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ABSTRACT

Social recommender systems aim to alleviate the informa-
tion overload problem on social network sites. The social
network structure is often an important input to these rec-
ommender systems. Typically, this structure cannot be in-
ferred directly from declared relationships among users. The
goal of our work is to extract an underlying hidden and
sparse network which more strongly represents the actual
interactions among users. We study how to leverage Twit-
ter activities like micro-blogging and the network structure
to find a simple, efficient, but accurate method to infer and
expand this hidden network. We measure and compare the
performance of several different modeling strategies using a
crawled data set from Twitter. Our results reveal that the
structural similarity in the network generated by users’ re-
tweeting behavior outweighs the other discussed methods.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentations]: Mis-
cellaneous

Keywords

Recommender systems, Social Networks, Similarity, Trust,
Twitter

1. INTRODUCTION

Social recommender systems have emerged as a promising
solution for the information overload problem on social net-
work sites. Through a recommender system, a user can be
provided with more proactive and personalized information
services. A key challenge is what information to use to pro-
vide the recommendations. The structure of a user’s social
network is an important input to the recommendation algo-
rithm. Our focus, therefore, is on techniques to determine a
user’s social network.

A key problem, however, is that the most online social
networks do not distinguish between high and low quality
relationships [9]. Users interact with very few other peo-
ple in their networks. A study of social interactions within
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Twitter reveals that the driver of usage is a sparse and hid-
den network of connections underlying the “declared” set of
friends and followers [9]. This hidden network is often re-
ferred to as the “web-of-trust” [1, 2, 13, 7, 4]. We believe
that using the more powerful web-of-trust is a better input
into a recommendation algorithm than a user’s entire social
network.

Our goal in this work is to determine a user’s web-of-trust
hidden within the larger social network. To understand our
goal, we first provide a reminder that the term “trust” is not
defined to mean human trust, i.e., that two people can fully
rely on each other, but rather, the idea that an interaction
between two trusted parties will have an expected outcome.
Given the important distinctions, we described the concept
of trust more fully later in the paper.

The process of building a user’s web-of-trust would be sim-
ple if “trust values” were explicit and identifiable. In prac-
tice, however, this is not the case. Therefore, the challenge
is to determine a user’s implicit trust values. We believe one
way to determine these values is to study the interactions
between users, for example, how often they interact and the
kind of interaction that takes place.

In this work, the focus of our study is on Twitter, and
identifying the hidden web-of-trust for Twitter users. Our
goal is to design efficient methods to filter and discover the
implicit trust relationships among Twitter users based on
the set of activities and relationships that exist in Twitter.

Our approach has two main steps: inference (filtering)
and propagation (discovery). In the first step, the existing
relationships among Twitter users are filtered using users’
behaviors as indications of trust (i.e., retweeting and adding
tweets to the favorite’ list). The webs-of-trust developed in
this step is often too sparse to be helpful in practice since
users usually have relationships and interactions with only a
very small fraction of the total population. Thus, very often
there will be no link to an intended new user. In the second
step, propagation, the webs-of-trust are expanded by predic-
tion of new potential links using four different propagation
methods.

It is impossible to compare the estimated web-of-trust,
generated in the first step, with a user’s actual web-of-trust,
as the actual trust relationships cannot be known. There-
fore, we focus our evaluation on the second step. We com-
pare the webs-of-trust determined in the second step using
different metrics and also study the efficiency of each prop-
agation method. We used a crawled data set from Twitter
with more than 20,000 users as a data set. The main ad-



vantages of our solution are efficiency, acceptable accuracy,
and scalability. Furthermore, we use implicit information as
opposed to trust modeling based on explicit trust ratings.

While our long-term goal is to identify the actual web-of-
trust, we believe this work is a key first step. Future work
will entail including the methods presented in this paper
with methods for content analysis since users are not passive
consumers of content, they are often content producers as
well.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information related to our work.
The relevant work is explored in Section 3. We present the
details of our proposal in Section 4. We describe an anal-
ysis and evaluation of our proposal in Section 5. Finally,
Section 6 provides concluding remarks and future research
directions.

