-
der of the workers and the randomization of the mechanism.
This design objective is known as budget feasiblity where the
mechanism must be designed so that the sum of its payments
(and not workers’ costs) does not exceed the budget [32]. To
quantify the performance of the mechanism we compare its
solution with the optimal offline solution: the solution that
would have been obtainable if all workers’ true values were
known in advance and we could pay each worker exactly
her cost. Note that this is the most demanding benchmark
possible. A mechanism is O(g(n))-competitive if the ratio
between the benchmark and the expected value guaranteed
by the mechanism is O(g(n)). Ideally, we would like our
mechanism to be O(1)-competitive.

Minimizing Payments. A complementary objective
to maximizing expected number of tasks under budget is
that of minimizing expected payments for a given number
of tasks. Ideally, we would like the total payments the mech-
anism makes to be comparable to the minimal cost required

1For our performance guarantees we actually only need to
know the median of this distribution.
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for performing the task. It is easy to show however that no
incentive compatible mechanism can perform well under this
benchmark.2 We therefore set our objective for minimizing
payments as follows. Given a fixed number of tasks to per-
form, L, we say that a mechanism for minimizing payments
is α-competitive if it allocates L tasks in expectation and is
guaranteed to pay no more than the minimum cost required
to complete αL tasks in the offline scenario when all costs
are known. Here as well our goal is to design mechanisms
that are O(1)-competitive.

3. THE PRICING MECHANISMS
The common approach to achieve desirable outcomes in

online settings is to observe a fraction of the input and use it
as a sample to make an informed decision on the rest of the
input. We will use a similar strategy, though rather than
rejecting workers whose bids are used as a sample, we will
allocate tasks to workers in the sample. When our objective
is to maximize the number of tasks performed, our mech-
anism dynamically learns an appropriate price for a task
as it allocates tasks to workers. In the case of minimizing
payments, the requester can specify a budget for allocating
tasks during the sampling phase.

In essence, both mechanisms sample the input until the
median time step – the time step at which each worker ap-
pears with probability 1/2 – and use the sample to estimate
a threshold price. The mechanisms then use the threshold
price to decide which bids to accept or reject. Estimating
appropriate threshold prices is an important building block
in both mechanisms, and we begin by describing this proce-
dure and its properties.

3.1 Establishing Threshold Prices
Intuitively, the threshold price is the lowest single price we

can offer which many workers will accept. The procedure for
computing threshold prices presented below is a variant of
the proportional share mechanism introduced in [32], which
serves as the basis for designing procurement mechanisms
under budget [33, 19, 16, 15, 18]. Note that this is an offline
procedure that has access all bids.

GetThreshold

input: bids {(b1, w1), . . . , (bm, wm)}, Budget B

1. initialize: sort bids s.t. b1 ≤ b2 ≤ . . . ≤ bm; set i = 1
2. while bi ≤ B∑

j<i w̄j+1

set: p = bi,
w̄i = min{wi, �B

p
� −∑

j<i w̄j},
i = i+ 1;

output: p

2Consider an instance where a single worker can complete
all required tasks at some small cost ε, while every other
workers has some very high costs P . It is not hard to show
that any incentive compatible mechanism that completes all
required tasks must pay at least P in such a case, thus mak-
ing the ratio between minimal cost and the total payments
of an incentive compatible mechanisms unbounded.

When tasks are priced at p = bi the remaining budget is
B− p

∑i−1
j=1 w̄j , and therefore the number of tasks she could

be allocated at this price without exceeding the total budget
is w̄i = min{wi, �B

p
� − ∑

j<i w̄j} as used in the procedure.
The desirable property of this threshold price is that it sets
a single price which on the one hand is low enough so that
it efficiently exhausts the budget and on the other hand is
high enough so that enough workers accept. We formalize
this in the following lemma. The proof in similar to [32].

Lemma 3.1. For a given sample of bids, let L be the max-
imal number of tasks that can be allocated under a given bud-
get. Then, at least L/2 tasks can be allocated under budget
at the price computed by the GetThreshold procedure.

