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ABSTRACT
In this paper we study how the network of agents adopting
a particular technology relates to the structure of the under-
lying network over which the technology adoption spreads.
We develop a model and show that the network of agents
adopting a particular technology may have characteristics
that differ significantly from the social network of agents
over which the technology spreads. For example, the net-
work induced by a cascade may have a heavy-tailed degree
distribution even if the original network does not.

This provides evidence that online social networks created
by technology adoption over an underlying social network
may look fundamentally different from social networks and
indicates that using data from many online social networks
may mislead us if we try to use it to directly infer the struc-
ture of social networks. Our results provide an alternate ex-
planation for certain properties repeatedly observed in data
sets, for example: heavy-tailed degree distribution, network
densification, shrinking diameter, and network community
profile. These properties could be caused by a sort of sam-
pling bias rather than by attributes of the underlying social
structure. By generating networks using cascades over tradi-
tional network models that do not themselves contain these
properties, we can nevertheless reliably produce networks
that contain all these properties.

An opportunity for interesting future research is devel-
oping new methods that correctly infer underlying network
structure from data about a network that is generated via a
cascade spread over the underlying network.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Network
problems; G.3.2 [Probability and Statistics]: [Experi-
mental Design]; J.4 [Social and Behavioral Sciences]:
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1. INTRODUCTION
The advent of Web 2.0 has tremendously enriched re-

searchers’ access to data. Instead of observing eighteen
monks for months waiting for something interesting to hap-
pen [30], researchers now have access to approximately 160
million users’ 90 million daily tweets through Twitter’s API [1].
While these data tell us what people do online, it is less clear
how much these data tell us about people in a broader con-
text.

Social science researchers developed social networks as
a methodological tool for understanding social phenomena,
such as how individuals’ actions affect macro-level features
of society, or how an individual’s “location” in a network af-
fects his/her opportunities [26, 14]. Sociologists have long
distinguished between different types of networks [26]. Some
examples are trust networks: from whom would you feel
comfortable asking for $1000?; friendship networks: with
whom do you want to go out Friday evening; information
networks: with whom do you discuss important matters;
and self-declared/articulated networks: who do you want
the world to believe are your friends?

Social networks are not to be conflated with online so-
cial networks such as LiveJournal, Epinions, MySpace, Face-
book, and Twitter. We will use the terms contagious net-
works to denote networks that grow by adding new members
where the new members are often “infected”by their current
social ties. The key property of contagious networks is that
people often join these networks because they have a friend
or acquaintance that is already a member. Contagious net-
works include most online social networks because people
are more likely to sign-up for such networks if they already
have friends on them. Citation networks, communications
networks, collaboration networks, co-authorship networks,
product co-purchasing networks may also be considered con-
tagious networks. Contagious networks provide much of the
digital data we have about networks. The actions of joining
and participating in these networks (e.g. logging into Live-
Journal, or coauthoring a paper) are often captured digitally.
Hence, contagious networks provide a means for studying
social questions pertaining to social networks by providing
data.

Because contagious networks are spread over an underly-
ing social network, it is natural to conjecture that these net-
works share many properties. However, it is difficult to know
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if this data generalizes past the digital world. The impor-
tance of this distinction is indicated by a familiar question,
“who in the room is friends with his/her mother on Face-
book?” However, even if no one were Facebook friends with
his/her mother would this meaningfully affect any large-
scale measurements of the data? Does the sheer scale of such
data render differences between the contagious networks and
social networks to be mere annoyances or do these differences
present a substantial obstacle to using data from contagious
networks to make inferences about social networks. This is
a key question that this paper hopes to address.

1.1 Summary of Results and Implications
We argue that the data from contagious networks is not

tantamount to holding up a big mirror to our society; it is
more like looking at our society in a fun-house mirror–where
things may appear very differently than they are.

Using computer simulations, we illustrate examples where
the contagious network and the underlying network have
very different properties. Data mining has shown that many
contagious networks share a few common features: heavy-
tailed degree distributions, shrinking diameters, edge densi-
fication, and a particular “network community profile”. We
show, with computer simulations, that even though certain
well-known network models (e.g. the Watts-Strogatz model
or a collection of cliques) have none of these properties, if we
use these models as an underlying network and grow conta-
gious networks over them in a natural way, then the resulting
contagious networks have all of these properties. We inves-
tigate various models of transmission and show that these
results are robust to changes in the model. We study vari-
ous parameter regimes to understand when our results hold.
We also explore the theoretical mechanisms underlying our
experimental results. In the case of degree distribution, we
can prove that certain underlying structure will endow the
contagious networks with heavy-tailed degree distributions
even when the underlying network is regular.

While these models are admittedly stylized, we believe
that they are natural, and that these results give strong ev-
idence of important implications, which we summarize here;
they are discussed in more detail in Section 5.