2. BACKGROUND

In this section, we introduce the necessary background
for creation of an implicit web-of-trust on Twitter. Twit-
ter, as an online social network, is an information shar-
ing system where users choose to follow other notable users
to gain updates on news and statuses. Relationship links
on Twitter are directional, meaning that each user has fol-
lowers and followees. Twitter allows users to post and ex-
change 140-character-long messages, which are also known
as “tweets”. Twitter users usually use hashtags (#) to iden-
tify certain topics. Hashtags are assigned to a tweet in its
own body text. T'weets can be published by sending e-mails,
SMS text-messages, and directly from smart phones using
a wide array of Web-based services. Furthermore, Tweets
can be repeated throughout the network by “re-tweeting”.
A retweeted message usually starts with “RT @Qusername”,
where the @ sign represents a reference to the one who orig-
inally posted the messages. The strength of Twitter as a
medium for information diffusion is based in large part on
its speed of retweets. Retweeting is often used as an in-
dication that the original information was of high value or
significant interest [3]. Users can also add tweets to their
“favorite” list.

The simplicity of Twitter and its real-time message streams
are its most powerful features. These real-time message
streams have greatly expanded the usage of social network
sites, from political campaigning to education, and from
emergency news reporting to marketing and public relations.
In particular, Twitter is an ideal environment for the dis-
semination of breaking-news directly from the news source
and/or geographical location of the events. It has made
interesting inroads into novel domains such as emergency
response and recovery under crisis situation (e.g.,, Twitter-
based early warning systems [16], help during a large-scale
fire emergency’, updates during riots in Kenya?, and live
traffic updates to track commuting delays®).

The most basic definition of “trust” covers various struc-
turally connected phenomena. It is crucial to distinguish at
least between two kinds and meanings of trust: (a) trust as
a psychological attitude of Person A towards Person B rel-

"http://factoryjoe.com/blog/2007/10/22/twitter-hashtags-
for-emergency-coordination-and-disaster-relief/
http://www.economist.com/node/10608764/

3http:/ /lifehacker.com /355453 /track-commuting-delays-
via-twitter-with-commuter-feed /
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ative to some possible desirable behavior, and (b) trust as
the decision and the act of relying on another person.

Our study only deals with the first type of trust. Moti-
vated by the idea of using implicit user behaviors as indica-
tions of trust, we adopt the following as our trust definition
in online social networks: “trust in a person is a commit-
ment to an action based on a belief that the future actions
of that person will lead to a good outcome” [7]. The ac-
tion and commitment in this definition do not have to be
significant. For example, in the case of Twitter, we could
say User A trusts User B regarding the semantics of Twitter
messages (tweets) if she chooses to read the messages that
User B posts, retweets, or identifies as a favorite (commits
to an action) based on her belief that User B will not waste
her time.

The main intuition and motivation for our work is that
trust between two users may result in certain typical behav-
iors. These behaviors are not only an expression of trust, but
could facilitate the development of other trust relationships.
Although, such behavioral expressions are not guaranteed
expressions of trust, the more often they occur, the stronger
the indication. Several properties of trust follow from this
definition [7], namely:

- Transitivity: the primary property of trust is transi-
tivity. Trust is not perfectly transitive in the mathematical
sense, that is, if User A highly trusts User B, and User B
highly trusts User C, it does not always follow that User A
will highly trust User C. There is, however, a notion that
trust can be passed between people.

- Composability: There is a greater belief in the validity
of information if it comes from several people. Therefore, if
we look at trust recommendations as evidence to support
the belief component of trust, then trust values from many
sources can be combined to form a single opinion.

- Asymmetry and personalization: Trust is not neces-
sarily identical in both directions, because individuals have
different experiences, psychological backgrounds, and histo-
ries.

An online social network can be modeled as a graph with
users as the nodes and the relationships among users as the
links. A web-of-trust is a directed weighted graph with the
same nodes as the online social network graph. The weight
on the link from User A to User B indicates the strength of
the trust attitude User A has towards User B.

3. RELATED WORK

The majority of the related work relies on explicit trust
ratings. The various approaches to trust inference can be

summarized as: statistical patterns and clustering techniques [1],

trust ontology [2], PageRank [13], Semantic Web-based ap-
proaches [7], Bayesian networks [7], and game theory and
social network measures [4]. An important characteristic of
Twitter is its real-time nature. Hence, the efficiency of such
algorithms is very important, but has not received much
attention in the field. In this section, the existing work is
compared according to the information source and the al-
gorithm that is used for trust prediction. We describe only
the most relevant subset of work on trust modeling for social
networks.