Proof. Let ai = (bi, wi) and {a1, a2, . . . , ak} be the set of
bids allocated by the procedure. First, observe that w̄i = wi

for all i < k, as otherwise given an i < k s.t. wi > w̄i =
�B

p
� −∑i−1

j=1 w̄j we have:

i∑
j=1

w̄j =

i−1∑
j=1

w̄j +
(
�B
p
� −

i−1∑
j=1

w̄j

)
= �B

p
�

and thus:

bi+1 ≥ bi = p >
B

�B/p�+ 1
=

B∑
j<i w̄j + 1

which implies that bi+1 violates the condition in step 2
of the procedure, in contradiction to the assumption that
it was allocated. For the purpose of this analysis, without
loss of generality we can assume that w̄k = wk. This is due
to the fact that we can consider an input identical to ours
except that ak is replaced with two bids ak′ = (bk, w̄k) and
ak′′ = (bk, wk − w̄k). The value over this input is identical
to the value obtained over the original input, and ak′′ is not
allocated as it fails to meet condition in step 2 due to the
same argument made above.

Given a fixed budget, to achieve the maximal number of
tasks one must allocate to lowest bids until exhausting the
budget, and thus {a1, . . . , ak} are included in the optimal so-
lution. Let {a1 . . . , ak, . . . , ar} be the optimal solution. As-

sume for purpose of contraction that 2
∑k

i=1 wi <
∑r

i=1 wi.

Then,
∑k

i=1 wi <
∑r

i=k+1 wi. By this assumption and the
definition of bk+1 we have that:

bk+1 >
B∑k+1

i=1 wi + 1
≥ B∑r

i=k+1wi

which implies:

B < bk+1 ·
( r∑

i=k+1

wi

)
≤

r∑
i=k+1

wi · bi

but since the optimal solution cannot exceeds the budget,
we have a contradiction.

The above lemma suggests that if we accept all assign-
ments that have cost that is smaller than the threshold price,
we will be able to complete at least half of the assignments
we would have been able to complete if we paid each worker
their cost. As one might imagine, once the sample size is
large enough, the threshold prices obtained on the sample
will be a good estimate to the real threshold price as if they
were computed offline. We formalize this argument and give
a rigorous proof in the following section.
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3.2 Maximizing Tasks
Given a distribution on the arrival of workers, we can eas-

ily compute every 2i quantile (i.e. the time step t s.t. the
probability that a worker arrives before t is 2−i). We there-
fore assume the mechanism is given {q1, . . . , q�} where q�
is the first time step t = 1. We give a formal description
of the mechanism below followed by a brief explanation in
plain English. We use S(t) to denote the set of all bids that
arrived at and before time step t.

MaximizeTasks

input: Budget B, quantiles {q1, . . . , q�}

1. initialize: B′ = 2−(�+1)B, t = 1;

2. For every quantile qj , j = �, �− 1, . . . , 1 do:
a. at time step t = qj set:

p = GetThreshold(S(t), 2B′),
w∗ = min{max{a∈S(t)|ci≤p} wi, � 2B′

p
�},

B′ = 2B′, A = ∅;

b. with probability 1/3 do:
while qj < t ≤ qj+1:
for all ai who arrive at time t s.t. bi ≤ p do:

allocate w̄i = min{wi, �B′
p
� −∑

r∈A w̄r} at p,

set A = A ∪ {i};

with probability 2/3 do:
for first ai arriving by qj+1 s.t. wi ≥ w∗:
allocate w̄i = min{wi, �B′

p
�} at p;

The mechanism iterates over q1, . . . , q� and at every time
step qi it uses a budget of B/2i to allocate tasks, and decides
whether to accept a bid using a threshold price which it
computes on bids of all workers that arrived by time step qi.
At every time interval qi the mechanism randomly selects
the procedure it will use on all workers that arrive until
qi+1. The first procedure pays each worker the threshold
price per task, as long as her cost is below the threshold and
the budget has not been exhausted. The second procedure
allocates its entire budget to the worker that bid below the
threshold price and is willing to perform at least as many
tasks as w∗. The randomization between the two procedures
handles extreme cases in which only a single worker can
complete a large fraction of the tasks at the threshold price.
The way which we find the worker that can complete the
maximal number of tasks is an incentive compatible variant
of Dynkin’s celebrated algorithm to the problem of hiring
the best secretary [20], tailored to our setting.

