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ABSTRACT
In this paper we discuss a very simple approach of combining con-
tent and link information in graph structures for the purpose of
community discovery, a fundamental task in network analysis. Our
approach hinges on the basic intuition that many networks contain
noise in the link structure and that content information can help
strengthen the community signal. This enables ones to eliminate
the impact of noise (false positives and false negatives), which is
particularly prevalent in online social networks and Web-scale in-
formation networks.

Specifically we introduce a measure of signal strength between
two nodes in the network by fusing their link strength with con-
tent similarity. Link strength is estimated based on whether the
link is likely (with high probability) to reside within a community.
Content similarity is estimated through cosine similarity or Jaccard
coefficient. We discuss a simple mechanism for fusing content and
link similarity. We then present a biased edge sampling procedure
which retains edges that are locally relevant for each graph node.
The resulting backbone graph can be clustered using standard com-
munity discovery algorithms such as Metis and Markov clustering.

Through extensive experiments on multiple real-world datasets
(Flickr, Wikipedia and CiteSeer) with varying sizes and character-
istics, we demonstrate the effectiveness and efficiency of our meth-
ods over state-of-the-art learning and mining approaches several of
which also attempt to combine link and content analysis for the
purposes of community discovery. Specifically we always find a
qualitative benefit when combining content with link analysis. Ad-
ditionally our biased graph sampling approach realizes a quantita-
tive benefit in that it is typically several orders of magnitude faster
than competing approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

Keywords
Web mining, graph clustering, content analysis

1. INTRODUCTION
An increasing number of applications on the World Wide Web

rely on combining link and content analysis (in different ways) for
subsequent analysis and inference. For example, search engines,
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like Google, Bing and Yahoo! typically use content and link infor-
mation to index, retrieve and rank web pages. Social networking
sites like Twitter, Flickr and Facebook, as well as the aforemen-
tioned search engines, are increasingly relying on fusing content
(pictures, tags, text) and link information (friends, followers, and
users) for deriving actionable knowledge (e.g. marketing and ad-
vertising).

In this article we limit our discussion to a fundamental inference
problem — that of combining link and content information for the
purposes of inferring clusters or communities of interest. The chal-
lenges are manifold. The topological characteristics of such prob-
lems (graphs induced from the natural link structure) makes identi-
fying community structure difficult. Further complicating the issue
is the presence of noise (incorrect links (false positives) and miss-
ing links (false negatives). Determining how to fuse this link struc-
ture with content information efficiently and effectively is unclear.
Finally, underpinning these challenges, is the issue of scalability as
many of these graphs are extremely large running into millions of
nodes and billions of edges, if not larger.

Given the fundamental nature of this problem, a number of so-
lutions have emerged in the literature. Broadly these can be classi-
fied as: i) those that ignore content information (a large majority)
and focus on addressing the topological and scalability challenges,
and ii) those that account for both content and topological informa-
tion. From a qualitative standpoint the latter presumes to improve
on the former (since the null hypothesis is that content should help
improve the quality of the inferred communities) but often at a pro-
hibitive cost to scalability.

In this article we present CODICIL1, a family of highly efficient
graph simplification algorithms leveraging both content and graph
topology to identify and retain important edges in a network. Our
approach relies on fusing content and topological (link) informa-
tion in a natural manner. The output of CODICIL is a transformed
variant of the original graph (with content information), which can
then be clustered by any fast content-insensitive graph clustering al-
gorithm such as METIS or Markov clustering. Through extensive
experiments on real-world datasets drawn from Flickr, Wikipedia,
and CiteSeer, and across several graph clustering algorithms, we
demonstrate the effectiveness and efficiency of our methods. We
find that CODICIL runs several orders of magnitude faster than
those state-of-the-art approaches and often identifies communities
of comparable or superior quality on these datasets.

This paper is arranged as follows. In Section 2 we discuss ex-
istent research efforts pertaining to our work. The algorithm of
CODICIL, along with implementation details, is presented in Sec-
tion 3. We report quantitative experiment results in Section 4, and

1COmmunity Discovery Inferred from Content Information and
Link-structure
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demonstrate the qualitative benefits brought by CODICIL via case
studies in Section 5. We finally conclude the paper in Section 6.

2. RELATED WORK
Community Discovery using Topology (and Content): Graph
clustering/partitioning for community discovery has been studied
for more than five decades, and a vast number of algorithms (exem-
plars include Metis [15], Graclus [6] and Markov clustering [27])
have been proposed and widely used in fields including social net-
work analytics, document clustering, bioinformatics and others.
Most of those methods, however, discard content information as-
sociated with graph elements. Due to space limitations, we sup-
press detailed discussions and refer interested readers to recent sur-
veys (e.g. [9]) for a more comprehensive picture. Leskovec et al.
compared a multitude of community discovery algorithms based on
conductance score, and discovered the trade-off between clustering
objective and community compactness [16].