Sibel et al. present measures of trust based in social net-
works [1]. The basis of their approach is an assumption that
trust results in communication behavior patterns that are
statistically different from communication between random



members of a network. The proposed measure of who-trusts-
whom in the network relies on detecting statistically signif-
icant patterns of the trust-like behavior and they validated
these measures on Twitter network data.

Anantharam et al. developed a general ontology of trust
that is independent of specific domain and discussed how
concepts in their ontology can be used in the context of Twit-
ter as an application scenario [2]. They define two types of
trust called referral trust where one user sends another user’s
tweet and functional trust where one user follows another
user.

Noordhuis et al. applied PageRank (the Google’s method
for measuring the relative quality of a URL) to Twitter’s
social graph of users and their followers to determine users
of importance [13].

Golbeck introduces an approach to integrate trust with
annotations in Semantic Web systems [7]. In another paper,
Kuter and Golbeck propose to model the trust network as
a Bayesian network . Therefore, they also use explicit trust
information.

Ziegler and Lausen introduce Appleseed, a local group
trust metric based on spreading activation models, designed
for computing subjective neighborhoods of most trustworthy
peers on the network [21]. The basic intuition of Appleseed
is motivated by spreading activation models from Cognitive
Science.

Buskens proposes a game-theoretic solution [4]. Problem-
atic social situations can be described as trust games with
two players and two periods of play. A Trust Game is a
one-sided Prisoner’s Dilemma Game.

There are several other projects that present trust model-
ing between a user and a statement on social networks. For
example, Richardson et al. use social networks with trust to
calculate the belief a user may have in a statement [15]. Cur-
rent social network systems on the Web, however, primarily
focus on trust values between one user and another, and
thus, their aggregation function is not applicable in these
systems.

In this work, we mainly focused on behavioral features
and methods to compute the social ties individuals have
and the strength of these ties without the help of textual
features. We used the definition of trust in social networks
from the work by Goldbeck [7] and three behaviors as the
indication of trust. The retweet behavior is also mentioned
in the work by Sibel et al. [1] and Anantharam et al. [2].
Therefore, we confirm and complement their results in this
way. Furthermore, the weighted-transitivity formula is in-
spired by the work proposed by Golbeck [7]. In the next
section, we present the details of trust modeling on Twitter.

4. INFERENCE AND EXPANSION OF THE

HIDDEN WEB OF TRUST ON TWITTER

A link between two users in the web-of-trust is created
as a result of two steps. In the first step, inference, the
hidden web-of-trust is extracted from the Twitter network
(i.e., follower-following network) using the implicit informa-
tion about users’ behaviors. This step can be thought as
an abductive reasoning approach, which is a backward rea-
soning from consequences to hypotheses. In this case, the
hypothesis is a link in the web-of-trust and the consequences
are, for example, the retweeting and favorite actions. Ap-
parently, there might be other hypotheses as well, such as
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the user might be interested in the topic. Thus, such be-
havioral expressions of trust should be more viewed as noisy
indicators. The more often they occur, the more likely that
a link exists on the web-of-trust [1].

The goal of the second step, propagation, is to make the
generated web-of-trust generated less sparse. We applied
and compared four different methods for prediction of non-
exiting links. The details of these two steps are provided in
the following sub-sections.

4.1 Inference

This step corresponds to filtering social relationships among
users to identify the stronger relationships. Our baseline
is the original social network, that is the network of users
based on follower-following relationships. As discussed in
Section 2, this network can be represented as a directed
graph with users as nodes and social relations as links. We
consider two behaviors as an implicit expression of a stronger
relationship on Twitter: retweeting, and the behavior of
making tweets favorites. There are also other possible in-
dicating behaviors (e.g., direct conversation between users
called mentions in Twitter) that we did not consider. We
chose our indicating behaviors intuitively; and in our opin-
ion, direct conversations are not necessarily an indication
of a trust relationship between two persons. In the follow-
ing, we describe how each behavior can be considered as an
indication of trust.

- Retweet: This indication of trust is based on the prop-
agation of information. If User B retweets messages from
User A often, then we assume that User B must be implic-
itly trustworthy to User A. The motivation behind this idea
is that we observed people only retweets from a small num-
ber of users and only a subset of a user’s followers actually
retweet.

- Favorite: If User A often makes some of user B tweets as
his/her own favorites, we consider this to implicitly indicate
that User A trusts User B.