(1) These results provide a natural framework for devel-
oping generative models for contagious communities which
capture the aforementioned four properties: start with a
model for an underlying social network and model a con-
tagion spreading over it. (2) These results provide strong
intuition that we need different models for social networks
and contagious networks. It may be a mistake to import so-
cial network intuition into models for contagious networks.
Similarly, by datamining contagious networks, one expects
to find attributes that are common amongst contagious net-
works; however, these observations may not apply to the
underlying social network. (3) This helps make sense of the
counter-intuitive results of Leskovec et al [25] about network
structure. These results make intuitive sense in context of
contagious communities, but may not apply to other social
networks. More speculatively, if we imagine these networks
as being a community, it may allow Leskovec et al to give
us insight into the structure of communities as well. (4)
In a model where social networks are not created ex nihilo,
but from existing social structures, contagious networks pro-
vide a sort of sampling technique for learning the underlying

social network. While it may be impossible to directly in-
fer the underlying social structure, more subtle techniques
might work. In the Section 6, we pose the question: if conta-
gious network data is akin to looking in a fun-house mirror,
then what aspects of reality can we still reliably deduce from
looking at this data? After all, if you see feet and a head in
a fun-house mirror, you can be fairly certain that there is a
body in between.

1.2 Related Work
Technology adoption as a process on a social network has

been studied and documented before; however, usually only
the size of the cascade is considered. For example, in an
experimental study, Centola [6] creates online communities
populated with volunteers and studies the spread of joining a
health forum network over this strictly enforced underlying
network. Centola was mostly concerned with what types
of underlying network structures would foster the largest
cascade. For more examples, see Chapters 6 and 9 of [16].

Here, we model on-line social network formation as tech-
nology adoption, and investigate how the network structure
of the on-line social network is affected by the underlying
social network structure. In fact, we condition on the size
and so explicitly remove this variable from study.

This phenomenon of network creation over existing struc-
ture extends to many settings beyond on-line communities.
Segal [33] observes that the best prediction of who would
become friends at a certain police academy was the proxim-
ity of their last names in the alphabet (this was presumably
due to the frequent placement of the cadets in alphabetical
order). Thus the last names indicated a certain underlying
social structure over which friendships eventually formed.
In another study, also at a police academy, Conti and Dor-
eian [8] show that seating assignments and squad assign-
ments predict friendship ties. In this case, the study tries
to manipulate the underlying social structure networks to
foster inter-racial camaraderie at the academy.

Our results can be understood as trying to study the
sampling bias resulting from the technology adoption pro-
cess. The same person may interact over many differ types
of technology–telephone, text, email, Facebook, Twitter–
or without technology. Each technology may be selectively
used for particular communication needs. Each user may
use several distinct instances of the same technology (e.g. a
work and home telephone, several email accounts). To use
this data to make assertions about social questions, we need
to know that the data generalizes past the digital world, at
least in the cases that we care about.

A series of work (e.g. [18, 2]) points out a similar sam-
pling bias in context of traceroute sampling. For exam-
ple, Achlioptas, Clauset, Kempe, and Moore [2] show that
traceroute sampling finds power-law degree distributions even
in regular random graphs (which are very far from having a
power-law degree distribution). A sampling bias caused by
using traceroute sampling means a power-law distribution
can be measured even when the underlying degree distribu-
tion is constant.

However, traceroute sampling is fundamentally different
than the cascading processes evaluated here.1 In particular,

1Trace-route looks at the degree distribution on a breadth
first search tree. In our setting, this would be similar to
RET (n,α = 0, β = 1)–every infected node immediate in-
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unlike in the traceroute sampling case, running our models
of cascades over Erdös-Rényi random graphs does not yield
power-law or heavy-tailed degree distributions. Thus it must
be a different mechanism acting in each case.

Terminology.
For expositional convenience and concreteness, through-

out this paper we will use off-line friendship interchangeably
with social network and as the canonical example of a so-
cial network. Likewise, we will use on-line social networks
and sometimes Live Journal2 in particular to be a stand-in
for contagious networks. A sharp distinction between conta-
gious and social networks is not always clear, but nonetheless
we believe these generalizations are useful. Also, not all on-
line social networks are necessarily contagious communities
as membership in some may not be spread primarily via an
underlying social structure. While the language of cascades
and adoptions is more accurate and traditional to describe
the spread of some cultural artifact, we will interchangeably
use the notation of a virus and infection because such ter-
minology is it often more concise.

Road Map.
Section 2 describes the models we use to construct the

underlying social structure, the processes by which conta-
gious networks spread over this structure, and the proper-
ties we are interested in comparing between the original net-
work and the contagious network. The results of simulations
over these models are summarized in Section 3. Section 4
presents some theoretical rational for these results. In Sec-
tion 5 we draw implications of our results. Finally, Section 6
concludes with what we feel is an interesting open question
raised by our study as well as a framework with which to
approach it.