Various approaches have been taken to utilize content informa-
tion for community discovery. One of them is generative proba-
bilistic modeling which considers both contents and links as being
dependent on one or more latent variables, and then estimates the
conditional distributions to find community assignments. PLSA-
PHITS [5], Community-User-Topic model [29] and Link-PLSA-
LDA [20] are three representatives in this category. They mainly
focus on studies of citation and email communication networks.
Link-PLSA-LDA, for instance, was motivated for finding latent
topics in text and citations and assumes different generative pro-
cesses on citing documents, cited documents as well as citations
themselves. Text generation is following the LDA approach, and
link creation from a citing document to a cited document is con-
trolled by another topic-specific multinomial distribution.

Yang et al. [28] introduced an alternative discriminative proba-
bilistic model, PCL-DC, to incorporate content information in the
conditional link model and estimate the community membership
directly. In this model, link probability between two nodes is de-
cided by nodes’ popularity as well as community membership, which
is in turn decided by content terms. A two-stage EM algorithm
is proposed to optimize community membership probabilities and
content weights alternately. Upon convergence, each graph node is
assigned to the community with maximum membership probabil-
ity.

Researchers have also explored ways to augment the underly-
ing network to take into account the content information. The SA-
Cluster-Inc algorithm proposed by Zhou et al. [30], for example,
inserts virtual attribute nodes and attribute edges into the graph
and computes all-pair random walk distances on the new attribute-
augmented graph. K-means clustering is then used on original
graph nodes to assign them to different groups. Weights associated
with attributes are updated after each k-means iteration according
to their clustering tendencies. The algorithm iterates until conver-
gence.

Ester et al. [8] proposed an heuristic algorithm to solve the Con-
nected k-Center problem where both connectedness and radius con-
straints need to be satisfied. The complexity of this method is de-
pendent on the longest distance between any pair of nodes in the
feature space, making it susceptible to outliers. Biologists have
studied methods [13, 26] to find functional modules using network
topology and gene expression data. Those methods, however, bear
domain-specific assumptions on data and are therefore not directly
applicable in general.

Recently Günnemann et al. [12] introduced a subspace cluster-
ing algorithm on graphs with feature vectors, which shares some
similarity with our topic. Although their method could run on the

full feature space, the search space of their algorithm is confined by
the intersection, instead of union, of the epsilon-neighborhood and
the density-based combined cluster. Furthermore, the construction
of both neighborhoods are sensitive to their multiple parameters.

While decent performance can be achieved on small and medium
graphs using those methods, it often comes at the cost of model
complexity and lack of scalability. Some of them take time propor-
tional to the number of values in each attribute. Others take time
and space proportional to the number of clusters to find, which is
often unacceptable. Our method, in contrast, is more lightweight
and scalable.
Clustering/Learning Multiple Graphs: Content-aware clustering
is also related to multiple-view clustering, as content information
and link structure can be treated as two views of the data. Strehl and
Ghose [23] discussed three consensus functions (cluster-wise simi-
larity partitioning, hyper-graph partitioning and meta-clustering) to
implement cluster ensembles, in which the availability of each in-
dividual view’s clustering is assumed. Tang et al. [24] proposed a
linked matrix factorization method, where each graph’s adjacency
matrix is decomposed into a “characteristic” matrix and a common
factor matrix shared among all graphs. The purpose of factoriza-
tion is to represent each vertex by a lower-dimensional vector and
then cluster the vertices using corresponding feature vectors. Their
method, while applicable to small-scale problems, is not designed
for web-scale networks.
Graph Sampling for Fast Clustering: Graph sampling (also known
as “sparsification” or “filtering”) has attracted more and more fo-
cus in recent years due to the explosive growth of network data. If a
graph’s structure can be preserved using fewer nodes and/or edges,
community discovery algorithms can obtain similar results using
less time and memory storage. Maiya and Berger-Wolf [17] intro-
duced an algorithm which greedily identifies the node that leads to
the greatest expansion in each iteration until the user-specified node
count is reached. By doing so, an expander-like node-induced sub-
graph is constructed. After clustering the subgraph, the unsampled
nodes can be labeled by using collective inference or other trans-
ductive learning methods. This extra post-processing step, how-
ever, operates on the original graph as a whole and easily becomes
the scalability bottleneck on larger networks.

Satuluri et al. [22] proposed an edge sampling method to prefer-
entially retain edges that connect two similar nodes. The localized
strategy ensures that edges in the relatively sparse areas will not
be over-pruned. Their method, however, does not consider content
information either.

Edge sampling has also been applied to other graph tasks. Karger
[14] studied the impact of random edge sampling on original graph’s
cuts, and proposed randomized algorithms to find graph’s mini-
mum cut and maximum flow. Aggarwal et al. [1] proposed using
edging sampling to maintain structural properties and detect out-
liers in graph streams. The goals of those work are not to preserve
community structure in graphs, though.

3. METHODOLOGY
We begin by defining the notations used in the rest of our pa-

per. Let Gt = (V, Et, T ) be an undirected graph with n vertices
V = v1, . . . , vn, edges Et, and a collection of n corresponding
term vectors T = t1, . . . , tn. We use the terms “graph” and “net-
work” interchangeably as well as the terms “vertex” and “node”.
Elements in each term vector ti are basic content units which can
be single words, tags or n-grams, etc., depending on the context
of underlying network. For each graph node vi ∈ V , let its term
vector be ti.

