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ABSTRACT
Collective intelligence, which aggregates the shared information
from large crowds, is often negatively impacted by unreliable infor-
mation sources with the low quality data. This becomes a barrier
to the effective use of collective intelligence in a variety of appli-
cations. In order to address this issue, we propose a probabilistic
model to jointly assess the reliability of sources and find the true
data. We observe that different sources are often not independent
of each other. Instead, sources are prone to be mutually influenced,
which makes them dependent when sharing information with each
other. High dependency between sources makes collective intelli-
gence vulnerable to the overuse of redundant (and possibly incor-
rect) information from the dependent sources. Thus, we reveal the
latent group structure among dependent sources, and aggregate the
information at the group level rather than from individual sources
directly. This can prevent the collective intelligence from being
inappropriately dominated by dependent sources. We will also ex-
plicitly reveal the reliability of groups, and minimize the negative
impacts of unreliable groups. Experimental results on real-world
data sets show the effectiveness of the proposed approach with re-
spect to existing algorithms.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining; Statistical databases

Keywords
Collective intelligence; Crowdsourcing; Robust classifier

1. INTRODUCTION
Collective intelligence aggregates contributions from multiple

sources in order to collect data for a variety of tasks. For example,
voluntary participants collaborate with each other to create a fairly
extensive set of entries in Wikipedia, or a crowd of paid persons
may perform image and news article annotations in Amazon Me-
chanical Turk. These crowdsourced tasks usually involve multiple
objects, such as Wikipedia entries and images to be annotated. The
participating sources collaborate to claim their own observations,
such as facts and labels, on these objects. Our goal is to aggregate
these collective observations to infer the true values (e.g., the true
fact and image label) for the different objects [18, 14, 5].

We note that an important property of collective intelligence is
that different sources are typically not independent of one another.
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For example, in the same social community, people often influ-
ence each other, where their judgments and opinions are not inde-
pendent. In addition, task participants may obtain their data and
knowledge from the same external information source, and their
contributed information will be dependent. Thus, it may not be
advisable to treat sources independently and directly aggregate the
information from individual sources, when the aggregation process
is clearly impacted by such dependencies. In this paper, we will
infer the source dependency by revealing latent group structures a-
mong involved sources. Dependent sources will be grouped, and
their reliability is analyzed at the group level. The incorporation of
such dependency analysis in group structures can reduce the risk
of overusing the observations made by the dependent sources in
the same group, especially when these observations are unreliable.
This helps prevent dependent sources from inappropriately domi-
nating collective intelligence especially when these sources are not
reliable.

Moreover, we note that groups are not equally reliable, and they
may provide incorrect observations which conflict with each other,
either unintentionally or maliciously. Thus, it is important to reveal
the reliability of each group, and minimize the negative impact of
the unreliable groups. For this purpose, we study the general re-
liability of each group, as well as its specific reliability on each
individual object. These two types of reliability are closely relat-
ed. General reliability measures the overall performance of a group
by aggregating each individual reliability over the entire set of ob-
jects. On the other hand, although each object-specific reliability
is distinct, it can be better estimated with a prior that a generally
reliable group is likely to be reliable on an individual object and
vice versa. Such prior can reduce the overfitting risk of estimating
each object-specific reliability, especially considering that we need
to determine the true value of each object at the same time [11, 1].

The remainder of this paper is organized as follows. We review
the related work in Section 2. Our problem and notations are for-
mally defined in Section 3. The probabilistic model for the problem
is developed in Section 4, followed by a running example that illus-
trates the impact of group dependency on the model in Section 5.
Section 6 presents the model inference and parameter estimation al-
gorithms. Then Section 7 presents the application of the developed
model to training classifiers from noisy crowdsourced data. We e-
valuate the model in Section 8 on real data sets, and summarize the
paper with the conclusion in Section 9.

2. RELATED WORK
Aggregating crowdsourced knowledge and information has at-

tracted a lot of research efforts, and yields many insightful discov-
eries. For example, [16] proposed an iterative truth finder algorith-
m by simultaneously accessing the trustworthiness of each source
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and the correctness of claimed facts. [1] developed a probabilis-
tic graphical model by jointly modeling the abilities of participants
and the correct answers to questions in an aptitude testing setting.
The work in [18] developed a latent truth model to infer the source
quality and correct claims by modeling two types of false positive
and false negative errors of each source. All of these algorithms
estimate the performances of data sources and the impacts on the
credibility of their claimed facts.

However, sources are not independent of each other in real world.
Instead, their contributions are typically dependent. [16] noted this
problem and used a dampening factor to compensate for exces-
sively high confidence due to the copied content between sources.
But this method did not explicitly model the dependency between
sources, and how the dampening factor can reduce the dependen-
cy effect is not clear. On the other hand, [4] studied the relation
between the content claimed by sources, and developed a separate
weighted voting algorithm by considering the copied content be-
tween each other. However, the accuracies are accessed indepen-
dently on the source level, which can make the accuracy of a data
source overestimated if many other dependent sources repeat the
same false facts.

Moreover, existing models [4, 2, 9, 6] only consider the pairwise
relations between sources to their dependency, which completely
ignores the higher-order dependency among sources. In contrast,
we explicitly group the dependent sources to capture arbitrary or-
ders of dependency among sources. We find that high-order depen-
dency prevails in many real cases, and it is more effective to model
them directly rather than decomposing them into separate pairwise
relations. For example, sources which obtain the content from the
same resource will be assigned to the same group to reflect the
high order dependency among them. This yields a more compact
representation to jointly assess the reliability of data sources and
the correctness of the claimed facts. Moreover, we will see based
on the group-level dependency, independent sources from different
groups will play more important role than dependent ones in the
same group in inferring the true facts. This is a desired property
which can properly aggregate collective knowledge in many real
world tasks.