The Retweet and Favorite webs-of-trust are directed and
weighed graphs with nodes as users and links as implicit
trust relationships among them. The weights are in the
range (0, 1] and the higher weight mean the stronger re-
lationship. For the web-of-trust generated from retweeting
behavior, the weight of a trust link from User A towards
User B may be calculated in two different ways: (a) as the
proportion of the messages User A has retweeted from User
B to the total messages that User A has retweeted so far, and
(b) as the proportion of the messages User A has retweeted
from User B to the total tweet messages of User B. The
first measure captures how much of User A’s retweeting ef-
fort is spent retweeting messages from User B, while the
second measure captures the fraction of User B’s messages
that User A considers worthy of retweeting. We have tried
both in our experiments, and they yield similar results. For
this reason, we only report the results of (a). In extremely
heterogeneous networks, these two measures could capture
different aspects of trust, however in homogeneous networks
they behave similarly. A similar calculation is used for as-
signing the weights to trust links in the Favorite web-of-
trust.

The webs-of-trust resulting from these inference methods
are often too sparse to be helpful in practice (e.g., to be used
by a recommender system) [17]. The primary reason is users
typically have relationships or interactions with only a very



(b)

Figure 2: Trust propagation through structural sim-
ilarity: (a) similar trustees and (b) similar trusters.

small fraction of the total community members. Therefore,
very often there will be no link to a targeted user. Trust
propagation methods can predict some of the missing links
in the trust web to make it more dense.

4.2 Propagation

We apply four different methods for expansion of the two
webs-of-trust (Retweet and Favorite) generated in the first
step. Three of them are based on the transitivity feature
of trust and the fourth is based on the idea of similarity
between users based on the structure of the social network
as a predictor of trust. By trust transitivity, we expect that
people who a user trusts highly will tend to agree with the
user more about the trustworthiness of others than people
who are less trusted. For example, users are more likely
to trust the “taste” of people they are following in Twitter.
That is, if User A trusts User B who trusts User C, then
User A will probably trust User C, as shown in Figure 1(a).
On the other hand, this approach is helpful, provided that
a complete transitive trust path exists between the truster
and the trustee.

There are other possibilities for trust propagation such as
“co-citation,” “trust coupling,” and “transpose/reciprocity”
shown respectively in Figure 1(b, ¢, and d). Co-citation
propagation refers to situation where User A and User B
have a common trusted third User D. In this situation, User
A has some level of trust towards User C. Likewise, User
A and User C trust the same person(s) (see Figure 1(c)),
they might trust one another as User A’s trust in User B
could propagate to User C' and the same conclusion can
be induced from User C’s side as well. Another track for
the propagation of trust is that a direct relation from User
A to User C' may hold (see Figure 1(d)). In other words,
if User A trusts User C, User C' may intuitively begin to
develop a sense of trust in return. This is called transpose
or reciprocated trust. Since transpose trust results from
explicit trust, we did not consider it in this work.

We propose an alternative approach based on similarity in
the network structure. One can exploit the like-mindedness
of individuals based on collaborative filtering to infer trust
to yet unknown parties. For instance, if one knows that,
with respect to a specific property, two parties are trusted
alike by a large number of different trusters, one can assume
that they are similar, as shown in Figure 2(a). Likewise, if
two persons trust a large number of overlapping users, they
can be assumed to be similar, as shown in Figure 2(b).

More specifically, if User A has a level of trust towards
User B (i.e., there is a direct trust link from User A to User
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B in the web-of-trust) who is similar to User C' (i.e., they
are similar trustees), then User A can infer some trust to-
wards User C'. Two trustees are similar if they are both
similarly trusted by other Users Z1, Zo, ..., Z,, as shown
in Figure 2(a). The main advantage of this method is trust
links can be predicted even between two users who are not
reachable from each other on a transitive path. Another
advantage is the other trust propagation possibilities, trust
coupling and co-citations, can also be modeled through this
approach. We provide the details of each method’s formula-
tion in the following sub-sections.

4.2.1 Trust Propagation through Transitivity

The simplest and most intuitive form of trust propagation
is trust transitivity, which is widely discussed in the liter-
ature [5, 8, 12, 14]. That is, if User A trusts User B who
trusts User C', then User A will also trusts User C, which
we call it “simple-transitivity”. This method has the time
complexity of O(m*d) and the space complexity of O(m),
where m is the number of links and d is the average degree
of the nodes in the graph.