Our goal is to generate a simplified, edge-sampled graph Gsample =
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(V, Esample) and then use Gsample to find communities with coher-
ent content and link structure. Gsample should possess the follow-
ing properties:

• Gsample has the same vertex set as Gt. That is, no node in
the network is added or removed during the simplification
process.
• |Esample| � |Et|, as this enables both better runtime perfor-

mance and lower memory usage in the subsequent clustering
stage.
• Informally put, the resultant edge set Esample would connect

node pairs which are both structure-wise and content-wise
similar. As a result, it is possible for our method to add edges
which were absent from Et since the content similarity was
overlooked.

3.1 Key Intuitions
The main steps of the CODICIL algorithm are:

1. Create content edges.
2. Sample the union of content edges and topological edges

with bias, retaining only edges that are relevant in local neigh-
borhoods.

3. Partition the simplified graph into clusters.

The constructed content graph and simplified graph have the
same vertices as the input graph (vertices are never added or re-
moved), so the essential operations of the algorithm are construct-
ing, combining edges and then sampling with bias. Figure 1 illus-
trates the work flow of CODICIL.

From the term vectors T , content edges Ec are constructed. Those
content edges and the input topological edges Et are combined as
Eu which is then sampled with bias to form a smaller edge set
Esample where the most relevant edges are preserved. The graph
composed of these sampled edges is passed to the graph cluster-
ing algorithm which partitions the vertices into a given number of
clusters.

3.2 Basic Framework
The pseudo-code of CODICIL is given in Algorithm 1. CODICIL

takes as input 1) Gt, the original graph consisting of vertices V ,
edges Et and term vectors T where ti is the content term vector for
vertex vi, 1 ≤ i ≤ |V| = |T |, 2) k, the number of nearest content
neighbors to find for each vertex, 3) normalize(x), a function that
normalizes a vector x, 4) α, an optional parameter that specifies
the weights of topology and content similarities, 5) l, the number
of output clusters desired, 6) clusteralgo(G, l), an algorithm that
partitions a graph G into l clusters and 7) similarity(x,y) to com-
pute similarity between x and y. Note that any content-insensitive
graph clustering algorithm can be plugged in the CODICIL frame-
work, providing great flexibility for applications.

3.2.1 Creating Content Edges
Lines 2 through 7 detail how content edges are created. For

each vertex vi, its k most content-similar neighbors are computed2.
For each of vi’s top-k neighbors vj , an edge (vi, vj) is added to
content edges Ec. In our experiments we implemented the TopK
sub-routine by calculating the cosine similarity of ti’s TF-IDF vec-
tor and each other term vector’s TF-IDF vector. For a content unit

2Besides top-k criteria, we also investigated using all-pairs simi-
larity above a given global threshold, but this tended to produce
highly imbalanced degree distributions.

Algorithm 1 CODICIL
Input: Gt = (V, Et, T ), k, normalize(·), α ∈ [0, 1], l,

clusteralgo(·, ·), similarity(·, ·)
Returns: C (a disjoint clustering of V)
1: \\Create content edges Ec
2: Ec ← ∅
3: for i = 1 to |V| do
4: foreach vj ∈ TopK(vi, k, T ) do
5: Ec ← Ec ∪ (vi, vj)
6: end for
7: end for
8: \\Combine Et and Ec. Retain edges with a bias towards locally

relevant ones
9: Eu ← Et ∪ Ec

10: Esample ← ∅
11: for i = 1 to |V| do
12: \\Γi contains vi’s neighbors in the edge union
13: Γi ← ngbr(vi, Eu)
14: for j = 1 to |Γi| do simt

ij ←
similarity(ngbr(vi, Et), ngbr(γj , Et))

15: simnormt
i ← normalize(simt

i)
16: for j = 1 to |Γi| do simc

ij ← similarity(ti, tγj )
17: simnormc

i ← normalize(simc
i)

18: for j = 1 to |Γi| do simij ← α · simnormt
ij + (1 −

α) · simnormc
ij

19: \\Sort similarity values in descending order. Store the corre-
sponding node IDs in idxi

20: [vali, idxi]← descsort(simi)

21: for j = 1 to
⌈√
|Γi|
⌉

do
22: Esample ← Esample ∪ (vi, vidxij )
23: end for
24: end for
25: Gsample ← (V, Esample)
26: C ← clusteralgo(Gsample, l) \\Partition into l clusters
27: return C

c, its TF-IDF value in a term vector ti is computed as

tf -idf(c, ti) =
√

tf(c, ti) · log
(
1 +

|T |∑|T |
j=1 tf(c, tj)

)
. (1)

The cosine similarity of two vectors x and y is

cosine(x,y) =
x · y

‖x‖2 · ‖y‖2
. (2)

The k vertices corresponding to the k highest TF-IDF vector
cosine similarity values with vi are selected as the top-k neighbors
of vi.