Modeling the group dependency can be analogized to the com-
munity discovery in social networks. Community structure has
been considered as a more effective data structure to capture the
social relations among people than the links between pairs of per-
sons [7]. With the similar spirit, the groups can also be more effec-
tive than pairwise dependency, and provide deeper insight into the
property of high-order dependency among sources and how such
property affects the aggregation of collective knowledge. Howev-
er, it is worth pointing out that the groups defined in our model dif-
fer from the communities [3] in social networks. Communities are
usually defined as a set of people densely linked in social networks.
However, two linked people may not necessarily be influenced by
one another when they report the facts and knowledge. Two close
friends can express different opinions and claim conflicting truth-
s. Therefore, we will directly investigate the data contributed by
sources to find the group structure characterizing their mutual de-
pendency that directly affects the source reliability in our collective
intelligence model.

Finally, our model is motivated to explore the objective facts and
knowledge. This is in contrast to the inference of individual’s pref-
erence, which aims to recommend products and services based on
user’s ratings and opinions [12]. Instead, in this paper we aim at ag-
gregation of collective knowledge to automatically extract the true
facts, such as correct answers to questions and true categories for
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Figure 1: An example illustrating a set of five sources with their
observations on four objects.

web pages, which do not depend on the variability of user’s subjec-
tivity.

3. PROBLEM DEFINITIONS
We formally define the following Multi-Source Sensing (MSS)

model which abstracts the description of collective intelligence.
Suppose that we have a set S := {S1, S2, · · · , SN} of N sources,
and a set O := {O1, O2, · · · , OM} of M objects. Each object
Om takes a value tm from a domain Xm which describes one of its
attributes. Each source Sn in S reports its observation yn,m ∈ Xm

on an object Om. Then the goal of the MSS model is to infer the
true value tm of each object Om from the observations made by
sources. We introduce some notations, which will be used consis-
tently in this paper. We will use n, m, l and k in the subscript to
index sources, objects, groups and values in an object domain, re-
spectively. The variables y, t, u and r denote the observations, true
values, group reliability and object-specific reliability respectively.

In this paper, we are particularly interested in categorical domain
Xm = {1, · · · ,Km} with discrete values. For example, in many
crowdsourcing applications, we focus on the (binary-valued) asser-
tion correctness in hypothesis test and (multi-valued) categories in
classification problem. However, the MSS model can be extended
to continuous domain with some effort by adopting the correspond-
ing continuous distributions. Due to the space limitation, we leave
this extension in the full version of this paper.

Figure 1 illustrates an example, where five sources make their
observations on four objects. An object can be an image or a bi-
ological molecule, and an annotator or a biochemical expert (as a
source) may claim the category (as the value) for each object. Al-
ternatively, an object can be a book, and a book seller web site
(as a source) claims the identity of its authors (as the values). In
a broader sense, objects are even not concrete objects. They can
refer to any crowdsourced tasks, such as questions (e.g., “is Peter
a musician?") and assertions (e.g., “George Washington was born
on February 22, 1732." and “an animal is present in an image,"),
and the observations by sources are the answers to the questions, or
binary-valued positive or negative claims on these assertions.

It is worth noting that each source does not need to claim the
observations on all objects in O. In many tasks, sources make
claims only on small subsets of objects of interest. Thus, for no-
tational convenience, we denote all claimed observations by y in
bold, and use I = {(n,m)|∃ yn,m ∈ y} to denote all the in-
dices in y. We use the notations In,· = {m|∃ (n,m) ∈ I} and
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I·,m = {n|∃ (n,m) ∈ I} to denote the subset of indices that are
consistent with the corresponding subscripts n and m.

Meanwhile, in order to model the dependency among sources,
we assume that there are a set of latent groups {G1, G2, · · · }, and
each source Sn is assigned to one groupGgn where gn ∈ {1, 2, · · · }
is a random variable indicating its membership. For example, as il-
lustrated in Figure 1, the five sources are inherently drawn from
two latent groups, where each source is linked to the corresponding
group by dotted lines. Each latent group contains a set of sources
which are influenced by each other and tend to make similar ob-
servations on objects. The unseen variables of group membership
will be inferred mathematically from the underlying observation-
s. Here, we do not assume any prior knowledge on the number
of groups. The composition of these latent groups will be deter-
mined with the use of a Bayesian nonparametric approach by stick-
breaking construction [15], as to be presented in the next section.

To minimize the negative impact of unreliable groups, we will
explicitly model the group-level reliability. Specifically, for each
group Gl, we define a group reliability score ul ∈ [0, 1] in unit
interval. This value measures the general reliability of the group
over the entire set of objects. A higher value of ul indicates the
greater reliability of the group.

Meanwhile, we also specify the reliability rl,m ∈ {0, 1} of each
group Gl on each particular object Om. When rl,m = 1, group Gl

will have reliable performance on Om, and otherwise it will be un-
reliable. The reason that we distinguish between reliability ul and
object-specific reliability rl,m is as follows. While a generally reli-
able group with a larger value of ul, provides very useful evidence
about the members of the group on a generic basis, there are likely
to be natural variations within the group itself. Thus, in our model,
a group reliability ul only measures how likely it will be reliable on
object set, and whether it will have a reliable performance on a par-
ticular object is given by rl,m. In the next section, we will clarify
the relationship between general reliability ul and object-specific
reliability rl,m.

4. MULTI-SOURCE SENSING MODEL
In this section, we present a generative process for the multi-

source sensing problem. The output of this model will contain
the following three aspects: (1) the group membership of sources
which describes their dependency when claiming their observations
on a set of objects. (2) the reliability ul associated with each group
and its specific reliability rl,m on each object. (3) the true values tm
for each object. Our goal is to reveal the connections between these
three aspects, especially how the collective observations made by
sources can be explained by the latent groups and their reliability
in a unified probabilistic framework.

First we define the following generative model for multi-source
sensing (MSS) process below, the details of which will be explained
shortly.