It is important to consider the number of users like User
B that form a transitive path between User A and User C.
The higher the number of these users, the stronger the pre-
dicted trust relationship between User A and User C. In an
improved method called “weighted-transitivity”, we assume
User A trusts User C provided that there exists at least a
given number of other users that connects them in a transi-
tive path A — B — (. For instance, the average number of
paths of length two between users in the graph can be used
as the threshold. The weighted-transitivity method predicts
a new trust link and assigns its weight as Tac by multi-
plying the weights of the links in the transitive path (Tap
and Tsc), as shown in Figure 1. The intuition behind this
multiplication is that we assume User B as a referral who
sends her opinion of trust (Tsc) about User C' to User A.
It is important to include User A’s trust in User B (Tap) in
the formulation; therefore, the recommended trust by User
B (Tsc) is multiplied by Users B’s trustability (Tap). As a
consequence, If User B is not much trusted by User A, then
her recommended trust value will be de-emphasized as well.

Tac =Tap *Tsc

(1)
Another formula proposed by Golbeck [7] is:

> Tap *Tsc
S Tar

We call this method “golbeck-transitivity”. The main dif-
ference in her formula is that the trust value is not de-
emphasized by the reliability of the referral. For example,
the inferred trust value will be equal to Tsc in the case
of one existing transitive path between User A and User C.
Both weighted-transitivity and golbeck-transitivity methods
have time complexity of O(m*d) and space complexity of
O(m).

In this paper, we consider the paths of length two as the
transitive paths. Theoretically, the transitive path between
User A and User C' can be of any length. However, previous
work has addressed this issue and shown that, as expected,
shorter paths lead to more accurate information [7]. In our
formulation, the predicted value between two nodes over a
very long path will be very small. Therefore, we considered

Tac =



Figure 1: Trust propagation possibilities: (i) transitivity, (ii) co-citation (iii) trust coupling, (iv) transpose.

Figure 3: Similarity measurement.

only the paths of length two in our study. It is intuitive
since a user expect that neighbors who are connected more
closely will give more accurate information than those who
are further away in the network.

4.2.2  Trust Propagation Through Structural Similarity

This method addresses the way in which the level of trust
in cooperative relations depends on the similarity of nodes in
the network structure. We measure similarity between two
users with respect to trusting other users or being trusted
by other users. The intuition behind our algorithm is that,
similar users are related to similar users. More precisely,
Users A and B are similar if they are related to Users C
and D, respectively, and C' and D are themselves similar.
The base case is that each user is similar to itself. If we
call the web-of-trust G, we can form a node-pair graph G?
in which each node represents an ordered pair of nodes of
G as depicted in Figure 3. A node (A, B) of G* points
to a node (C, D) if, in G, A points to C' and B points to
D. Similarity scores are symmetric, so for clarity we draw
(A, B) and (B, A) as a single node A, B (with the union of
their associated links) [10].

SimRank is an iterative fixed-point algorithm that com-
putes similarity scores for node-pairs in G* [10]. The simi-
larity score for a node v of G? gives a measure of similarity
between the two nodes of G represented by v. Scores can
be thought of as flowing from a node to its neighbors. Each
iteration propagates scores one step forward along the di-
rection of the links until the system stabilizes (i.e., scores
converge). Since nodes of G? represents pairs in G, similar-
ity is propagated from pair to pair. Under this computation,
two nodes are similar if they are linked by similar nodes.

For each iteration, k, an iterative similarity functions simy (*, *)

is introduced. The iterative computation is started with
simo (%, *) defined as

L
0,

if A=B

simo(A, B) = { if A%B (2)

985

On the (k+ 1)-th iteration, simy.1(*,*) is defined in spe-
cial cases as

simi+1(A, B) =1, if A=B
simg+1(A, B) =0, if I(A)=0orI(B)=10 (3)
simp4+1(A, B) =0, if O(A)=0or O(B)=10

I(A) is the set of in-neighbors of A while O(A) speci-
fies the set of A’s out-neighbors. Individual in-neighbors
are denoted as [;(A), for 1 < i < |I(A)], and individual
out-neighbors are denoted as O;(A), for 1 < i < |O(A)|.
simp41(*, %) is computed from simy(*,x*), in the general
case, as follows:

w

simp41(A, B) = [I(A)||I(B)|

Z Z simi(A’, B")

A’€I(A) B'€I(B)
(4)

where I(X) denotes the set of nodes linking to X (in-
neighbors); if I(A) or I(B) is empty, then simy1(A, B) =0
by definition. For a node pair with A = B we simply let
simi+1(A, B) = 1. w is a constant between in the range (0,
1) and can be thought of either as a confidence level or a
decay factor.