3.2.2 Local Ranking of Edges and Graph Simplifica-
tion

Line 9 takes the union of the newly-created content edge set Ec
and the original topological edge set Et. In lines 10 through 24, a
sampled edge set Esample is constructed by retaining the most rele-
vant edges from the edge union Eu. For each vertex vi, the edges to
retain are selected from its local neighborhood in Eu (line 13). We
compute the topological similarity (line 14) between node vi and
its neighbor γj as the relative overlap of their respective topologi-
cal neighbor sets, I = ngbr(vi, Et) and J = ngbr(γj , Et), using
similarity (either cosine similarity as in Equation 2 or Jaccard
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Topological edges Et

Content edges Ec
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2. Combine edges

3. Sample edges with bias

4. Cluster

Figure 1: Work flow of CODICIL

coefficient as defined below):

jaccard(I, J) =
|I ∩ J |
|I ∪ J | . (3)

After the computation of the topological similarity vector simt
i

finishes, it is normalized by normalize (line 15). In our exper-
iments we implemented normalize with either zero-one, which
simply rescales the vector to [0, 1]:

zero-one(�x) = (xi −min(�x))/(max(�x)−min(�x)) (4)

or z-norm3, which centers and normalizes values to zero mean and
unit variance:

z-norm(�x) =
xi − μ̂

σ̂
, μ̂ =

∑|�x|
i=1 xi

|�x| , σ̂2 =
1

|�x| − 1

|�x|∑
i=1

(xi−μ̂)2 .

(5)
Likewise, we compute vi’s content similarity to its neighbor γj
by applying similarity on term vectors ti and tγj and normalize
those similarities (lines 16 and 17). The topological and content
similarities of each edge are then aggregated with the weight spec-
ified by α (line 18).

In lines 20 through 23, the edges with highest similarity values
are retained. As stated in our desiderata, we want |Esample| � |Et|
and therefore need to retain fewer than |Γi| edges. Inspired by [22],
we choose to keep 


√
|Γi|� edges. This form has the following

properties: 1) every vertex vi will be incident to at least one edge,
therefore the sparsification process does not generate new single-
ton, 2) concavity and monotonicity ensure that larger-degree ver-
tices will retain no fewer edges than smaller-degree vertices, and 3)
sublinearity ensures that smaller-degree vertices will have a larger
fraction of their edges retained than larger-degree vertices.

3.2.3 Partitioning the Sampled Graph
Finally in lines 25 through 27 the sampled graph Gsample is

formed with the retained edges, and the graph clustering algorithm
clusteralgo partitions Gsample into l clusters.

3.2.4 Extension to Support Complex Graphs
The proposed CODICIL framework can also be easily extended

to support community detection from other types of graph. If an
input graph has weighted edges, we can modify the formula in line
18 so that simij becomes the product of combined similarity and
original edge weight. Support of attribute graph is also straightfor-
ward, as attribute assignment of a node can be represented by an
indicator vector, which is in the same form of a text vector.

3Montague and Aslam [19] pointed out that z-norm has the ad-
vantage of being both shift and scale invariant as well as outlier
insensitive. They experimentally found it best among six simple
combination schemes discussed in [10].

3.3 Key Speedup Optimizations

3.3.1 TopK Implementation
When computing cosine similarities across term vectors t1, . . . , t|T |,

one can truncate the TF-IDF vectors by only keeping m elements
with the highest TF-IDF values and set other elements to 0. When
m is set to a small value, TF-IDF vectors are sparser and therefore
the similarity calculation becomes more efficient with little loss in
accuracy.

We may also be interested in constraining content edges to be
within a topological neighborhood of each node vi, such that the
search space of TopK algorithm can be greatly reduced. Two
straightforward choices are 1) “1-hop” graph in which the content
edges from vi are restricted to be in vi’s direct topological neigh-
borhood, and 2) “2-hop” graph in which content edges can connect
vi and its neighbors’ neighbors.

Many contemporary text search systems make use of inverted
indices to speed up the operation of finding the k term vectors (doc-
uments) with the largest values of Equation 2 given a query vector
ti. We used the implementation from Apache Lucene for the largest
dataset.

3.3.2 Fast Jaccard Similarity Estimation
To avoid expensive computation of the exact Jaccard similarity,

we estimate it by using minwise hashing [3]. An unbiased estimator
of sets A and B’s Jaccard similarity can be obtained by

ˆjaccard(A,B) =
1

h

h∑
i=1

I(min(πi(A)) = min(πi(B))) , (6)

where π1, π2, · · · , πh are h permutations drawn randomly from a
family of minwise independent permutations defined on the uni-
verse A and B belong to, and I is the identity function. After
hashing each element once using each permutation, the cost for
similarity estimation is only O(h) where h is usually chosen to be
less than |A| and |B|.

3.3.3 Fast Cosine Similarity Estimation
Similar to Jaccard coefficient, we can apply random projection

method for fast estimate of cosine similarity [4]. In this method,
each hash signature for a d-dimensional vector x is h(x) = sgn (x, r),
where r ∈ {0, 1}d is drawn randomly. For two vectors x and y,
the following holds:

Pr[h(x) = h(y)] = 1− arccos (cosine(x,y))

π
. (7)

3.4 Performance Analysis
Lines 3–7 of CODICIL are a preprocessing step which compute

for each vertex its top-k most similar vertices. Results of this one-
time computation can be reused for any k′ ≤ k. Its complexity
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depends on the implementation of the TopK operation. On our
largest dataset Wikipedia this step completed within a few hours.