2. MODELS AND FORMALISMS
In this section we present natural models of underlying

social networks and cascades which spread over these net-
works to create contagious networks. We give examples of
properties found across many different network data sets. In
subsequent sections we will start with one of these network
models, simulate the growth of a contagious network over it,
and then compare properties of the contagious network to
those of the underlying social network.

2.1 Graph Models
For our underlying social networks, we use simple and

traditional generative models which do not exhibit the char-
acteristics we are hoping to capture. The two graphs that we
focus on for our potential networks are the Watts-Strogatz
model and the Planted Community model. Each is charac-
terized by two properties: 1) “random” short cut paths, and
2) edges that provide a lot of clustering but generally fail to
provide shortcut paths.

The Watts-Strogatz random network model is defined by
three parameters. The undirected WS(n, d, r) ensemble of
random graphs–where n is the number of vertices, d is the

fecting all uninfected neighbors but no internal edges which,
as we will see, is outside the parameters that yield our results
or that are interesting in our setting.
2LiveJournal is an early blogging and social networking com-
munity.

average degree which is even, and r ∈ [0, 1] is a parameter–
are defined by the random process that creates them. This
process begins with the graph on n nodes {0, 1, . . . , n − 1}
where each node is connected to the d closest other nodes
so that E = {(k, k ± � mod n) : 1 ≤ � ≤ d/2}. With prob-
ability r, each edge (u, v) is then “rewired”, that is replaced
with the edge (u, v′) where v′ is chosen from the vertices not
already connected to u.3

The Planted Community Model PC(n, d, r) is defined by
the same three parameters as the Watts-Strogatz model but
here we require that n is a multiple of d. To create such
a graph, the vertices are partitioned into n/d equally sized
cliques of size d. Each edge (u, v) is then “rewired” with
probability r.

Models of Transmission.
In this section we first define four simple models of trans-

mission.
The first, which we call random edge transmission induced

graph, has one parameter. RETIGG(m) is defined by start-
ing with the graph G = (VG, EG) and initializing the in-
fected set I ⊆ VG to a single random vertex. A random
edge (u, v) is chosen uniformly from E(I, Ī) and the vertex
v is added to I . This is repeated until |I | = m. The result-
ing infected graph is G(I), the induced subgraph of G on
the vertices in I .

The first model includes all the edges in G between ver-
tices that are in I . In the second model, these edges must
also be discovered. We call the second model random edge
transmission, and it has three parameters. RETG(m,α, β)
is defined by initializing the infected graph H = (VH , EH)
to the graph ({v0}, ∅) where v0 is a random vertex from
the potential graph G = (VG, EG). At each step, each edge
(u, v) ∈ EG(VH , VH) − EH is added to H with probability
α and each edge (u, v) ∈ EG(VH , VH) is added to H (along
with v) with probability β. The process is run until m ad-
ditional vertices are included.

The third model random edge transmission with multiple
initial vertices RETMIVG(m,α, β, s) is defined the same
way as RETG(m,α, β) but the transmission is started from
s random vertices simultaneously.

Note that RETIGG(m), RETG(m,α, β), and
RETMIVG(m,α, β, s) never add edges that are not in G.

We create a more complex model which allows people
in “infected” communities to make new friends within the
cascade. The random edge transmission with exploration
RETWEG(m,α, β, γ) is defined exactly like the random edge
transmission except that at each round, for each triple u, w, v ∈
VH where (u,w), (w, v) ∈ EH the edge (u, v) is added to EH

with probability γ (this edge is added with probability γ for
each such triple).

2.2 Properties studied

Heavy-tailed degree distributions.
Previous research has shown that many networks have

heavy-tailed degree distributions[3, 4]. By heavy-tailed de-
gree distributions we mean that the degree distribution ap-

3The original WS definition is slightly more complicated
than this because the order which you consider the edges
may matter, see [37] for the details of ordering. We use the
implementation in SNAP [20] which ignores these subtleties.
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proximates a straight line when plotted with both axes log-
arithmically scaled, perhaps followed by a drop-off.4 Power-
law distributions, the related Yule distributions, and trun-
cated power-law distributions are all heavy-tailed distribu-
tions [9]. Often heavy-tailed degree distributions serve as
a contrast to Poisson distributions, which are much more
highly concentrated and have a much thinner tail (fewer
points far from the average [16]).

Shrinking Diameters and Edge Densification.
Previous research has also shown that, over time, the di-

ameter of contagious networks tends to shrink and that the
average degree of vertices tends to increase [23]. This work
was based on analyzing four networks: the ArXiv citation
graphs (for high-energy physics theory), the U.S. Patent ci-
tation graph, the graph of routers of the Internet, and the
ArXiv affiliation graph (on certain topics). Note, however,
that none of these is actually an online social network in the
usual sense.