Consider a simple scenario where User X has two relations
with Users M and N, so we conclude some similarity be-
tween M and N. The similarity of X with itself is 1, but we
do not want to conclude that sim (M, N) = sim(X,X) = 1.
Rather, we let sim(M, N) = w x sim(X, X) meaning that
we are less confident about the similarity between Users M
and N than we are between User X and itself. This formula
is alternately computed in iterations until the resulting simi-
larity values converge. The structural similarity method has
time complexity of O(n®) and space complexity of O(n?).
We enhanced the algorithm to achieve the time complexity
of O(m *n) and space complexity of O(n +m) by using the
following heuristics [20].

I) The similarity score can be seen as a random walker
defined on a node-pair graph G? depicted in Figure 3(b).
The walker may wander into an enclosed sub-section of the
entire graph that has no out-link so that it will get stuck
in the small sub-graph with no possibility of returning to
the outside. This scenario is associated with the fact that
the graph is not strongly connected. A technique termed
“teleportation” is used to make the graph irreducible and
solve this problem.

IT) We represent similarity equations in matrix form and
employ a sparse storage scheme.

IIT) The similarity matrix often contains a very large frac-
tion of non-zeros entries whose values are almost zero after
several iterations. These small similarity values require a



Method Time Space
complexity | complexity
simple-transitivity O(m*d) O(m)
weighted-transitivity O(m*d) O(m)
golbeck-transitivity O(m*d) O(m)
structural-similarity O(m*n) O(n+m)

Table 1: Time and space complexities.

significant amount of storage space for little practical infor-
mation. We devised a pruning technique to eliminate these
near-zero similarity values by setting a threshold for each
iteration. This operation will also decrease the redundant
similarity computations and space-per-iteration.

IV) For the similarity computation to be I/O-efficient, the
adjacency matrix needs to be pre-ordered, which requires off-
line pre-computation to minimize the bandwidth at query
time. Therefore, A reordering technique is used, which not
only speeds the convergence rate, but achieves I/O efficiency
as well.

The details of these techniques are beyond the scope of
this paper and are not presented because of space limita-
tions. However, Yu et al. [20] present the details of imple-
mentation in their work. Although our proposal is based on
the graph structure, the trust value between each two nodes
can be calculated in a real time manner. In the next section,
we describe our analysis and evaluation.

S. EVALUATION

Ideally, we would like to compare the Retweet and Fa-
vorite webs-of-trust with the real trust network on Twitter.
This is not possible because the actual trust relationships
are unknown. Therefore, we focus our evaluation on the sec-
ond step using a crawled data set from Twitter with more
than 20,000 users. The goal of the evaluation is to compare
the accuracy and efficiency of the four propagation meth-
ods applied on the Retweet and Favorite graphs. Table 1
summarizes the efficiency of each method. In the table m is
the number of links, n is the number of nodes, and d is the
average degree of the nodes in the graph. The efficiency of
all four algorithms are almost the same.

We compared the accuracy of each method by inductive
reasoning. Our hypothesis is that any method found to cor-
rectly approximate the existing links and their weights in
the Retweet and Favorite graphs with good accuracy will
also approximate links over the whole network with enough
accuracy. We used the leave-one-out technique, a machine
learning evaluation technique, for the evaluation in this step.
In the leave-one-out technique, we split the data set (i.e., the
set of graph links) into m partitions of size 1, where m is
the number of links in the graph. Each partition is used
systematically to test exactly once where remaining parti-
tions are used for training. Then, each propagation method
is applied to predict the link in the the test partition. The
main advantage of this technique is that the result does not
depend on the way we split the data into a training set and
a test set. The predicted link is compared with the actual
link in the test partition using the following two metrics.

- Coverage: the percentage of currently available links
that can be predicted using the propagation method.

- Mean absolute error (MAE): The weight of the
newly predicted link is compared against the original weight
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Algorithm 5.1: NODE SELECTION ALGORITHM (seeds)

Put seeds (starting nodes of the crawl) into a queue
Select a node from the queue

Crawl the node

Add the neighbors of the crawled node into the queue
Go to Step 2 or terminate if stop conditions are met

Tk W N -

of the link. The average of the prediction error over all links
is then calculated.