We now consider the loop in lines 11–24 where CODICIL loops
through each vertex. For lines 14 and 16 we use the Jaccard esti-
mator from Section 3.3.2 for which runs in O(h) with a constant
number of hashes h. The normalizations in lines 15 and 17 are
O(|Γi|) and the inner loop in lines 21–23 is O(

√
|Γi|). Sorting

edges by weight in line 20 is O(|Γi| log |Γi|). The size of Γi, the
union of topology and content neighbors, is at most n but on av-
erage much smaller in real world graphs. Thus the loop in lines
11–24 runs in O(n2 log n).

The overall runtime of CODICIL is the edge preprocessing time,
plus O(n2 log n) for the loop, plus the algorithm-dependent time
taken by clusteralgo.

4. EXPERIMENTS
We are interested in empirically answering the following ques-

tions:

• Do the proposed content-aware clustering methods lead
to better clustering than using graph topology only?
• How do our methods compare to existing content-aware

clustering methods?
• How scalable are our methods when the data size grows?

4.1 Datasets
Three publicly-available datasets with varying scale and charac-

teristic are used. Their domains cover document network as well
as social network. Each dataset is described below, and Table 1
follows, listing basic statistics of them.

4.1.1 CiteSeer
A citation network of computer science publications4, each of

which labeled as one of six sub-fields. In our graph, nodes stand for
publications and undirected edges indicate citation relationships.
The content information is stemmed words from research papers,
represented as one binary vector for each document. Observe that
the density of this network (average degree 2.74) is significantly
lower than normally expected for a citation network.

4.1.2 Wikipedia
The static dump of English Wikipedia pages (October 2011).

Only regular pages belonging to at least one category are included,
each of which becomes one node. Page links are extracted. Cleaned
bi-grams from title and text are used to represent each document’s
content. We use categories that a page belongs to as the page’s
class labels. Note that a page can be contained in more than one
category, thus ground truth categories are overlapping.

4.1.3 Flickr
From a dataset of tagged photos5 we removed infrequent tags

and users associated with only few tags. Each graph node stands
for a user, and an edge exists if one user is in another’s contact list.
Tags that users added to uploaded photos are used as content infor-
mation. Flickr user groups are collected as ground truth. Similar to
Wikipedia categories, Flickr user groups are also overlapping.

4.2 Baseline Methods
4http://www.cs.umd.edu/projects/linqs/
projects/lbc/index.html
5http://staff.science.uva.nl/~xirong/index.
php?n=DataSet.Flickr3m

In terms of strawman methods, we compare the CODICIL meth-
ods with three existing content-aware graph clustering algorithms,
SA-Cluster-Inc [30], PCL-DC [28] and Link-PLSA-LDA (L-P-LDA)
[20]. Their methodologies have been briefly introduced in Sec-
tion 2. When applying SA-Cluster-Inc, we treat each term in T
as a binary-valued attribute, i.e. for each graph node i every at-
tribute value indicates whether the corresponding term is present in
ti or not. For L-P-LDA, since it does not assume a distinct distri-
bution over topics for each cited document individually, only citing
documents’ topic distributions are estimated. As a result, there are
2313 citing documents in CiteSeer dataset and we report the F-
score on those documents using their corresponding ground-truth
assignments.

Previously SA-Cluster-Inc has been shown to outperform k-SNAP
[25] and PCL-DC to outperform methods including PLSA-PHITS
[5], LDA-Link-Word [7] and Link-Content-Factorization [31]. There-
fore we do not compare with those algorithms.

Two content-insensitive clustering algorithms are included in the
experiments as well. The first method, “Original Topo”, clusters
the original network directly. The second method samples edges
solely based on structural similarity and then clusters the sampled
graph [22], and we refer to it as “Sampled Topo” hereafter.

Finally, we also adapt LDA and K-means6 algorithm to cluster
graph nodes using content information only. When applying LDA,
we treat each term vector ti as a document, and one product of
LDA’s estimation procedure is the distribution over latent topics,
θti , for each ti (more details can be found at the original paper by
Blei et al. [2]). Therefore, we treat each latent topic as a cluster
and assign each graph node to the cluster that corresponds to the
topic of largest probability. We use GibbsLDA++7, a C++ imple-
mentation of LDA using Gibbs sampling [11] which is faster than
the variational method proposed originally. Results of this method
are denoted as “LDA”.

4.3 Experiment Setup

4.3.1 Parameter Selection
There are several tunable parameters in the CODICIL frame-

work, first of which is k, the number of content neighbors in the
TopK sub-routine. We propose the following heuristic to decide a
proper value for k: the value of k should let |Ec| ≈ |Et|. As a result,
k is set to 50 for both Wikipedia (|Ec| = 150, 955, 014) and Flickr
(|Ec| = 722, 928). For CiteSeer, we experiment with two relatively
higher k values (50, |Ec| = 103, 080 and 70, |Ec| = 143, 575) in
order to compensate the extreme sparsity in the original network.
Though simplistic, this heuristic leads to decent clustering quality,
as shown in Section 4.5, and avoids extra effort for tuning.