Lemma 3.2. The mechanism is incentive compatible, i.e.
it is in every worker’s best interest to bid her true cost for
performing an assignment, and the number of assignments
she wishes to perform.

Proof. Consider a worker ai with cost of ci that arrives
at some stage for which the threshold price was set to p.
If by the time the worker arrives there are no remaining
assignments, then the worker’s bid will not affect the allo-
cation of the mechanism and thus she cannot benefit by re-
porting a false cost. Otherwise, assume there are remaining

assignments by the time the worker arrives. In case ci ≤ p,
bidding below p wouldn’t make a difference in the worker’s
allocation and payment and her utility for each assignment
would be p − ci ≥ 0. Declaring a cost above p would deny
the worker from being allocated, and her utility would be
0. In case ci > p, declaring any cost above p would leave
the worker unallocated with utility 0. If the worker declares
a cost lower than p she will be allocated though her util-
ity will be negative. In the realization where all workers
with costs smaller than p are allocated until exhausting the
budget, declaring a lower or higher number of tasks does
not benefit the worker since her utility is linear. In the re-
alization where we select the first worker with bid smaller
than p who will complete at least w∗ tasks, if the worker
declares w′

i ≥ min{w, �B/p�} > wi the worker will be allo-
cated more tasks than she can perform and will be paid 0,
and will therefore not benefit.

Lemma 3.3. The mechanism is budget feasible, i.e. the
sum of the payments that the mechanism makes to all work-
ers never exceeds the given budget.

Proof. At each stage i = 1, . . . , � the mechanism uses a
budget of B′ = B/2i and threshold price p computed from
the bids of the previous round, and allocates no more than
�B′/p� tasks. Therefore every iteration is budget feasible

and in total
∑�

i=1 B/2i < B.

Lemma 3.4. The MaximizeTasksmechanism is 360 com-
petitive and 120-competitive when using its entire budget in
the median time step.

Proof. We will analyze the iteration of the mechanism,
when the sample consisted of all workers who arrive by the
median time step and the budget used for allocation was
B/2. We will compare the expected number of tasks allo-
cated with the number of tasks that would have been pos-
sible to allocate with the same budget on the entire set of
workers at a single threshold price.

Let S(T ) be the set of all workers who arrive by time
step T , and consider running theGetThreshold procedure
on S(T ) using a budget of B′ = B/2; let A be the set
of all workers who were allocated by this procedure, k =
|A|, W =

∑
i∈A w̄i, p be the threshold price obtained by

running the procedure, and OPT be the maximal number of
tasks that can be performed under budget B on S(T ). Note
that the maximal number of tasks that can be performed
under budget B/2 is at least OPT/3, and therefore from
Lemma 3.1 we have that W ≥ OPT/6.

Assume first that maxi wi ≤ W/10. Consider the me-
dian time step t and all workers bids sampled until this
time step, S(t). Let A1 = S(t) ∩ A,A2 = A \ A1, and
W1 =

∑
i∈A1

w̄i,W2 =
∑

i∈A2
w̄i. Since each worker ai ∈ A

arrives before the median with probability 1/2 we can as-
sociate a random variable Xi that takes a value of w̄i with
probability 1/2 and 0 otherwise. To evaluate the expected
value of W1 and W2, we can use the following version of the
Chernoff bound:

Theorem 3.5. (Chernoff Bound) Let X1, . . . , Xk be a set
of k independent random variables that take values in [0, wi]
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and μ = E[
∑k

i=1 Xi]. Then, for any δ ∈ [0, 1] we have that:

Pr
[ k∑

i=1

Xi > (1 + δ)μ
]

≤
( eδ

(1 + δ)(1+δ)

) μ
maxi wi

Pr
[ k∑

i=1

Xi < (1− δ)μ
]

≤ e
−δ2μ

2 maxi wi

This above bound implies that:

Pr
[
W2 <

1

4
W

]
= Pr

[
W1 >

3

4
W

]
≤ 59/100

Pr
[
W1 <

1

4
W

]
≤ 21/100

Therefore, by union bound with probability at least 1/5
both W1,W2 ≥ W/4. Now, let p(T ), p(t) be the thresholds
computed using the GetThreshold procedure over S(T )
and the sample S(t), respectively. Since p(t) ≥ p(T ) as it
is computed over a smaller subset, for each worker ai ∈ A2

it follows that ci ≤ p(t) and they will be allocated if the
budget has not yet been exhausted. If all workers in A2

were allocated by the mechanism this implies that at least
W/4 tasks were performed since W2 ≥ W/4. If the budget
was exhausted before all workers in A2 arrived, a total of
�B′/p(t)� were performed. Since

p(t) ≤ B′

W1
≤ B′

W

this implies that at least W/4 tasks were performed with
probability at least 1/5. Therefore, since this procedure is
realized with probability 1/3 at least W/60 were completed
in expectation when maxi∈A wi ≤ W/10.

In case maxi∈A w̄i > W/10, let a = argmaxi∈S(T )wi, and
b = argmaxi∈S(T )\{a}wi. With probability 1/4, b appears
at or before the median time step and a arrives after the
median time step, we therefore have at least one worker ai

at stage t > q1 s.t. wi ≥ w∗. In this case we have that:

w̄i = min{max
i

wi, �B/p(t)�} ≥ W/10

since p′ ≤ 4B/W . Since this procedure is realized with
probability 2/3 we have obtain at least:

W

10
· 1
4
· 2
3
=

W

60

tasks in expectation, as in the previous case. Since W ≥
OPT/6 the mechanism is 360-competitive. If the entire bud-
get is used in step q1, W ≥ OPT/2 and the mechanism is
120-competitive.

Theorem 3.6. The MaximizeTasks mechanism is in-
centive compatible, budget feasible and O(1)-competitive.

While the constants may seem large, we emphasize that
our goal is to show that the mechanisms are indeed O(1)-
competitive, and thus that their guarantee is independent
of the parameters of the problem that can be large (e.g.
number of workers, their cost, the number of tasks they
are willing to perform, etc.). We will later show that these
mechanisms perform well in practice, implying that bounded
competitive ratio serves as a good guide for designing such
mechanisms.

3.3 Minimizing Payments
The idea behind the mechanism for minimizing payments

is based on the following observation. Given a fixed num-
ber of tasks L, if we knew the minimal cost for perform-
ing L′ = 2L tasks, we could use a procedure similar to
GetThreshold with this minimal cost as its budget. From
Lemma 3.1 we know that the GetThreshold procedure
finds a price s.t. at least L′/2 = L tasks could be performed.
Therefore, such a procedure would be a 2-approximation
to the minimal cost in our case. The MinimizePayments
mechanism is based on this idea: we compute the minimal
cost for performing a constant blowup of the number of tasks
required, and find an appropriate threshold price. We de-
scribe the mechanism formally below, followed by a brief
description.

MinimizePayments

input: number of tasks L, budget β, price δ, q1, T

1. For all ai who arrive at time t ≤ q1, if bi ≤ δ do:

allocate w̄i = min{wi, �β
δ
� −∑

r∈A w̄r} at δ,
set A = A ∪ {i};

2. At time step t = q1 do:
set B = FindMinCost(S(t), 2L),
set p = GetThreshold(S(t), B),
w∗ = min{max{a∈S(t)|ci≤p} wi, �B

p
�}

3. with probability 1/4 do:
for all ai who arrive at time t > q1 s.t. bi ≤ p do:

allocate w̄i = min{wi, �B
p
� −∑

r∈A w̄r} at p,

with probability 3/4 do:
for first ai arriving by T s.t. wi ≥ w∗:
allocate w̄i = min{wi, �B

p
�} at p;

The above mechanism has two iterations. The first itera-
tion samples the bids, and uses a given budget of β and price
δ specified by the requester to allocate to workers in the sam-
ple.3 After the median time step, the FindMinCost(S(t), 2L)
procedure finds the minimal cost for performing 2L tasks
(which can be done by a simple greedy algorithm which
sorts workers according to their costs and allocates tasks
until reaching the number of tasks required). The threshold
price is then computed using the minimal cost as its budget,
together with an estimate of the maximal number of tasks
a worker can perform. Similarly to the MaximizeTasks
mechanism, the mechanism then randomizes between a pro-
cedure which allocates tasks to workers with price smaller
than p and a procedure that allocates all tasks to a single
worker.