1. Draw λ ∼ GEM(κ) (i.e., stick breaking construction with
concentration κ).

2. For each source Sn,

2.1. Draw its group assignment gn|λ ∼ Discrete(λ);

3. For each object Om,

3.1. Draw its true value tm ∼ Uniform(Xm);

4. For each group Gl:

4.1. Draw its group reliability ul ∼ Beta(b1, b0);
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Figure 2: The graphical model for multi-source sensing. The three
plates represent group reliability ul with l = 1, 2, · · · ,, the true
values tm for each object Om with m = 1, · · · ,M , and the group
assignment gn of each source with n = 1, · · · , N , respectively.

5. For each pair of group Gl and object Om:

5.1. Draw reliability indicator rl,m ∼ Bernoulli(ul);
5.2. Draw the observation model parameter

πl,m|rl,m, tm = z ∼ Hrl,m(tm)

for group Gl on object Om;

6. For each (n,m) ∈ I:

6.1. Draw observation yn,m|πl,m, gn ∼ F (πgn,m);

Here, gn|λ ∼ Discrete(λ) denotes a discrete distribution, which
generates the value gn = l with probability λl; H and F are a
pair of conjugate distributions which are determined by the type of
data values on objects. For categorical values, these are Dirichlet
and Multinomial distributions, respectively. Figure 2 illustrates the
generative process in a graphical representation. We will explain
the details later.

In Step 1, we adopt the stick-breaking construction GEM(κ)
(named after Griffiths, Engen and McCloskey) with concentration
parameter κ ∈ R+ to define the prior distribution of assigning each
source Sn to a latent group Ggn [15]. Specifically, in GEM(κ),
a set of random variables ρ = {ρ1, ρ2, · · · } are independently
drawn from the Beta distribution ρi ∼ Beta(1, κ). They define the
mixing weights λ of the group membership component such that
p(gn = l|ρ) = λl = ρl

∏l−1
i=1 (1− ρi). By the aforementioned

stick-breaking process, we do not need the prior knowledge of the
number of groups. This number will be determined by capturing
the degree of dependency between sources.

Clearly, we can see that the parameter κ in the above GEM con-
struction plays the vital role of determining a priori the degree of
dependency between sources. According to the GEM construction,
we can verify that the probability of two sources Sn and Sm being
assigned to the same group is given by the following:

P (gn = gm) =

+∞∑
l=1

E
λ
P (gn = l|λ)P (gm = l|λ)

=

+∞∑
l=1

E
λl

λ2
l =

+∞∑
l=1

2

(1 + κ)(2 + κ)

(
κ

2 + κ

)l−1

=
1

1 + κ

(1)

It is evident that when κ is smaller, sources are more likely to be
assigned to the same group where they are dependent and share the
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same observation model. This will yield higher degree of depen-
dency between sources. As κ increases, the probability that any
two sources belong to the same group will decrease. In the extreme
case, as κ → +∞, this probability approaches zero. In this case,
all sources will be assigned to distinctive groups, yielding complete
independence between sources. This shows that the model can flex-
ibly capture the various degrees of dependency between sources by
setting an appropriate value of κ.

In Step 3, we adopt the uniform distribution as the prior on the
true value tm of each object over its domain Xm. The uniform
distribution sets an unbiased prior so that true values will be com-
pletely determined a posteriori given observations in the model in-
ference. In Section 7, we will show how to set a more informative
prior when more knowledge about objects is available.

In Step 4, we define a Beta distribution Beta(b1, b0) on the group
reliability score ul, where b1 and b0 are the soft counts which spec-
ify whether a group is reliable or not a priori, respectively. Then, in
Step 5.1, object-specific reliability rl,m ∈ {0, 1} is sampled from
the Bernoulli distribution Bern(ul) to specify the group reliability
on a particular objectOm. The higher the general reliability ul, the
more likelyGl is reliable on a particular objectOm with rl,m being
sampled to be 1. This suggests that a generally more reliable group
is more likely to be reliable on a particular object. In this sense, the
general reliability serves as a prior to reduce the over-fitting risk of
estimating object-specific reliability in the MSS model.

In Step 5.2, the model parameter πl,m for each group on a par-
ticular object is drawn from the conjugate prior Hrl,m(tm), which
depends on the true value tm and the object-specific group relia-
bility rl,m. Then, given the group membership gn, each source
Sn generates its observation yn,m according to the corresponding
group observation model F (πgn,m) in Step 6. In the next subsec-
tion, we will detail the specification of Hrl,m(tm) and F (πl,m) in
categorical domain.

4.1 Group Observation Models
In this subsection, we discuss the specification of group observa-

tion distribution F (πl,m) and its conjugate distributionHrl,m(tm)
for categorical values on each object. Here the group observation
model on each object depends on two factors: (1) the specific re-
liability rl,m on this object, which aims to reveal the differences
between reliable and unreliable observations on an object, and (2)
the true value tm for the object.

It is worth noting that although we distinguish each group obser-
vation into reliable and unreliable cases in this subsection, it does
not mean that two groups are enough to capture the source depen-
dency. These two cases are used to model the performance at the
object level. However, given more objects, there are many possible
combinations of these two cases on different objects. This is why
we need more groups to capture the source dependency based on
their observations on different objects. In the following, we will
discuss the group observations models on each object.

In categorical domains, for each group, we choose the multino-
mial distribution as its observation model to generate each obser-
vation yn,m for its member sources on each object Om. Thus, Step
6 in the generative process of MSS model becomes the following:

yn,m|πl,m, gn ∼ F (πgn,m)
∆
= Multinomial(πgn,m)

where πl,m is the parameter of multinomial distribution for group
Gl on object Om. Here, all member sources in the same group
share the same observation model to capture their dependency.