Another parameter of interest is α, which determines the weights
for structural and content similarities. We set α to 0.5 unless oth-
erwise specified, as in Section 4.7. The number of hashes (h) used
for minwise hashing (Jaccard coefficient) is 30, and 512 for random
projection (cosine similarity). Experiments with both choices of
similarity function are performed. As for m, the number of non-
zero elements in term vectors, we let m = 10 for Wikipedia and
Flickr. This optional step is omitted for CiteSeer since the speedup
is insignificant.

4.3.2 Clustering Algorithm
We combine the CODICIL framework with two different clus-

6We do not report running time of K-means as it is not implemented
in C or C++.
7http://gibbslda.sourceforge.net/
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|V| |Et| # CC |CCmax| # Uniq. Content Unit Avg |ti| # Class
Wikipedia 3,580,013 162,085,383 10 3,579,995 1,459,335 202 595,355

Flickr 16,710 716,063 4 16,704 1,156 44 184,334
CiteSeer 3,312 4,536 438 2,110 3,703 32 6

Table 1: Basic statistics of datasets. # CC: number of connected components. |CCmax|: size of the largest connected component.
Avg |ti|: average number of non-zero elements in term vectors. # Class: number of (overlapping) ground truth classes.

tering algorithms, Metis8 [15] and Multi-level Regularized Markov
Clustering (MLR-MCL)9 [21]. Both clustering algorithms are also
applied on strawman methods.

4.4 Effect of Simplification on Graph Struc-
ture

In this section we investigate the impact of topological simplifi-
cation (or sampling) on the spectrum of the graph. For both Cite-
Seer and Flickr (results for Wikipedia are similar to that of Flickr)
we compute the Laplacian of the graph and then examine the top
part of its eigenspectrum (first 2000 eigenvectors). Specifically, in
Figure 2 we order the eigenvectors from the smallest one to the
largest one (on the X axis) and plot corresponding eigenvalues (on
the Y axis).
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Figure 2: Eigenvalues of graph Laplacian before and after sim-
plification

The multiplicity of 0 as an eigenvalue in such a plot corresponds

8http://glaros.dtc.umn.edu/gkhome/metis/
metis/download
9http://www.cse.ohio-state.edu/~satuluri/
research.html

to the number of independent components within the graph [18].
For CiteSeer we see an increase in the number of components as a
result of topological simplification whereas for Flickr (similarly for
Wikipedia) the number of components is unchanged. Our hypothe-
sis is that for datasets like CiteSeer this will have a negative impact
on the quality of the resulting clustering. We further hypothesize
that our content-based enhancements will help in overcoming this
shortfall.

Note that the sum of eigenvalues for the complete spectrum is
proportional to the number of edges in the graph [18] so this ex-
plains why the plots for the original graphs are slightly above those
for the simplified graph even though the overall trends (e.g. spec-
tral gap, relative changes in eigenvalues), except for the number of
components, are quite similar for both datasets.

4.5 Clustering Quality
We are interested in comparison between the predicted cluster-

ing and the real community structure since group/category infor-
mation is available for all three datasets. Later in Section 5 we will
evaluate CODICIL’s performance qualitatively. While it is tempt-
ing to use conductance or other cut-based objectives to evaluate the
quality of clustering, they only value the structural cohesiveness
but not the content cohesiveness of resultant clustering, which is
exactly the motivation of content-aware clustering algorithm. In-
stead, we use average F-score with regard to the ground truth as the
clustering quality measure, as it takes content grouping into consid-
eration and ensures a fair comparison among different clusterings.
Given a predicted cluster p and with reference to a ground truth
cluster g (both in the form of node set), we define the precision rate
as |p∩g|

|p| and the recall rate as |p∩g|
|g| . The F-score of p on g, denoted

as F (p, g), is the harmonic mean of precision and recall rates.
For a predicted cluster p, we compute its F-score on each g in

the ground truth clustering G and define the maximal obtained as
p’s F-score on G. That is:

F (p,G) = max
g∈G

F (p, g) . (8)

The final F-score of the predicted clustering P on the ground
truth clustering G is then calculated as the weighted (by cluster
size) average of each predicted cluster’s F-score:

F (P,G) =
∑
p∈P

|p|
|V|F (p,G) . (9)

This effectively penalizes the predicted clustering that is not
well-aligned with the ground truth, and we use it as the quality
measure of all methods on all datasets.