The properties of the mechanism can be proven using sim-
ilar ideas as in the proofs in the previous section. We state
the theorem below, and leave the proof to the full version of
the paper.

3In the MaximizeTasks mechanism we automatically used
half of the budget for the sampling phase. Here, since we do
not a priori know what workers’ costs are, we leave β and δ
as a design choice to the requester.
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Theorem 3.7. Given a fixed number of tasks L, the Min-
imizePaymentsmechanism is incentive compatible, allocates
L tasks in expectation and is O(1)-competitive.

4. EXPERIMENTS
To evaluate the performance of the mechanisms in practice

and explore bidding behavior in crowdsourcing markets, we
created the Mechanical Perk platform which enables us to
conduct experiments with workers from Mechanical Turk
and to collect real bidding data and observe their behavior.

4.1 Mechanical Perk
To enable implementing various mechanisms on Mechani-

cal Turk (MTurk) we created the Mechanical Perk (MPerk)
platform. The platform provides a service for requesters who
wish to post Human Intelligence Tasks (HITs) with various
automated pricing and incentive mechanisms. The platform
receives the HIT from the requester as input and their choice
for the mechanism they wish to use, along with additional
information like the number of HITs to be posted, budget,
expiration date, and other parameters for posting the HIT
on MTurk. The platform then posts a HIT on MTurk that
serves as a wrapper for the requester’s original HITs. The
HIT posted by MPerk enables workers to place bids and run
a mechanism in the background.

In the Human Intelligence Task (HIT) workers are ex-
plained that a mechanism will decide how many assign-
ments, if any, will be allocated to them based on their bid.
We explain to workers they would be paid through the Me-
chanical Turk bonus payment system, which allows a re-
quester to pay workers beyond the fixed price associated
with the HIT. To encourage high quality work, we explain
to workers they would not be paid if their work will be found
unsatisfactory. We also include a screenshot from an exam-
ple assignment so that workers could assess their cost for
performing the assignment prior to bidding. Following the
set of instructions, workers need to indicate their cost for
performing an assignment and how many assignments they
wish to perform. Their bids are collected by a mechanism
which decides on their allocation.

A worker that was allocated received assignments to work
on, and based on the pricing decided by the mechanism was
paid within a few days via the bonus payment system. Each
worker that placed a bid was paid for participating in the
HIT, independent of the payments made according to the
mechanism’s decision.

An important fact is that MPerk can use various pric-
ing mechanisms that allow efficient allocation of tasks. In
our experiments we used MaximizeTasks as well as other
simple pricing schemes to gain insight to bidding behavior
in crowdsourcing markets. We describe these in detail in
Section 4.5.

4.2 Experiments Objectives
We conducted two main sets of experiments on MPerk.

The primary goals were to evaluate the performance of the
online mechanism on real bids as well as to test workers’ re-
sponses to different bidding mechanisms. We implemented
the bidding mechanisms through MPerk and for Human
Computation tasks, we used a batch of automatically gen-
erated assignments.

Performance. We conducted an experiment where we
ran the MaximizeTasks on MechanicalPerk with a modest

Figure 1: Screenshot of example assignment used in
the experiments.

budget. We primarily used this process to collect bids so we
can run simulations with different budgets to observe the
performance of the mechanism. In general, we found that
the mechanism performs very well on real inputs and the
threshold prices converge quickly.