5.1 Data Gathering

As a basis for evaluating our proposal, we first needed data
to evaluate. The main challenges in data gathering are the
factors that may introduce biases towards high degree nodes,
which may further contaminate or even skew the results.
The main factors are: 1) choice of seeds as the starting point
of the crawl, 2) node selection algorithm that decides which
node to crawl in each step, and 3) size of the crawled sub-
graph, which is subject to real world resource constraints
such as network bandwidth, time, machines, and the rate
limits enforced by online social networks providers.

Node/link coverage (the number of nodes/links seen by
the crawler versus the number of nodes/links in the graph) is
not sensitive to the number of seeds or to the degree of seeds.
The reason is that it has been widely documented that social
networks have the properties of small world networks, where
lots of nodes are tightly coupled together within a few hops
of each other [18]. The small world effect on online social
networks makes the choice of seeds less critical and crawling
a small portion of the network is sufficient to reveal most
nodes/links according to the work by Ye et al. [19]. It is a
strong sign of the small world phenomenon. Kwak et al., in
their thorough study on the Twitter social network, show
that Twitter also has a short average path length, although,
the relationships are directed among users [11]. It is also
important to note that all links are included for the crawled
portion of the network; thus, the result of study will not be
affected by missing links.

The crawling of the social graph starts from an initial node
and proceeds iteratively. In every operation, we visit a node
and discover all its neighbors. The process for crawling a so-
cial graph and gathering a partial data set can be outlined
as follows [19]: There are several widely used node selection
algorithms [19], e.g., the BES (Breadth First Search) algo-
rithm, which simply selects the first item in the queue; the
Greedy algorithm, which selects the node with the largest
degree in the queue; or the Random Walk algorithm, which
selects a node in the queue with probability proportional to
its degree. Therefore, the probability of moving from a Node
u to its neighbor (the transition probability) is ude;vee'

However, these algorithms lead to samples that not only
are biased towards high degree nodes, but also do not have
provable statistical properties. We used an algorithm, the
Metropolis-Hastings Random Walk (MHRW), for our crawl-
ing that is claimed to be not biased towards the nodes with
higher degrees [6]. This algorithm obtains a uniformly dis-
tributed random sample of nodes by appropriately modify-
ing the probabilities of transition from the current crawled




Algorithm 5.2: NODE SELECTION ALGORITHM (seeds)

queue «— seeds

while stopping criterion not met

u — queue.GET()

CRAWL(u)

while true
Select node v uniformly at random from
neighbors of u
Generate uniformly at random 0 < p <1

do

dO lfp < Udegree
— Vdegree
ueue.ADD(v
then {9 (@)
return

node to its neighbors. Pseudocode 5.2 shows the process. In
every iteration of MHRW, at the current node, u, the algo-
rithm randomly selects a neighbor, v, and moves there with
probability min(1, ijﬁ) It always accepts the move to-
wards a node of smaller degree, and reject some of the moves
towards higher degree nodes. As a result, the bias of RW
towards high degree nodes is eliminated.

In the rest of this section, we give the details about our
crawling procedure on Twitter. The Twitter API was used
to gather the data. We selected the first twenty most ac-
tive users among places where users have most tweeted *
as the seeds.The seeds were gathered in GMT: 41, 49, -8,
-7, -6, -5, and 0, corresponding to places where the tweet
counts were greater than one million. The public time-line
command, an API function provided by Twitter, was used
to sample the most active users. Twitter continually posts
a series of twenty most recent status updates. The status
updates in the time-line data set are presumably a random
snapshot of currently active users. Samples were made by
retrieving the public time-line and extracting the set of users
associated with the statuses in the time-line; then, details of
these users were collected. Over a period of one month, we
crawled Twitter information streams of more than 20,000
users. Together, there are 144,962 followers-followees rela-
tionships, 23,280 retweeted messages, and 50,713 favorited
messages. The results of the evaluation are presented in the
following.

5.2 Results

We applied the four different methods for propagation:
simple-transitivity, weighted-transitivity, golbeck-transitivity,
and structural-similarity on the Retweet and Favorite webs-
of-trust. The results were compared according to the three
different metrics: triadic closure, coverage, and MAE. We
used the average number of paths of length two in each graph
as the threshold value for the weighted-transitivity method.
As shown in Figure 4, this is the best choice since the cov-
erage decrease sharply when we increase the threshold value
in Favorite web-of-trust. The Retweet web-of-trust showed
the same pattern.