Network Community Profile.
Another network feature that we are interested in is called

the network community profile and is described by Leskovec,
Lang, Dasgupta, and Mahoney [25]. The authors develop a
tool to analyze network structure that they call the“network
community profile”-which we will describe shortly. They
show that this tool yields similar results when applied to over
70 data sets, such as LiveJournal. In particular, the network
community profile on the on-line social networks: LiveJour-
nal, Epinions, LinkedIn, Del.icio.us, and Flickr look nearly
identical (see [25] pages 22 and 25). They note that the
plot decreases until around 100, then it stays roughly even
for a short period, and finally starts to increase. Finally,
they show that this tool yields completely different results
on virtually all generative models (except for one that they
call the Forest-Fire model).

Leskovec et al were interested in studying the community
structure on networks. They define a community as a set
of nodes with low conductance–many edges within the set
compared to the number of edges leaving the set. Even in
very large datasets of contagious networks, they found few
large communities (over 100 people) that fit this definition.
Broadly speaking, they found that the structure of these
graphs was composed of “whiskers” and a “core”. Whiskers
are a set of nodes connected to the rest of the graph by only
a one or a few edges. The core is a big connected tangle with
no subsets of small conductance. The “community” struc-
ture that they detect (sets with low conductance) can be
almost entirely attributed to collections of whiskers–groups
just barely connected to the rest of the graph.

The conductance of a set denoted S ⊆ V

Φ(S) =
E(S, S̄)

min{degree(S), degree(S̄)}
is equal to the number of edges leaving a set S divided by
the sum of the degree of the vertices in S (or S̄, whichever
is smaller). Thus, if S is insular and does not have many
edges leaving it relative to its total degree, then S has low

4While this terminology is not standard, we use because
it captures the operational definition in many other papers,
provides enough precision to describe our results, and avoids
the controversy of the term power-law (see discussion on
page 60 of [16]).

conductance. The community network profile finds the set
of each size s : 1 ≤ s ≤ |V |/2 with the lowest conductance
and then plots this graph. I.e fG(x) = minS:|S|=xΦ(S).

The network community profile is closely related to isoperi-
metric inequalities which are a mathematical subject con-
cerned with minimizing the boundary for a given volume
(such as the circle in the plane), and thus showing that a
large volume implies a certain sized boundary. Here the
“volume” corresponds to the total degree and the “bound-
ary” corresponds to the number of edges leaving.

3. SIMULATION RESULTS
In this section we will describe the results of our simula-

tions. We compare the studied properties on the contagious
networks and the underlying networks. Overall, the simula-
tions support our theory that contagious networks look like
a cascade across simple network formation models.

Our results mainly apply to the beginning of a cascade.
Once the cascade reaches the entire graph, then by definition
the underlying graph and cascade look the same.

All simulations were done using the SNAP System [20].
This is particularly important for the network community
profile and diameter which are both approximated with heuris-
tics. These heuristics were shown to work well in other
graphs (see Section 5 of Leskovec et al [25]), but that is
no guarantee that they work well here. 5

Unless specified otherwise, simulations were run on an un-
derlying graph of 1,000,000 nodes with average degree 100,
using a rewiring parameter of 0.1 and the random edge trans-
mission models with α = 0.7, β = 0.01 and γ = 0.001.

We first describe the results when theWatts-Strogatz model
is used as a potential graph. We study four properties of
the contagious network: degree distribution, diameter, edge
densification, and network community profile.

Degree Distribution.
Even though the degree distribution of theWatts-Strogratz

model is highly concentrated, the resulting contagious net-
works have a degree distribution that resembles a heavy-
tailed distribution (see Figure 1). This is especially surpris-
ing since the maximum degree of the original graph G (and
hence the largest possible degree in H) was slightly over
100 in the trials we ran. Eventually, the degree distribution
looks like a truncated heavy-tailed distribution. That is, all
the points present are in a straight line, but this tail sud-
denly stops when the underlying graph has no vertices with
degree above a certain value.

After a large fraction of the underlying network becomes
infected, we expect this effect to go away because the un-
derlying networks does not have a heavy-tailed degree dis-
tribution. These plots hold to approximately straight lines
until the cascade reaches 80,000 nodes at which point they
started to diverge. After about 1/3 of the graph is infected,
these plots begin to diverge substantially from the truncated
heavy-tailed distribution. The same behavior was observed
for all transmission types. However, if α is made too low,
or β too high, then this behavior is not as prevalent. The
extreme case where α = 0 and β = 1, is very similar to the
trace-route sampling setting. On regular graphs the conta-

5The computer code used is available on the author’s home-
page.
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Figure 1: Degree Distribution
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Figure 2: Diameter and 90% effective diameter as a
cascade spreads on Watts-Strogatz graph.

gious networks limit to a power-law degree distribution [2],
but the underlying graphs that we consider do not yield a
contagious network with a heavy-tailed degree distribution
for these settings of the parameters.