Bidding behavior. The main goal in these experiments
was to examine workers’ responses to various features in
the mechanism which could serve as guidelines for future
design of mechanisms in crowdsourcing markets. An im-
portant guideline in our design is incentive compatibility
as we assume workers behave strategically in crowdsourcing
platforms. To examine this we observed workers’ response
to different pricing schemes which suggest that they indeed
strategize their bids. Another design principle is to avoid
rejecting workers automatically. The main reasoning is that
we believe that although rejecting workers automatically to
obtain a sample will not hurt the mechanism during its iter-
ation, rejecting bids automatically is not likely to be sustain-
able in crowdsourcing markets, as workers will avoid tasks
that use such mechanisms for pricing. In our experiments
we show evidence of this as well.

4.3 Experimental Setup
In the first experiment we ran the MaximizeTasks mech-

anism described in Section 3 primarily to collect bids that
we used to test its performance, and allowed workers to bid
only once. In the second experiment we tested workers’ re-
sponses to four different pricing mechanisms. We allowed
workers to bid up to 15 times to observe their responses to
various pricing schemes.

We limited the experiment to workers with approval rate
on Mechanical Turk higher than 90%. We recorded workers’
IP addresses and treated each IP session as a new worker.
While this does not guarantee the worker is a different per-
son, we used this as a reasonable proxy. In total we collected
1674 bids, from 764 different workers, allocated 3883 assign-
ments and collected 23298 answers.
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Figure 2: (a) Histogram of price per assignment
(0-40 cents) requested by bidders (b) Histogram of
number of assignments requested by bidders

The Human Computation Tasks. We used assign-
ments that required workers to estimate area sizes in pie
charts. Each assignment included six pie charts, where each
pie chart consisted of three colors, one of which was red.
In each assignment, the workers were required to estimate
the percentage of red color in each one of the six pie charts
and these area sizes were randomly generated. The reason
for choosing this assignment is that it simulates a human
computation task and allows to quantify a worker’s perfor-
mance objectively. We also gave workers an option to send
us feedback about their experience. An example assignment
is displayed in Figure 1.

4.4 Performance
To collect data for simulations we ran an experiment on

Mechanical Perk where MaximizeTasks was used to allo-
cate tasks. To collect a representative data set for the sim-
ulations, we allowed workers to bid once in this experiment.
The maximal allowed bid was $0.40 and the limit on the
number of assignments was set to 25. We collected bids
from 391 workers, each providing a single bid which indi-
cates their cost and the number of assignments they wish
to perform. The mean bid was 16.33 cents and the mean
number of assignments was 16. We plot the distribution of
bids and number of assignments in Figure 2.

To test the performance of the MaximizeTasks mecha-
nism, we used the bids collected and compared our mech-
anism against several benchmarks. Note that in order to
show how many assignments can be allocated given a spec-
ified budget, we only require the workers’ bids, which is a
much larger set than the subset of workers that were actually
allocated and submitted their answers to the assignments.
To simulate a task we use a random permutation of the bids
we collected to model the random arrival of workers, and run
our mechanism with a specified budget over this ordering.

We compared MaximizeTasks against two benchmarks.
The first benchmark is the optimal offline algorithm which
has full knowledge about workers costs. The second bench-
mark is the GetThreshold procedure applied offline. This
procedure is guaranteed to be within a factor of two of the
first benchmark by Lemma 3.1 and is also the optimal incen-
tive compatible solution due to a matching lower bound [32].
This mechanism does not have knowledge about workers’
true costs, but it is an offline mechanism, i.e., all workers
submit their bids to the mechanism and wait for the mech-
anism to collect all the bids and decide on an allocation.
These benchmarks operate in simpler settings, where all the
costs are known a priori and will therefore always outper-

form our mechanism. Ideally, we would be able to compare
against other pricing methods such as those used by com-
mercial platforms, though this data is difficult to obtain.

We showed that the mechanism is guaranteed to be, in
expectation over the arrival order of the workers, within a
constant factor from the optimal offline solution. Our goal in
this experiment was to examine this ratio on descriptive in-
puts. Using the bids provided by workers, we simulated the
different algorithms on budgets ranging from $50 to $1000
in increments of $50. In Figure 3 we plot the resulting com-
parison between our mechanism and the benchmarks.