4.5.1 CiteSeer
In Figure 3 we show the experiment results on CiteSeer. Since

it is known that the network has six communities (i.e. sub-fields
in computer science), there is no need to vary l, the number of de-
sired clusters. We report results using Metis (similar numbers were
observed with Markov clustering). For PCL-DC, we set the param-
eter λ to 5 as suggested in the original paper, yielding an F-score of

1094



0.570. The F-scores of SA-Cluster-Inc and L-P-LDA are 0.348 and
0.458, respectively. As we can see clearly in the bar chart, cluster-
ing based on topology alone results in a performance well below the
state-of-the-art content-aware clustering methods. This is not sur-
prising as the input graph has 438 connected components and there-
fore most small components were randomly assigned a prediction
label. Although such approach has no impact on topology-based
measures (e.g. normalized cut or conductance), it greatly spoils
the F-score measure against the ground truth. Moreover, topology-
based simplification further deteriorates the clustering performance
as it creates even more connected components, as we projected in
Section 4.4. Neither is LDA able to provide a competitive result,
as it is oblivious to link structure embedded in the dataset. Surpris-
ingly though, K-means only manages to produce a very unbalanced
clustering (the largest cluster always contains more than 90% of all
papers) even after 50 iterations, and its F-score (averaged over five
runs) is only 0.336.
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Figure 3: F-score of Metis on CiteSeer

On the other hand, our content-aware approaches (using Metis as
the clustering method) were able to handle the issue of disconnec-
tion as they also include content-similar edges. For both similarity
measures, the F-scores are within 90% range of PCL-DC, and it
outperforms PCL-DC when k increases to 70.

While achieving the quality that is comparable with existing
methods, the CODICIL series are significantly faster. PCL-DC
takes 234 seconds on this dataset and SA-Cluster-Inc requires 306
seconds. LDA finishes in 40 seconds. In contrast, the sum of COD-
ICIL’s edge sampling and clustering time never exceeds 1 second.
Therefore, the CODICIL methods are at least one order of magni-
tude faster than state-of-the-art algorithms.

4.5.2 Wikipedia
For the Wikipedia dataset, we were unable to run the experiment

on SA-Cluster-Inc, PCL-DC, L-P-LDA, LDA and K-means as their
memory and/or running time requirement became prohibitive on
this million-node network. For example, storing 10,000 centroids
alone in K-means requires 54 GBs).

Figures 4a and 4c plot the performances using MLR-MCL and
Metis, respectively. Since category assignments as the ground truth
are overlapping, there is no gold standard for the number of clus-
ters. We therefore varied l in both clustering algorithms. Our
content-aware clustering algorithms constantly outperforms Sam-
pled Topo by a large margin, indicating that CODICIL methods are
able to simplify the network and recover community structure at the

same time. CODICIL methods’ F-scores are also on par or better
than those of Original Topo.

4.5.3 Flickr
Figure 5a shows the performances of various methods with MLR-

MCL on Flickr, where SA-Cluster-Inc, PCL-DC, LDA and K-means
can also finish in a reasonable time (L-P-LDA still takes more than
30 hours). Again, l was varied for the clustering algorithm. Simi-
lar to results on CiteSeer, CODICIL methods again lead the base-
lines by a considerable margin. The F-scores of SA-Cluster-Inc,
LDA, and K-means never exceed 0.2, whereas CODICIL methods’
F-scores are often higher, together with Original & Sampled Topo.

Readers may have noticed that for PCL-DC only three data points
(l = 50, 75, 100) are obtained. That is because its excessive mem-
ory consumption crashed our workstation after using up 16 GBs
of RAM for larger l values. We also observe that while PCL-DC
generates a group membership distribution over l groups for each
vertex, fewer than l communities are discovered. That is, there ex-
ist groups of which no vertex is a prominent member. Furthermore,
the number of communities discovered is decreasing as l increases
(45, 43 and 39 communities for l = 50, 75, 100), which is opposite
to other methods’ trends. All three clusterings’ F-scores are less
than 0.25. Similarly, multiple runs of K-means (K is set to 400,
800, 1200, and 1600) can only identity roughly 200 communities.

4.6 Scalability
The running time on CiteSeer has already been discussed, and

here we focus on Flickr and Wikipedia. For CODICIL methods,
the running time includes both edge sampling and clustering stage.
The plots’ Y-axes (running time) are in log scale.

4.6.1 Flickr
We first report scalability results on Flickr (see Figure 5b). For

SA-Cluster-Inc, the value of l (the desired output cluster count),
ranging from 100 to 5000, does not affect its running time as it
always stays between 1 and 1.25 hours with memory usage around
12GB. The running time of LDA appears, to a large extent, linear
in the number of latent topics (i.e. l) specified, climbing up from
2.56 hours (l = 200) to 15.88 hours (l = 1600). For PCL-DC, the
running time with three l values (50, 75, 100) is 0.5, 2.0 and 2.8
hours, respectively.

As for our content-aware clustering algorithms, running them on
Flickr requires less than 8 seconds, which is three to four orders of
magnitude faster than SA-Cluster-Inc, PCL-DC and LDA. Original
Topo takes more than 10 seconds, and Sampled Topo runs slightly
faster than CODICIL methods.

4.6.2 Wikipedia
Original Topo, Sampled Topo and all CODICIL methods fin-

ished successfully. The running time is plotted in Figures 4b and 4d.
When clustering using MLR-MCL, our methods are at least one or-
der of magnitude faster than clustering based on network topology
alone. For Metis, CODICIL is also more than four times faster.
The trend lines suggest our methods have promising scalability for
analysis on even larger networks.