Diameter and Edge density.
We also observe the diameter and average degree of the

network. We find the diameter and effective diameter shrink
and the average degree increases in accordance with the re-
sults of Leskovec, Kleinberg, and Faloutsos [23] (see Fig-
ures 2 and 3). Both plots qualitatively match the plots in
[23]. The edge density increases approximately linearly, af-
ter an initial jump. The diameter, after a large spike and
ensuing drop off, decreases gradually.

Network Community Profile.
We found that the network community profile closely matches

that of the online social networks that Leskovec et al stud-
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Figure 3: Average degree vs infected Nodes as a
cascade spreads on Watts-Strogatz graph.

ied in [25] in all our models of transmission. Figure 4 shows
both the original network community profile of the Watts-
Strogatz model and the network community profile of a virus
spread over the network. This similarity holds up until
about 1/3 of the vertices in the graph are infected. Differ-
ing the population size and degree does not seem to affect
the outcome. However, if the rewiring probability r is made
too large (> .3) then the shape collapses; the plot never
decreases sufficiently. A similar pattern occurs if α is not
sufficiently large compared to β; the edges between nodes
of the infected graph H fail to fill in and no community
structure is detected.

Other Graph Generation Models.
The results for the Planted Community model are nearly

identical to those of the Watts-Strogatz model, which im-
plies a certain robustness of these results.
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Our hypothesis was not confirmed on all graphs. We do
not observe all of these behaviors when we run these pro-
cesses on various graph generation models including Erdös-
Rényi random graphs [10], Preferential Attachment networks [4],
or complete graphs. We hypothesize that, in the Erdös-
Rényi random graphs and the Preferential Attachment model,
this is because there is very little clustering to begin with,
causing the virus to spread evenly over the graph in a tree
like fashion and remain unclustered. Such behavior might
not continue if nodes “met” other infected nodes by virtue
of being infected and having a common neighbor. To test
this hypothesis we embellish the dynamics to artificially add
community structure using RETWE as a model of spread-
ing. We find that the network community profile still does
not look like the sought after behavior, though it comes
closer.

In the complete graph, we hypothesize that the reason
contagious communities do not contain all these properties
is that there are no “short-cut” edges.

4. THEORETICAL INSIGHTS
In this section, we present mathematical insights that elu-

cidate many of the empirical results of the previous section.
In particular, we show that a graph exhibiting both “strong”
and“weak”ties should generate contagious networks exhibit-
ing a heavy-tailed degree distribution. This theory accu-
rately predicts the results in the aforementioned section.

The RETIGmodel is mathematically identical to the model
of first passage percolation6 where each edge is equipped
with a Poisson clock of unit rate, the number of vertices is
conditioned on, and all induced edges are included. First
Passage percolation has been studied on Erdös-Rényi ran-
dom graphs, but to our knowledge, not on graphs with small
world properties [35].

While all these properties: degree distribution, diameter,
network community profile (referred to as isoperimetric in-
equalities in this literature), and density have been studied

6In first passage percolation typically one node starts in-
fected. Each edge is equipped with a clock, and the infection
can only travel across each edge when it rings

on certain graphs and even in certain percolation models,
we know of no results that apply directly to the situation
at hand. In particular, site and bond percolation has been
studied (in site percolation each node is present/removed
with some independent probability and in bond percolation
each edge is present/removed with some independent prob-
ability). However, these models differ substantially from the
contagion model. Moreover, these results tend to focus on
the property of component size, which we fix a priori.

Degree Distribution.
We start with a theorem about a family of graphs closely

related to the planted community model.

Definition 1. The planted clique model PCM(n, k, r) gen-
erates a graph on n nodes by superimposing the edges from
a degree rk regular random graph and from partitioning the
nodes into n/k cliques of k nodes each.

Next we show that RETIG will produce a power-law de-
gree distribution on such graphs.

Definition 2. A power-law distribution with exponent −γ
is a distribution on the positive integers where p(x) ∝ L(x)x−γ

such that limx→∞ L(tx)/L(x) = 1.

Theorem 1. Let G be a family of PCM(n,
√
n, r) graphs

where 0 < r < 1 is a constant. Then as n increases, the
degree distribution of the RETIG on G after infecting 4

√
n

nodes will limit to a distribution D which is a power-law
distribution with exponent −1− r.

The proof follows from the following more general intu-
ition about the Yule distribution [38, 9, 28]. The Yule dis-
tribution was created to model the following situation con-
cerning species and genera: at each time step choose a ran-
dom species and with probability 1 − α the species creates
a new species in the same genus, and with probability α
the species creates a new species in a new genus. The Yule
distribution describes the fraction of genera with a particu-
lar number of species in the limit of this process. The tail
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of this distribution limits to a power-law distribution with
exponent −2− α

1−α
.