On the simulated data, the mechanism performs quite
well. Analytically, we guarantee that the mechanism has
a constant competitive factor in comparison to the optimal
offline solution, and the experiments show that this ratio is
almost as small as 2. In comparison to the best incentive
compatible mechanism, this ratio is substantially smaller,
and there is almost no difference in the performance of the
two mechanisms. The simulations suggest that the Maxi-
mizeTasks has near optimal performance in practice.

To examine the change in the threshold prices as the
number of workers increases in the sample, we simulated
tasks with various budgets and ran the mechanism. We ob-
served that in all simulations, the threshold prices converged
quickly, and typically after running 16 and 32 bids varied by
1 to 2 cents. In Figure 3(a) we plot the value of the thresh-
old price as a function of the stage of the mechanism (the
number of workers that submitted their bids) on a logarith-
mic scale, during a simulation that used a budget of $100.
As one can see, the threshold price quickly stabilizes and
remains almost constant throughout the run.

4.5 Bidding Behavior
To observe workers’ responses to various features in pric-

ing mechanisms we experimented with four simple mecha-
nisms and allowed workers’ to bid multiple times in order to
observe how features of the mechanisms affect their bidding.
All mechanisms required workers to bid how much they wish
to be rewarded for each assignment they complete and the
number of assignments for this bid. We allowed only 5 as-
signments to be performed per HIT (where the bid is per
assignment), allowed bids no higher than $0.50, and allowed
workers to perform 15 HITs.4 For each HIT performed the
workers received a $0.03 fixed reward for participating, even
when their bid was rejected. All information was clearly in-
dicated in the instructions. The workers were not notified
what the pricing scheme was, and to avoid giving them infor-
mation about the mechanism, if their bid was accepted, the
payment they received was their bid. We used the following
pricing schemes:

• AlwaysWin Mechanism: This mechanism accepted
workers’ bids as long as the total payment to the worker
did not exceed $3.00. The fact that there is a budget
or that it was exceeded was not revealed to the work-
ers. Once meeting their budget workers were allowed
to continue bidding but their bids we rejected.

• Always Lose Mechanism: This mechanism imple-
ments a fixed price mechanism with threshold price of
$0, i.e. workers were rejected regardless of their bids.

4The only exception was the Always Win mechanism de-
scribed below where the limit on the bid was $0.99 and we
set a spending budget on each worker.
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• Fixed Price Mechanism: This mechanism uses a
fixed threshold price that is not revealed to the work-
ers. Each bid at or below the threshold price was ac-
cepted and otherwise rejected. In our experiment we
set this threshold price to be $0.04.

• Random Price Mechanism: This mechanism ran-
domizes over different threshold prices each time a
worker bids. If the bid is below the price the worker
was allocated and otherwise their bid was rejected.

We also ran a control mechanism which presented workers
with a fixed price of $0.03 per task and required workers to
reveal how many assignments they wish to perform. As in
the above pricing schemes the limit was set to 5 assignments
per HIT, and workers were allowed to perform 15 HITs.

There were 1033 bids (including 138 in the control) from
378 different workers in total (including 66 in control) in this
experiment. Each bid consisted of the maximal number of
assignments the worker is willing to perform in the bidding
round and their cost for performing an assignment. In total,
there were 952 valid bids, including 131 in the control (there
were 81 invalid bids we discarded where the bid cost or
number of assignments violated our instructions).

Recall that in this experiment a worker was given a chance
to bid 15 times (rounds), and if their bid was accepted they
worked on the tasks and received their bid as payment. Fig-
ure 4(a) plots the average bid at a given round for each pric-
ing scheme. This figure is complemented by Figure 5 which
gives a histogram of the number of workers that remained in
each round. In the AlwaysLose pricing scheme, for example,
there were only 2 workers after the eighth round, and the
average price shown in Figure 4(a) is an average of these
two bids. Up until the forth round there were 10 and 11
bidders in AlwaysLose and RandomPrice, respectively, and
16 in both AlwaysWin and FixedPrice. It therefore seems
that the majority of the information in Figure 4(a) is the
first 5 bids.