The model parameter πl,m is generated by the following:

πl,m|rl,m, tm = z ∼ Hrl,m(tm)

∆
= Dir(θ(rl,m), · · ·︸ ︷︷ ︸

z−1

, η(rl,m)

↓
zth entry

, · · · , θ(rl,m))

where Dir denotes Dirchlet distribution, and θ(rl,m) and η(rl,m) are
its soft counts for sampling the false and true values under different
settings of rl,m.

If group Gl has reliable observations for object Om (i.e., rl,m =
1), it should be more likely to sample the true value tm = z as its
observation than sampling any other false value. Thus, we should
set a larger value for η(rl,m) than for θ(rl,m).

On the other hand, if group Gl has unreliable observations for
object Om, i.e., rl,m = 0, it should not be more likely to claim
the true value for the object than claiming the false values. There-
fore, the group observation model should have η(0) no larger than
θ(0), i.e., η(0) ≤ θ(0). Specifically, the mathematical model can
distinguish between uninformative and malicious observations on
the target object:

I. Uninformative observation: When η(0) = θ(0), sources in
group Gl make uninformative observations on object Om, s-
ince false values are equally likely to be claimed as the true
value. This can be caused when these sources either careless-
ly claim their observations at random, or lack the knowledge
about the target object.

II. Malicious observation: When η(0) < θ(0), it suggests that
the group Gl contains malicious sources which tend to claim
false values for object Om. Compared with uninformative
observations, these malicious observations can even provide
us with some information about the target object by inter-
preting the observations in a reverse manner. Actually, with
θ(0) > η(0), the model gives the unclaimed observation larg-
er weight to be evaluated as the true value.

In summary, depending on rl,m, the sources in group Gl make
either reliable (when rl,m = 1) or unreliable (when rl,m = 0)
observations on a particular object Om. Accordingly, the corre-
sponding parameters η(rl,m) and θ(rl,m) are constrained in differ-
ent ways. When rl,m = 1, we impose a strict inequality η(1) >
θ(1) to enforce that group Gl is more likely to claim the true value.
On the contrary, when rl,m = 0, we have θ(0) ≥ η(0), representing
that Gl will be unreliable in terms of claiming the true value for
Om. In Section 6, we will see how these parameters can be esti-
mated by maximizing the observation likelihood of the MSS model
subject to these constraints.

By putting together these different pieces, the MSS defines a
complete distribution

p(y,g, r,u, t,π|Θ) =
M∏

m=1

p(tm)
L,M∏

l=1,m=1

p(ul|b1, b0)p(rl,m|ul)

×p(πl,m|rl,m, tm, η(rl,m), θ(rl,m))

×
N∏

n=1

p(gn|κ)
∏

(n,m)∈I

p(yn,m|gn, πgn,m)

over g = {gn}, r = {rl,m}, u = {ul}, t = {tm}, π =
{πl,m} and the source observations y with model parameters Θ =

{η(0), θ(0), η(1), θ(1), b1, b0, κ}. In Section 6, we will present how
to infer (1) the true values tm for each object, (2) group assignment
gn of each source, and (3) the general reliability ul of each group
and its specific reliability rl,m on each object from the MSS model
a posteriori given the observations y.
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Figure 3: (a) A running example with S dependent sources in the same group and T independent sources. (b) Comparison of the
likelihoods of two hypotheses (in Y-axis) versus varying number T of independent sources (in X-axis). The number of dependent
sources in the group is fixed to S = 20. (c) The minimal number of independent sources (in Y-axis) to overturn the claims made by
varying number of dependent sources (in X-axis). The results are obtained with η(1) = 10, θ(1) = 5, and η(0) = θ(0) = 10.

4.2 Multiple Attributes
In some cases, an object might have multiple attributes. There

are many such examples as follows.

• A person can have many attributes. For example, she/he has
a hobby of playing piano and takes “software engineer" as
her/his vocation. We can consider hobby and vocation as t-
wo attributes for each person, and define their values on two
different domain sets such as {playing piano, hiking, swim-
ming, traveling · · · } and {software engineer, stock trader,
university faculty, · · · } in MSS model, respectively.

• An image can be labeled as “tiger" as well as “forest". We
can consider the presence of these two nonexclusive label-
s as two different attributes, and their values are boolean
{Present, Not Present} for an image. In this way, we can
allow an image has multiple labels simultaneously.

• A movie can have multiple actors/actresses. We can treat
each actor/actress as an attribute, and use a binary value {1,0}
to denote whether an actor/actress participates in a particular
movie or not.

We can see in these examples, our MSS model is much flexible to
handle multiple attributes associated with each object. Moreover,
we note that different attributes often correlate with each other. For
example, image labels “tiger" and “forest" often co-occur in an im-
age, and some actors/actresses may tend to co-star a movie. Explor-
ing these attributes together can improve the accuracy of inferring
their true values.

5. DEPENDENCE VS. INDEPENDENCE:
A RUNNING EXAMPLE

In this section, we show a running example that demonstrates
how group reliability structure captures the dependency between
sources when it infers the true value for an object. In Figure 3(a),
we show a group of S sources and T independent sources. We
consider an ideal case where the S sources in the group make an

unanimous claim of the value 0 for an object, while the T inde-
pendent sources unanimously claims the opposite value 1 for the
same object. While the dependent sources in the group and the in-
dependent sources claim the different values in this example, we
can investigate different values of information contributed by these
sources. Especially, we wonder whether independent sources play
more important roles than dependent ones in finding the true value
for each object in the MSS model.

For this purpose, we test the following two hypotheses:

• H0: The true value for the object is 0, versus

• H1: The true value for the object is 1.

To decide which hypothesis is true, we compare the observation
likelihoods given these two hypotheses in the MSS model. Figure
3(b) compares the two likelihoods with varying number T of in-
dependent sources. The number of dependent sources is fixed to
S = 20. We can see with more than T = 14 independent sources,
H1 has a larger likelihood than H0. In this case, the claims made
by independent sources become more credible than that made by
dependent sources. This example shows fewer independent sources
can overturn the claim made by more dependent sources. This sug-
gests that each dependent source contains less information about
the true claim as compared with each independent source.