We start by discussion of the triadic closure for the Retweet
and Favorite webs-of-trust. Triadic closure is the percent-

“http://www.socialnetworkingsandiego.com /social-
networking /twitter-as-a-marketing-media/
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Figure 4: Coverage vs. threshold in Favorite web-
of-trust.

Favorite
12.16

Retweet
12.26

Triadic Closure (%)

Table 2: The number of triadic closures.

age of all the paths of length two in the graph that would
eventually close because of transitivity. In other words, the
third closing link exists in the graph. As Table 2 shows, the
third closing link exists for approximately 12% of all paths
of length two in both graphs. This metric shows that only
12% of the transitive paths resulted in a closing link in the
current graph based on existing relationships. This result
indicates that transitivity alone might not be strong enough
to predict a trust relationship.

Table 3 shows the values for the first metric, coverage,
which is the percentage of existing links in the Retweet and
Favorite webs-of-trust that are predicted using each prop-
agation method. As the results shows, the coverage for
weighted-transitivity and golbeck-transitivity methods are
less than the simple-transitivity method because of the con-
straints on the number of transitive paths between two con-
nected nodes. The structural-similarity method should gives
100% coverage for each graph, as this method is able to mea-
sure similarity between each two nodes on the graph. How-
ever, we use several heuristics to increase the efficiency of
this method. Consequently, some nonzero similarity mea-
sures, whose values are almost zero, are eliminated. Al-
though, we can see in the results that the heuristics have
not had a very adverse effect on the results since the cover-
age results are 99.9%.

Next, we describe the MAE results from Table 4. This
metric is not applicable to the simple-transitivity method,
as it does not calculate the weights on the predicted links.
The weighted-transitivity method gives less error than the
golbeck-transitivity method. The coverage is the same for
both methods. This result shows that considering the relia-
bility of the recommender (i.e., the trust of truster in the rec-
ommender) is an important issue. The structural-similarity
method on the graph generated by users’ retweeting be-
havior gives fewer errors in comparison with the weighted-
transitivity and golbeck-transitivity methods. Moreover, the
average error is less on the Retweet graph than on the Fa-
vorite graph.



. Coverage (%)
Method/Metric Retweet Favorite
simple-transitivity 15.67 16.39
weighted-transitivity | 4.86 5.53
golbeck-transitivity 4.86 5.53
structural-similarity 99.96 99.98

Table 3: The coverage of predicted links.

. MAE (%
Method/Metric Retweet ](F‘axzorite
simple-transitivity N/A N/A
weighted-transitivity | 14.87 15.82
golbeck-transitivity 22.04 23.43
structural-similarity 3.69 8.97

Table 4: The errors of predicted links.

Overall, the results show that the weighted-transitivity

method does not give a better result than the simple-transitivity

method on any of the graphs. The coverage is smaller and
the error is larger. The golbeck-transitivity method also
gave worse results with the same coverage and larger aver-
age error. However, the structural-similarity method gave
the best results both in terms of coverage and average error.
The average error for the Favorite graph is almost twice as
large as the average error for the Retweet graph. As dis-
cussed earlier, this method has also a good time complexity
of O(m™*n) and a space complexity of O(n+m).

6. CONCLUSION AND FUTURE WORK

In this paper, we discussed how users’ activities in on-
line social networks can be used to discover a stronger and
more influential network among users. Given a data set con-
sisting of more than 20,000 user, we generated two different
trust webs and applied four different prediction/propagation
methods for expansion of these networks. We found that
structural similarity is a better propagation method on a
web-of-trust generated by a user’s retweet behavior. In addi-
tion, this web-of-trust can be expanded efficiently to create
new trust predictions using the graph’s structural proper-
ties. The main advantages of our approach are accuracy,
efficiency, scalability, and the use of implicit information.

This work is a key first step towards the creation of a
web-of-trust that can be used by social recommender sys-
tems. As a future work, we aim to show how the incor-
poration of such information can enhance the performance
of social recommender systems. Moreover, we may be able
to improve the methods proposed in this paper with simple
semantic analysis. Efficient algorithms for statistically an-
alyzing the tweets along different dimensions can enhance
our algorithms. Future work could also include further in-
vestigation of contextual information, such as the semantics
of tweets (e.g., topics and hashtags) and demographic infor-
mation about users (e.g., location and age) and their impact
on inference of the web-of-trust.
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