Evidence of strategic bidding. To examine whether
workers include strategic considerations in their bidding, one
can observe the obvious difference between the plots of the
different responses to the pricing schemes as shown in Fig-
ure 4(a). Bidders in the AlwaysWin scheme, increased their
bids as they got accepted (the following drop off is due to
the budget constraint we enforced, for methodological rea-
sons). In the AlwaysLose or RandomPrice schemes where
workers bids were rejected, bids were lowered. We see this

as clear evidence that when given an opportunity workers’
will declare false costs if they believe this will increase their
profit. We see this as strong support for insisting on incen-
tive compatible mechanisms.

Interestingly, although a budget constraint was implemented
in the AlwaysWin scheme and workers were automatically
rejected, their bids were still significantly higher than those
of other pricing schemes.

Effects of rejection. To observe this effect on workers,
in Figure 4(b) we plot the mean of the success rate of work-
ers (the number of bids that were accepted) vs. the number
of bidding rounds they participated in for the RandomPrice
and the FixedPrice mechanisms. 5 Although there seems
to be a negative correlation between success and number of
rounds, one must remember that there is very little data (in
the sixth round there were 12 and 8 workers in the Fixed-
Price and RandomPrice mechanisms, respectively). Better
evidence for whether rejection affects workers can be seen in
Figure 5, where we plot the number workers in each bidding
round for each pricing scheme. There are evident drop offs
in the RandomPrice and AlwaysLose mechanisms, where al-
most no bidders stayed beyond 6 rounds. Note that this is
despite the $0.03 they received simply for placing a bid. This
strengthens the claim that workers will avoid a HIT if they
know they will be automatically rejected, even if they are
paid to bid. Even when there is no monetary loss, there is a
price associated with sampling in crowdsourcing platforms
which can result in slower completion times for a batch of
HITs.

Quality of work. Although the main measure of per-
formance we consider in this paper is the number of assign-
ments that can be performed under the budget, we exam-
ined the quality of the work performed as well. Showing
that workers perform well on their allocated assignments
helps exclude concerns regarding negative effects the bidding
method may have. To examine the performance of work-
ers we chose the percentage estimation assignment since it
allows us to objectively quantify workers’ performance by
considering their errors from the true answer. In total, our
mechanism allocated to 161 workers who, in aggregate, sub-
mitted 10870 answers (we count the number of answers sub-
mitted for each pie chart).

5We only plot the results for these mechanisms as there are
no successes in the AlwaysLose mechanism and also in the
AlwaysWin mechanism once workers exceeded their budget.
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The error distribution is presented in Figure 6. The error
(vertical axis) is the difference between the workers guess
and the actual marked percentage of red in the pie chart
task. In general, workers performed well on the assignments.
The worker mean error was 2.57, and almost all workers who
were allocated assignments completed them. This was con-
sistent with the control group of 66 workers who received a
fixed price reward, where the mean error was 2.59. This im-
plies that performance is not negatively affected by bidding.

A subject of ongoing debate in the crowdsourcing commu-
nity is the relationship between performance and monetary
incentives. To examine this in our context we compared a
worker’s mean error on the assignments performed against
their bid. The mean error reflects on the quality of work,
and the bid indicates the reward the worker expects to re-
ceive. We plot the worker’s bid against their mean error in
Figure 6(b). In our examination we found no significant cor-
relation. We note that the data for this comparison involves
271 workers, since this is the total number of workers who
were allocated assignments by the mechanism.

5. DISCUSSION
In this paper we present a framework that enables design-

ing mechanisms for crowdsourcing markets with provable

guarantees. The mechanisms we presented are easy to im-
plement, have strong theoretical guarantees, and perform
well in practice. From the experimentation on the platform,
it seems there is evidence for strategic behavior and nega-
tive effects when automatically rejecting workers. We be-
lieve this evidence strengthens our model and assumptions
and should be taken into account when designing pricing
schemes in crowdsourcing markets.

We believe the model provides a good basis for designing
pricing mechanisms for crowdsourcing markets, and that it
can be further extended. A natural extension of this model
could incorporate verification schemes and automatic qual-
ity control that could integrate with the pricing mechanisms
presented here.
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