To make this point more clear, Figure 3(c) illustrates the mini-
mum number of independent sources to ensure p(y|H1) > p(y|H0)
under varying number of dependent sources S in the group. We
can see that usually fewer independent sources is needed to have
its claim accepted compared with the same number of dependent
sources. This shows that independent sources are more valuable
than dependent sources in determining the true value for each ob-
ject. This is a desired property in our model, since we would like
to de-emphasize the excessive impacts of dependent sources in a
group.

Of courses, in the real world, sources may not be ideally split
into dependent ones in a group, and completely independent ones.
The independent sources may not make unanimous claims as in
this case. However, this intuitive running example explains how

1045



the dependency encoded in group structure will affect the inference
of true value on an object, and illustrates the independent claims are
generally more valuable than dependent claims in the MSS model.

6. MODEL INFERENCE AND PARAMETER
ESTIMATION

In this section, we present the inference and learning processes.
We wish to infer the tractable posterior p(g, r,u, t,π|y) with a
parametric family of variational distributions in the factorized for-
m:

q(g, r,u, t,π) =
∏
n

q(gn|φn)
∏
l,m

q(rl,m|τ l,m)∏
l

q(ul|βl)
∏
m

q(tm|νm)
∏
l,m

q(πl,m|αl,m)

with parameters φn, τ l,m, βl, νm and αl,m for these factors. The
distribution and the parameter for each factor can be determined by
the variational approach [10]. Specifically, we aim to maximize the
lower bound of the log likelihood log p(y), i.e.,

log p(y) ≥ E
q
log p(g, r,u, t,π,y)−E

q
(log q(g, r,u, t,π))

∆
= L(q)

This can obtain the optimal factorized distribution. The lower
bound can be maximized over one factor while the others are fixed.
This is an approach which is similar to coordinate descent. In each
iteration, all the factors are updated sequentially over steps by find-
ing the fixed-point solutions until convergence. The details of these
updating steps are provided in Appendix A.

We analyze the computational complexity in one loop of updat-
ing all factors. Suppose that we are given N sources, M objects,
and obtain L groups by the stick-breaking construction. We also
denote by Kmax the maximum size of the domain sets among all
objects. Then by investigating the updating steps in Appendix A,
we can find that the computational complexity is O(NMLKmax)
for one loop.

On the other hand, the model parameters Θ can be estimated by
maximizing the observation likelihood. This can be done by the
EM algorithm:
E-Step: Given the current parameters in Θ, apply variational infer-
ence to obtain the factorization q and their variational parameters;
M-Step: Given the factorization q, maximize the lower bound L(q)
of the log-likelihood and obtain a new model parameter Θ. (Details
of this Maximization step are given in Appendix B.)

These two steps are iterated until convergence. We obtain the
variational approximation and the maximum likelihood parameter
estimation results simultaneously.

7. CLASSIFICATION PROBLEMS
We are often of particular interest in the classification problem

where each object takes a class as its value from a K-class domain
X = {1, 2, · · · ,K}. Moreover, we might be able to access the
feature representations for the objects in O. For example, if the ob-
jects are genetic sequences or text documents, we can extract their
feature descriptors to describe the genetic structure and document
content. Therefore, we wish to impose a more informative prior
that aggregates these features into the prior distribution. For this
purpose, given a feature vector xm for an object, the prior on tm
becomes a conditional distribution on xm. For greater modeling
flexibility, we choose a distribution for this prior. For example, we

can choose an exponential distribution p(tm|xm,W ):

Exp(W ) := p(tm|xm,W ) =
1

Z
exp

{
K∑

k=1

δ [[tm = k]] ⟨wk,x⟩

}
(2)

where each coefficient vector is taken from the parameters W =
{wk|k ∈ X}, ⟨wk,x⟩ denotes the inner product between two vec-
tors, and Z is the normalization factor to ensure that the above ex-
ponential distribution integrates to unit value.

Accordingly, the model inference in Step A.4 in Appendix A
should be changed. Each updated factor q(tm) in model inference
becomes an exponential distribution:

q(tm|νm) := exp{
K∑

k=1

δ [[tm = k]] νm;k} (3)

with the parameter νm defined as follows:

νm;k = ⟨wk,x⟩+
∑
l

∑
rl

q(rl){(η(rl) − 1)

× E
q(πl,m)

lnπl,m;k +
∑
k′ ̸=k

(θ(rl) − 1) E
q(πl,m)

lnπl,m;k′}

The other updating steps for the model inference in Appendix A
stay the same.

Besides the inference, we need to learn the parameter W in
p(tm|xm,W ). Here, we adopt the variational EM (Expectation-
Maximization) algorithm. In each iteration, the E-step (expecta-
tion) involves computing the tractable posterior distributions as in
the inference step. Then, the maximization step will update W by
maximizing the expected log-likelihood over q as follows:

max
W

M∑
m=1

Eq(tm|νm) log p(tm|xm,W ) (4)

We can adopt any off-the-shelf optimization algorithms to solve the
above problem.

The learned parameterized model p(tm|x,W ), as a byproduct, is
a classifier conditional on the input feature vector x. This provides
us with a way to train a robust classification model with the noisy
crowdsourced labels, compared with typical classifiers trained with
the clean labels. On the other hand, the learned classifier enhances
the MSS model by providing a more discriminative prior of the la-
beling information on objects through their feature representations.
This regularizes the true classes of objects in the feature space, es-
pecially when the classes claimed by different sources on an object
are too scarce or too inconsistent to make robust estimation of the
true classes. In this case, the imposed prior plays a nontrivial role
in determining the true class of the object.

8. EXPERIMENTAL RESULTS
In this section, we compare our approach with other existing al-

gorithms and demonstrate its effectiveness for inferring source re-
liability together with the true values of objects. The comparison
is performed on a book author data set from online book stores,
and a user tagging data set from the online image sharing web site
Flickr.com.