In the PCM graphs, in the limit of n, a 1
1+r

fraction of
each vertices neighbors are cliquish–in the same clique–and a
r

1+r
fraction of its neighbors are distant–in different cliques,

i.e. neighbors via the random edges. Let γ = r
1+r

. Think
of r being small so that γ is close to 0, and consider a cas-
cade over such a network. If we assume that the cliques are
sufficiently large, that there are sufficiently many, and that
the cascade has not been going too long (so that each ver-
tex has about the same number of non-infected neighbors),
then when a new vertex is infected, it is like picking a ran-
dom vertex in the cascade and infecting a random neighbor.
This neighbor has a 1−γ probability of being cliquish (in the
same clique) and a γ probability of being distant (in a dif-
ferent clique). Because of this the number of nodes present
in each clique closely follows a Yule distribution with pa-
rameter γ, and thus limits to a power-law distribution with
exponent −2− γ

1−γ
= −2− r.

Consider the induced subgraph of the cascade. The degree
of each vertex will be equal to the number of cliquish and
distant neighbors that are also included. The number of
cliquish neighbors of a vertex is simply equal to the number
of infected nodes in its clique.

Because the number of infected vertices in each clique lim-
its toward a power-law distribution with exponent −2 − r
and a clique with k infected vertices contains k vertices of
cliquish degree k−1, the degree distribution of cliquish edges
limits toward a power-law distribution with exponent about
−2−r+1. Thus the degree distribution will be a power-law
with exponent −1 − r. It turns out that distant neighbors
contribute very little to a vertex’s degree in comparison to
the cliquish neighbors because the distant neighbors form a
random graph. The theorem follows from the above intu-
ition.

Thus in Section 3 we expect that in the RETIG model we
have a power-law with exponent ≈ −1.1. We see in Figure 1
of Section 3 that the data fits this well.

Several things break down after the cascade continues to
spread. First some vertices in the cascade may have a signifi-
cant fraction of their neighbors in the cascade. Alternatively,
some clusters may have a significant fraction of vertices in
the cascade. This means that these vertices (or clusters) are
less likely than random to spread to a friend (or gain a new
adoptive member). Secondly, as the cascade infects a sig-
nificant number of nodes in the graph, a random edge may
not spread the virus to a new area of the graph, but instead
may reach an already infected area.

While the Watts-Strogatz graph with rewire parameter r
is not a collection of cliques, it behaves in a similar manner
to the above graph. Locally, it looks a lot like a clique. If one
imagines several locations of the Watts-Strogatz graph be-
ing infected, then each location is “clique-like” in that most
vertices in that location are neighbors. When a new vertex
is included, with probability r the link will be a rewired link
and thus is likely to start a new location of the infection.
However, if an original (non-rewired) edge is included, then
the new vertex will be in a similar location to previously
included vertices (and thus is likely neighbors with most of
them).

This argument uses two properties: that networks are lo-
cally clique like, and that a fraction of the edges are random.
In general, when an underlying network has both high clus-

tering and an α fraction of its edges are “random”, we expect
the degree distribution of the contagious network to look like
a modified Yule distribution for the same reasons.

Edge Densification.
While it seems intuitive that the edges will densify in a

cascade, it turns out that the schedule of densification differs
between an Erdös-Rényi graph and a graph with clustering.

The edge density of a cascade on an Erdös-Rényi graph
will be proportional to the fraction of the network infected
by the cascade. Thus, the cascade does not densify un-
til it reaches a constant fraction of the graph. With high
probability, all subsets of a small constant fraction, say γn,
of nodes in an Erdös-Rényi graph will have average degree
less than 2 + εγ where εγ depends on γ and goes to 0 as γ
does. (See, for example, the appendix of [32]). Thus den-
sification cannot happen in a cascade on an Erdös-Rényi
random graph with expected constant degree until it infects
a significant fraction of nodes. However, as we previously
saw, we expect the degree distribution of the cascade in a
Watt-Strogatz graph with rewiring probability r to emulate
a power-law distribution with exponent −1 − r even when
only

√
n vertices have been infected. Thus for r < 1 the

expected edge density is infinite. Recall that the Yule dis-
tribution is what is expected in the limit, so we expect the
edge density to grow even before reaching a constant fraction
of the vertices.

Forest Fire Model as a Contagious Community.
Leskovec et al found that the Forest Fire model was the

one generative model they tested that did replicate the re-
sults of the community network profile that they found on
the 72 data sets. We note that the exploration compo-
nent of RETWE–that is, adding direct links to neighbors of
neighbors–run on a random graph intuitively simulates the
Forest Fire model.

The complete Forest Fire model can be found on page 9 of
Leskovec, Kleinberg, and Faloutsos [23]. For our purposes, it
will suffice to present a slightly simplified undirected version.
Our Forest Fire model has one parameter p, the burning
probability. The model starts with a single node. At each
time step a new node v joins, chooses an existing node u at
random, and forms a link with u. For each node w that v
links to (starting with u), v also links to kw of w’s neighbors
where kw is chosen from a binomial distribution with mean
(1− p)−1. This is guaranteed to terminate because v is not
allowed to link to any node more than once.