4.7 Effect of Varying α on F-score
So far all experiments performed fix α at 0.5, meaning equal

weights of structural and content similarities. In this sub-section
we track how the clustering quality changes when the value of α is
varied from 0.1 to 0.9 with a step length of 0.1.

On Wikipedia (Figure 6a) and Citeseer (Figure 6b), F-scores
are greatest around α = 0.5, supporting the decision of assigning
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Figure 4: Experiment Results on Wikipedia

equal weights to structural and content similarities. Results differ
on Flickr where F-score is constantly improving when α increases
(i.e. more weight assigned to topological similarity).

4.8 Effect of Ec Constraint on F-score
In Section 3.3.1 we discuss the possibility of constraining con-

tent edges within a topological neighborhood for each node vi.
Here we provide a brief review on how the qualities of resultant
clusterings are impacted by such constraint. For the sake of space,
we focus on the F-scores on Wikipedia and Flickr.

Figures 7a and 7b show F-scores achieved on Wikipedia, using
different Ec constraints. Full means no constraint and TopK sub-
routine searches the whole vertex set V , whereas 1-hop constrains
the search to within a one-hop neighborhood, and likewise for 2-
hop. Plots of full and 2-hop almost overlap with each other, sug-
gesting that searching within the 2-hop neighborhood can provide
sufficiently strong content signals on this dataset. For Flickr (Fig-
ures 7c and 7d), interestingly 2-hop and 1-hop have a slight lead
over full. This may be an indication that in online social networks,
compared with information networks, content similarity between
two closely connected users emits stronger community signals.

4.9 Discussions
An interesting observation on the biased edge sampling is that

it always results in an improvement in running time. However,
sampling just the topology graph results in a clear loss in accu-
racy whereas content-conscious sampling is much more effective

with accuracies that are on par with the best performing methods
at a fraction of the cost to compute. We observe this for all three
datasets.

We also find that for probabilistic-model-based methods (PCL-
DC, L-P-LDA and LDA) as well as K-means, their running time
is at least linear in l, the desired number of output clusters, which
becomes a critical drawback in face of large-scale workloads. As
the network grows, the number of clusters also increases naturally.
Plots on CODICIL methods’ running time, on the other hand, sug-
gest a logarithmic increase with regard to the number of clusters,
which is more affordable.

5. CASE STUDIES
In this section, we demonstrate the benefits of leveraging con-

tent information on two Wikipedia pages: “Machine Learning” and
“Graph (Mathematics)”.

In the original network, “machine learning” has a total degree
of 637, and many of its neighbors (including “1-2-AX working
memory task”, “Wayne State University Computer Science Depart-
ment”, “Chou-Fasman method”, etc.) are at best peripheral to the
context. When we sample the graph according to its link structure
only, 119 neighbors are retained for “machine learning”. Although
this eliminates some noise, many others, including the three entries
above, are still preserved. Moreover, it also removes during the
process many neighbors which should have been kept, e.g. “naive
Bayes classifier”, “support vector machine”, and so on.
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Figure 6: Effect of Varying α on F-score (Avg. # Clusters for Wikipedia: 29,414, Avg. # Clusters for Flickr: 1,911)

The CODICIL framework, in contrast, alleviates both problems.
Apart from removing noisy edges, it also keeps the most relevant
ones. For example, “AdaBoost”, “ensemble learning”, “pattern
recognition” all appear in “machine learning”’s neighborhood in
the sampled edge set Esample. Perhaps more interestingly, we find
that CODICIL adds “neural network”, an edge absent from the
original network, into Esample (recall that it is possible for COD-
ICIL to include an edge even it is not in the original graph, given
its content similarity is sufficiently high). This again illustrates the
core philosophy of CODICIL: to complement the original network
with content information so as to better recover the community
structure.

Similar observations can be made on the “Graph (Mathematics)”
page. For example, CODICIL removes entries including “Eric W.
Weisstein”, “gadget (computer science)” and “interval chromatic
number of an ordered graph”. It also keeps “clique (graph the-
ory)”, “Hamiltonian path”, “connectivity (graph theory)” and oth-
ers, which would otherwise be removed if we sample the graph
using link structure alone.

6. CONCLUSION
We have presented an efficient and extremely simple algorithm

for community identification in large-scale graphs by fusing con-
tent and link similarity. Our algorithm, CODICIL, selectively re-
tains edges of high relevancy within local neighborhoods from the
fused graph, and subsequently clusters this backbone graph with
any content-agnostic graph clustering algorithm.

Our experiments demonstrate that CODICIL outperforms state-
of-the-art methods in clustering quality while running orders of
magnitude faster for moderately-sized datasets, and can efficiently
handle large graphs with millions of nodes and hundreds of mil-
lions of edges. While simplification can be applied to the original
topology alone with a small loss of clustering quality, it is particu-
larly potent when combined with content edges, delivering superior
clustering quality with excellent runtime performance.
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