8.1 Online Book Store Data Set
The first data set is the book author data set prepared in [16].

The data set is obtained by crawling 1, 263 computer science books
on AbeBooks.com. For each book, AbeBooks.com returns the book
information extracted from a set of online book stores. This data set
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contains a total of 877 book stores (sources), and 24, 364 listings
of books (objects) and their author lists (object values) reported by
these book stores. Note that each book has a different categorical
domain that contains all the authors claimed by sources. Our goal
is to predict the true authors for each book.

Author names are normalized by preserving the first and last
names, and ignoring the middle name of each author. For evalu-
ation purposes, the authors of 100 books are manually collected
from scanned book covers [16]. We compare the returned results
of each model with the ground truth author lists on this test set and
report the accuracy.

We compare the proposed algorithm MSS with the following
baselines: (1) the naive voting algorithm which counts the top vot-
ed author list for each book as the truth; (2) TruthFinder [16]; (3)
Accu [4] which considers the dependency between sources; (4) 2-
Estimates as described in [5] with the highest accuracy among all
the models in [5].

Table 3 compares the results of the different algorithms on the
book author data set in terms of the accuracy. The MSS model
achieves the best accuracy among all the compared models. We
note that the proposed MSS model is an unsupervised algorithm
which does not involve any training data. In other words, we do not
use any true values in the MSS algorithm in order to produce the re-
liability ranking as well as other true values. Even compared with
the accuracy of 0.91 of the Semi-Supervised Truth Finder (SST-
F) [17] using extra training data with known true values on some
objects, the MSS model still achieves the highest accuracy of 0.95.

Figure 4(a) illustrates the scatter plot between the predicted reli-
ability ul for each group and its test accuracy. From this figure, it
is evident that the group reliability obtained from the MSS model is
a good predictor of the true accuracy for each group. Meanwhile,
we also report three example groups in Table 1. It is evident that
within each group, the member sources have much consistent re-
liability as they make dependent claims. Therefore, by accurately
predicting reliability of groups, the proposed MSS model can ap-
propriately aggregate the contributions from differen groups based
on their performances and gain the competitive accuracy as shown
above.

Moreover, to compare the reliability between sources, we can
define the reliability of each source Sn by the expected reliability
score of its assigned groups as follows:

Reliability(Sn) =
∑
l

q(gn = l) E
q(ul|βl)

[ul]

where

E
q(ul|βl)

[ul] =
βl,1

βl,1 + βl,2

Then, sources can be ranked based on such source reliability. In
Table 2, we rank the top-10 and bottom-10 book stores in this way.

In order to show the extent to which this ranking list is consistent
with the real source reliability, we provide the accuracy of these
bookstores on test data sets. Note that each individual bookstore
may only claim on a subset of books in the test set, and the accuracy
is computed based on the claimed books. From the table, we can
see that the obtained rank of data sources is consistent with the rank
of their accuracies on the test set. On the contrary, the accuracy of
the bottom-10 bookstores is much worse compared to that of the
top-10 book stores on the test set. This also partially explains the
better performance of the MSS model.

Since κ influences the dependency modeling between sources,
we study the sensitivity of the model accuracy versus κ in Figure 3.
We know that when κ = 0, all sources are completely dependent,
and assigned to the same group. At this point, the model has a much

Table 4: The rounds used before convergence and computing
time for each model.

Model Bookstore User Tagging
Rounds Time(s) Rounds Time (s)

Voting 1 0.2 1 0.5
2-Estimates 29 21.2 32 628.1
TruthFinder 8 11.6 11 435.0
Accu 22 185.8 23 3339.7
MSS 9 10.3 12 366.2

(a) Book author data set (b) Flickr data set

Figure 4: Scatter plots on two data sets. The horizontal axis
represents the predicted group reliability by ul and the vertical
axis represents the average accuracy of the member sources on
the test set. The slope of each red line in the scatter is the cor-
relation coefficient which shows the statistical correlation be-
tween ul and the average accuracy.

lower accuracy, since all sources are tied to the same level of relia-
bility within a single group. As κ increases, the accuracy achieves
the peak at κ = 5.0. After that point, it deteriorates as the mod-
el gradually stops capturing the source dependency with increased
κ. This demonstrates the importance of modeling the source de-
pendency, and the capability of the MSS model in capturing such
dependencies with κ.

8.2 Flickr Image Tagging Data Set
We also evaluate the algorithm on a user tagging data set from

an online image sharing web site Flickr.com. This data set contains
13, 528 users (data sources) who annotate 36, 280 images (data ob-
jects) with their own tags. We consider 12 tags - “balloon," “bird,"
“box," “car," “cat," “child," “dog," “flower," “snow leopard," “wa-
terfall," “guitar," “pumpkin" for evaluation purposes. Each tag is
associated with a binary value 1/0 to represent its presence or not in
an image. This forms a multi-attribute model with these 12 tags to
find whether they are present on each image as described in Section
4.2. Different from the book author data set, we apply the extended
classification model in Section 7, where the visual content of each
image is represented by a 8, 000 dimensional hierarchical gaussian
[19] feature vector.

Figure 4 illustrates some image examples in this data set and the
tags annotated by users. It is evident that some images are wrongly
tagged by users. The MSS model aims to correct these errors and
yield accurate annotations on these images. To test accuracy, we
manually annotate these 12 tags on a subset of 1, 816 images.

We follow the same experimental setup as on the book author da-
ta set. For the sake of fair comparison, we adopt the variants in [8]
to incorporate visual features to enhance the original algorithms for
comparison by inferring the true values based on object clusters in
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Table 1: Three example groups among all 33 groups discovered by the MSS model on book author data set. The parenthesis after
the name of each bookstore is its accuracy on test set.