Consider running RETWE on a low degree Erdös-Rényi
random graph. When a vertex v joins (if the contagious
network has not reached more than a small fraction of the
total nodes), then it is very likely that v is attached to ex-
actly one node u of the infected subgraph, H , (the vertex
that caused v’s infection). The vertex v can add more ties
in the infected subgraph H by “exploration” on the infected
subgraph through ties of u in H (that is adding direct ties
to neighbors of u). Each time that v links to a neighbor w
of u in H , the next time step v can add nodes to neighbors
of u as well.

The difference between these two models is in the number
of neighbors that u finds by exploration. In the forest fire
model it is (1 − p)−1 in expectation, and in the RETWE
model it depends on the amount of time the node has been
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in the network. Also in RETWE a vertex can additionally
add ties by infecting neighbors in G that are not yet in H .

Thus it is not surprising that both of these models produce
similar though not certainly not identical network commu-
nity profiles.

5. IMPLICATIONS
We think that there are several important implications

from the above models and simulations.
New generative model for contagious networks: This
intuition provides us with a new generative model for con-
tagious networks. Start with a social network model, and
model a contagion spreading over it. We show that with
certain modeling choices (for example Watts-Strogatz with
RET adaption) this two-step simulation captures both the
intuition of sociology research about social network models–
small diameter [27] and local clustering [36]–and the datamin-
ing research on contagious networks–shrinking diameter and
edge densification [23], heavy-tailed degree distribution [4],
and a particular network community profile [21]–all in one
simple and intuitive model. We acknowledge that our start-
ing networks (e.g. Watts-Strogatz) are very stylized and not
particularly realistic, and we leave it for future work to fur-
ther develop this framework with more realistic underlying
networks and adoption patterns.
Contagious networks and social networks require dif-
ferent models: We show that metrics that appear to test
global properties (e.g network community profile) and met-
rics that appear to test local properties (e.g. degree distribu-
tion) may show dramatically different results on contagious
networks and the underlying social networks. While this
observation has been made before, we provide results that
begin to show the scope and scale of the qualitative and
quantitative differences.

A long line of work seeks to study network generation
models (for examples see [10, 5, 11, 37, 4, 23, 21, 19]). Our
results warn that it is unlikely that any one model will serve
to generate realistic models for broad class of social net-
works. This remains true even if we only desire that our
models capture fairly basic properties. Indeed, we should
not a priori expect all properties to be universal, and thus
we should not a priori expect one generative model. One
of the original motivations for sociologists to develop social
network theory was to explain how social networks differ
and to understand the implications of these differences. For
example Gans [12] studied how Boston’s West End com-
munity was unable to form a coalition to fight an “urban
renewal” measure that ended up destroying the community,
even though other seemingly similar communities were able
to organize against and defeat such measures [14] and, more-
over, how social structures could have contributed to this
outcome.

Distinguishing the two tasks of modeling contagious net-
works and social networks gives a partial explanation for the
difficulty in the task of creating realistic models. By not dis-
tinguishing the two tasks, on the one hand, social networks
intuition is inadvertently imported into models of contagious
networks. However, this intuition is found to be incorrect
by datamining contagious communities. On the other hand,
the counter-intuitive findings of datamining contagious net-
works is being advertently brought into social network mod-
els, where it makes little intuitive sense.

If indeed social networks and contagious networks are dif-
ferent, this indicates that using data from contagious so-
cial networks may mislead us if we try to directly use it
to understand social networks. There is selection bias to-
ward datamining contagious networks because data is more
easily available for this type of network. Thus, we would ex-
pect datamining studies to find attributes that are common
amongst contagious networks, but not necessarily present
in social networks. Yet, despite the prevalence of certain
characteristics (such as heavy tail degree distribution [4]),
models without these characteristics may still be valid in a
wide variety of interesting settings. In particular, it may
be that such characteristics are common to contagious net-
works, but are not found in many social networks. While we
cannot show that contagious networks are necessarily differ-
ent from social networks on all these metrics, we do remark
that if the intuition that guided the first generative models
is correct (which do not contain heavy-tailed degree distri-
bution, shrinking diameter [23], edge densification, and a
particular network community profile [21]) then such a dis-
crepancy must exist. The counter-intuitive core and whisker
structure found by [25] might accurately characterize actual
social networks; however, we feel that contagious networks
is a more natural explanation of these observations.

At the same time, this distinction frees us from conform-
ing to the intuition of sociologists when modeling contagious
communities. Leskovec et al [21], already showed us that
contagious networks are not as we would commonly believe
them to be. Some doubted the counter-intuitive results. Our
experiments provide intuition that supports their observa-
tions and show that natural cascades will lead to heavy-
tailed degree distributions, edge densification, shrinking di-
ameter, and certain network community profiles in conta-
gious networks.