Group I Group II Group III

FREE U.S. AIR SHIPPING (0.3750) The Book Depository (0.3043) DVD Legacy (0.5833)
TheBookCom (0.3556) textbookxdotcom (0.4444) Englishbookservice.com (0.5500)
Browns Books (0.3438) Caiman (0.3855) Henry’s Biz Books (0.6000)
Mellon’s Books (0.4000) Bobs Books (0.4615) Blackwell Online (0.6579)

Books Down Under (0.4750) Morgenstundt Buch & Kunst (0.6207)
Limelight Bookshop (0.3896)
Powell’s Books (0.3810)

Table 2: Top-10 and bottom-10 book stores ranked by their posterior probability of belonging to a reliable group. We also report the
accuracy of these bookstores on the test set.

top-10 bookstore accuracy bottom-10 bookstore accuracy

International Books 1 textbooksNow 0.0476
happybook 1 Gunter Koppon 0.225
eCampus.com 0.9375 www.textbooksrus.com 0.3333
COBU GmbH & Co. KG 0.875 Gunars Store 0.2308
HTBOOK 1 Indoo.com 0.3846
AlphaCraze.com 0.8462 Bobs Books 0.4615
Cobain LLC 1 OPOE-ABE Books 0
Book Lovers USA 0.8667 The Book Depository 0.3043
Versandantiquariat Robert A. Mueller 0.8158 Limelight Bookshop 0.3896
THESAINTBOOKSTORE 0.8214 textbookxdotcom 0.4444
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Figure 5: Parametric Sensitivity: model accuracy versus dif-
ferent κ on book author data set.

the feature space. It has shown better accuracy compared with the
original algorithms [8]. Table 3 shows the average precision and
recall on the 12 tags by the compared algorithms. We can see that
MSS still performs the best among these compared algorithms. The
Figure 4(b) illustrates the scatter plot between the predicted relia-
bility of each group and the average accuracy of its member sources
on the test set. It is evident that the obtained group reliability is still
a good predictor of the true accuracy with strong correlation coef-
ficient 0.8676. This guarantees a competitive performance of the
MSS model on this Flickr data set as on the book author data set.

We also compare the computational time used by different algo-
rithms in Table 4. The experiments are conducted on a personal
computer with Intel Core i7-2600 3.40 GHz CPU, 8 GB physical
memory and Windows 7 operating system. We can see that com-
pared with most of other algorithms, MSS model can converge in
fewer rounds with less computational cost.

9. CONCLUSION
In this paper, we propose an integrated true value inference and

group reliability approach. Dependent sources which are grouped
together, and their (general and specific) reliability is assessed at

  

(a) balloon
  

(b) snow leopard

  

(c) guitar
  

(d) pumpkin

Figure 6: Examples of image and the associated user tags in
Flickr data set. In each subfigure the left image is correctly
tagged by users, while the right one is wrongly tagged.

the group level. The true data values are extracted from the re-
liable groups so that the risk of overusing the observations from
dependent sources can be minimized. The overall approach is de-
scribed by a probabilistic multi-source sensing model, based on
which we jointly infer group reliability as well as the true values
for objects a posterior given the observations from sources. The
key to the success of this model is to capture the dependency be-
tween sources, and aggregate the collective knowledge at the group
granularity. We present experimental results on two real data set-
s, which demonstrate the effectiveness of the proposed model over
other existing algorithms.
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Appendix A: Model Inference
In this Appendix, we derive the variational inference for the pro-
posed MSS model, and give the detail steps to update the variational
parameters in each factor.
A.1: Update each factor q(πl,m|αl,m) for the group observation
parameter πl,m.

By variational approach, we can verify that the optimal q(πl,m|αl,m)
has the form

q(πl,m|αl,m) ∝ exp{ E
q(rl,m),q(tm)

ln p(πl,m|rl,m, tm)

+
∑

n∈I·,m

E
q(gn)

ln p(yn,m|πl,m, gn)}

∝
∏
k∈X

πl,m;k
αl,m;k−1

It still has Dirichlet distribution with the parameters

αl,m;k =
∑

n∈I·,m

q(gn = l)δ [[yn,m = k]]

+
∑

rl,m∈{0,1}

q(rl,m)[(η(rl,m) − 1)q(tm = k)

+ (θ(rl,m) − 1)(1− q(tm = k))] + 1

for each k ∈ Xm, where δ [[A]] is the indicator function which out-
puts 1 if A holds, and 0 otherwise. Here we index the element in
αl,m and πl,m by k after the colon. We will follow this notation
convention to index the element in vectors in this paper.

A.2: Update each factor q(ul|βl) for general group reliability
ul.

We have

ln q(ul|βl) ∝
∑
m

E
q(rl,m)

ln p(rl,m|ul) + ln p(ul|b1, b0)

= (
∑
m

q1(rl,m) + b1 − 1) lnul

+ (
∑
m

q0(rl,m) + b0 − 1) ln(1− ul)

where qi(rl,m) is short for q(rl,m = i) for i = 0, 1, respectively. It
is evident the posterior of ul still has Beta distribution as Beta(βl)
with parameter

βl = [
∑
m

q1(rl,m) + b1,
∑
m

q0(rl,m) + b0].

It is evident that the above updated parameter sums up the posterior
reliability q1(rl,m) and q0(rl,m) over all objects. This corresponds
to the intuition that the general reliability is the sum of the reliabil-
ity on individual objects.

A.3: Update each factor q(rl,m|τ l,m) for the object-specific re-
liability rl,m of group Gl on Om:

ln q(rl,m|τ l,m) ∝ E
q(tm),q(πl,m)

ln p(πl,m|rl,m, tm)

+ E
q(ul)

ln p(rl,m|ul)
(5)

Thus, we have

ln q(rl,m|τ l,m)

∝
∑

k∈Xm

q(tm = k)[(η(rl,m) − 1) E
q(πl,m)

lnπl,m;k

+ (θ(rl,m) − 1)
∑
j ̸=k

E
q(πl,m)

lnπl,m;j ]

+ rl,m E
q(ul)

lnul + (1− rl,m) E
q(ul)

ln(1− ul)

(6)

for rl,m ∈ {0, 1}, respectively. Here we compute the expectation
of the logarithmic Dirichlet variable as

E
q(πl,m)

lnπl,m;k = ψ(αl,m;k)− ψ(
∑
i

αl,m;i)

with the digamma function ψ(·); the expectation of the logarithmic
Beta variables

Eq(ul)lnul = ψ(βl;1)− ψ(βl;1 + βl;2)

and

Eq(ul)ln(1− ul) = ψ(βl;2)− ψ(βl;1 + βl;2).

Finally, the updated values of q(rl,m) are normalized to be valid
probabilities.

The last line of Eq. (6) reflects how the general reliability ul af-
fects the estimation of the object-specific reliability. This embodies
the idea that a generally reliable group is likely to be reliable on a
particular object and vice versa. This can reduce the overfitting risk
of estimating rl,m especially considering that q(tm) in the second
line also needs to be estimated simultaneously in the MSS model as
in the next step.

A.4: Update each factor q(tm|νm) for the true value.
We have

ln q(tm = k|νm) ∝ ln p(tm = k)

+
∑
l

∑
rl,m∈{0,1}

q(rl,m) E
q(πl,m)

ln p(πl,m|tm = k, rl,m)
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This suggests that

ln q(tm = k|νm)

∝
∑
l

∑
rl,m

q(rl,m){(η(rl,m) − 1) E
q(πl,m)

lnπl,m;k

+
∑
k′ ̸=k

(θ(rl,m) − 1) E
q(πl,m)

lnπl,m;k′}

All q(tm = k), k ∈ Xm are normalized to ensure they are validate
probabilities.

A.5: Update each factor q(gn|φn) for the group assignment of
each source.

We can derive
ln q(gn = l|φn)

∝ E
q(ρ)

ln p(gn = l|ρ) +
∑

m∈In,·

E
q(πl,m)

ln p(yn,m|πl,m, gn = l)

= E
q(ρ)

ln p(gn = l|ρ) +
∑

m∈In,·

E
q(πl,m)

lnπl,m;yn,m

This shows that q(gn = l|φn) is a multinomial distribution with
its parameter as

φn;l = q(gn = l|φn) =
exp(Un,l)

∞∑
l=1

exp(Un,l)
(7)

where

Un,l = E
q(ρ)

ln p(gn = l|ρ) +
∑

m∈In,·
E

q(πl,m)
lnπl,m;yn,m

As in [13], we truncate after L groups: the posterior distribution
q(ρi) after the level L is set to be its prior p(ρi) from Beta(1, κ);
and all the expectations E

q(πl,m)
lnπl,m;k after L are set to:

Eq(πl,m) lnπl,m;k = E
q(tm),p(rl,m)

{ E[lnπl,m;k|rl,m, tm] }

with the prior distribution p(rl,m) defined as Section 4 for all l >
L, respectively. The inner conditional expectation in the above is
taken with respect to the probability of πl,m conditional on rl,m
and tm. Similar to the family of nested Dirichlet process mixture
in [13], this will form a family of nested priors indexed by L for
the MSS model. Thus, we can compute the infinite sum in the de-
nominator of Eq. (7) as:

∞∑
l=L+1

exp(Un,l) =
exp(Un,L+1)

1− exp( E
ρi∼Beta(1,κ)

ln(1− ρi))

A.6: Update q(ρi) in GEM construction.
Before the truncation level L, the posterior distribution q(ρi) ∼

Beta(ϕi,1, ϕi,2) is updated as

ϕi,1 = 1 +

N∑
n=1

q(gn = i), ϕi,2 = κ+

N∑
n=1

∞∑
j=i+1

q(gn = j)

Appendix B: Parameter Estimation
The model parameters Θ = {η(0), θ(0), η(1), θ(1), b1, b0, κ} can
be estimated by maximizing the log-likelihood logL(q) by the ob-
tained factorization q with the constraints η(1) > θ(1) and η(0) ≤
θ(0). Since we require η(1) > θ(1) strictly holds, we usually im-
pose η(1) ≥ (1+ϵ)θ(1) with a positive value of ϵ, i.e., η(1) is larger

than θ(1) with a margin ϵ. This ensures the strict inequality and im-
proves numerical stability. In the algorithm, we set ϵ = 0.5. Then,
the parameter estimation problem becomes the following:

Θ⋆ = argmax
Θ

L(q)

s.t., 0 ≤ η(0) ≤ θ(0), η(1) ≥ (1 + ε)θ(1) ≥ 0,
b1, b0, κ ≥ 0

This constrained optimization problem can be solved by many off-
the-shelf gradient-based constrained optimization solvers with the
following gradients:

∂L
∂η(r)

=
∑

l,m,k∈Xm

{ψ(η(r) + (Km − 1)θ(r))− ψ(η(r))

+ψ(αl,m;k)− ψ(
∑
i

αl,m;i)}

∂L
∂θ(r)

=
∑

k∈Xm

{ψ(η(r) + (Km − 1) θ(r))− (Km − 1)ψ(θ(r))

+
∑
k′
ψ(αl,m;k′)− (Km − 1)ψ(

∑
i

αl,m;i)}

for r ∈ {0, 1}.

∂L
∂b1

=
∑
l

ψ(b1 + b0)− ψ(b1) + ψ(βl,1)− ψ(βl,1 + βl,2)

∂L
∂b0

=
∑
l

ψ(b1 + b0)− ψ(b0) + ψ(βl,2)− ψ(βl,1 + βl,2)

∂L
∂κ

=
∑
i

ψ(1 + κ)− ψ(κ) + ψ(ϕi,1 + ϕi,2)− ψ(ϕi,2)
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