More speculatively, this gives us an opportunity to re-
imagine what a community is and what they look like through
the results of Leskovec et al. These contagious social net-
works can be seen as a community within an underlying
social network. That is the nodes of LiveJournal form the
“LiveJournal community”which is embedded in society. The
LiveJournal network can be viewed both as a network in and
of itself, but also as a community in a larger network. We
can perhaps use the core/whisker model of Leskovec et al to
understand properties of communities.

This model provides an alternate view of community struc-
ture compared to that metrics such as modularity [29] and
conductance [24]. This view sees communities as gradually
adding internal connections and external members who start
on the periphery of the group but gradually gradually be-
come more central to the community. Communities are com-
posed of whiskers and a core that has no insular communi-
ties.

If dynamics similar to our model exist, then contagious
social networks will, with high probability, contain proper-
ties for a range of underlying social networks even though
these same underlying networks may or may not have these
properties. We note that our results only hold when the
network is fraction of the total graph. Thus we think they
would apply more to LiveJournal than Facebook. Addition-
ally, as we already remarked, not all on-line social networks
are necessarily contagious. For example, we do not expect
the link structure of anonymous on-line support groups to be
generated by a cascade over an underlying social structure.
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It would be interesting to go beyond simulation data and
attempt to verify this distinction between social networks
and contagious networks on real data. However, it is not
entirely clear what data set would be a good test. To a
certain extent, this is really asking the impossible. How does
one accurately measure a “trust” network (even between two
people)? However, even in a limited context, it would be
interesting to carry out such a study.

5.1 Opportunities
At the same time, these results point toward the oppor-

tunities (and challenges) of developing techniques for recon-
structing the underlying social network from contagious net-
work data. In a model where social networks are not created
ex nihilo, but from existing social structures, contagious net-
works provide a sort of sampling technique for learning the
underlying social network.

One future line of inquiry is: what properties can (and
what properties cannot) be efficiently recovered? We now
suggest how future work could address this question.

6. POTENTIAL NETWORKS
Our model can be conceptualized in a framework that we

call “potential networks”. Potential networks is a two phase
model of social networks. The first phase is the “poten-
tial” network. This network may not be directly observed or
even exist an any normal manner. The second phase is the
“behavioral” network, which is observable. However, the be-
havior network is realized by running some random process
over the potential network which samples vertices and edges
from it to produce the behavioral network and in some cases
adds additional edges.

The key insight here is that we already have data from
contagious networks and the process by which a contagious
network grows acts “locally”–ties are added to the commu-
nity two people at a time. Ethnographic tools could be used
to build a model of how a particular technology spreads
based on interviewing individuals. Thus, this process may
be much easier to observe than the original underlying net-
work. Then, based on this model, the data might be reverse
engineered to recover “global” properties of the underlying
network.

Of course, real processes are more complicated than the
models in this paper. However, we do not think that this
formidable challenge is insurmountable. By better modeling
how particular contagious networks grow, we may be able
to use the vast amounts of data to reconstruct properties of
the underlying social network.

Related Work.
Recent work by Gomez-Rodriguez, Leskovec, and Krause [13]

creates a model to try to infer a network of influence by
looking only at the time sequence of an infectious outbreak
(e.g. a news item through the blogosphere). They show via
computer simulations that their heuristics for recovering a
potential network, given the timing data from a series of out-
breaks, can simultaneously give high precision and recall of
the original edges. This model requires many cascades to be
spread over the same nodes, while in the potential network
setting, only one cascade is observed.

Questions similar to this have been looked at before in
field of sampling theory, for example see [7] and [31]. How-
ever, the techniques for reconstructing graph properties from

sampled data is much smaller; see Chapter 5 in [17] for a sur-
vey of such results. In fact, graphs have traditionally been
hard to sample and this is part of the reason that the newly
acquired large-scale data are so welcome.

Work by Handcock and Giles [15] proposes a method of
estimating properties from adaptively sampled networks by
using maximum likelihood estimates over exponential graph
models. Moreover they show that their method does well on
real test data. A key observation made here is that simply
because the sampled graph data is not representative of the
graph, does not mean that key attributes cannot be recon-
structed in a more clever way. However this work seems to
rely on an assumption that fails in our setting: that which
data are observed and which data remain unseen only de-
pends on the observed data. In a cascade, the fact that
the cascade does not reach a person, already indicates that
the person is likely not tightly connected to many infected
nodes.

Finally, there has been recent work on how to sample a
network in a way that makes it easy to recover certain prop-
erties (e.g. [22, 34]), however, in our framework the way that
the network is sampled is fixed.

There are more results in sampling literature, but none
seem to apply to the case where the part of the underlying
graph that is observed depends on the underlying graph it-
self in a way that is not explicitly controlled by the sampler.
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