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ABSTRACT
We outline some matrix factorization approaches for co-
clustering polyadic data (like publication data) using non-
negative factorization (NMF). NMF approximates the data
as a product of non-negative low-rank matrices, and can
induce desirable clustering properties in the matrix factors
through a flexible range of constraints. We show that si-
multaneous factorization of one or more matrices provides
potent approaches for co-clustering.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining
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1. INTRODUCTION
Real world data is often bimodal or dyadic. For example,

documents comprise of words, bloggers generate content in
social networks, users rate movies in recommendation sys-
tems, customers purchase products in retail data, etc. Such
dyadic (polyadic) data can often be naturally represented as
matrices, with rows and columns representing one of the en-
tities. A relevant problem is to co-cluster both row and col-
umn entities, e.g., topic clusters for users and text, clusters
of movies and users in recommendation systems, product-
groups and consumer-groups in purchase records.

In this work, we focus on publication data. Publication
data display a variety of linkages between entities. Docu-
ments often have multiple co-authors, and could be linked to
other documents through citations. Documents or authors
could also be seen as related to sets of abstract topics and
these topics, in turn as mixtures over words. Accounting for
these interactions to cluster on multiple dimensions presents
challenges. The problem has been partially approached by
topic models like LDA and Author Topic Model. However,
these models omit some relationships between the data en-
tities or make simplifying assumptions about the generative
process of data to make inference tractable. We present an
alternate perspective based on multiple matrix factorization
that could avoid some of these problems.

2. METHOD
We employ the framework of matrix factorization that

provides flexible formulations to co-cluster and induce de-
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sirable properties in resulting matrix factors. We consider
broadly two sets of constraints to encode two different no-
tions of clustering. First, we restrict the rows of factor ma-
trices to lie on a probability simplex, i.e. the components
are non-negative and normalized. This corresponds to a
soft-clustering interpretation, where a point belongs to sev-
eral clusters with different affinities. The alternate view is
to treat the cluster assignments as hard partitions of data.
This can be enforced by non-negativity and orthogonality
constraints on factors.

Let A, D and W denote the numbers of authors, docu-
ments and words in our corpus respectively. Let X(D×W ),
Y(A×D) and Z(D×D) represent the input matrices contain-
ing normalized counts/association strengths. Let T be a
predetermied number of latent topics. Let θ(D×T ) be a ma-
trix that represents each document as a distribution over
the topic space. Similarly, let matrices η(A×T ) and φ(T×W )

represent author interests and topic distributions over the
vocabulary space, respectively. The clustering problem is
then to simultaneously factorize the input matrices X, Y
and Z into θ, η, φ.

2.1 Clustering Documents and Words
We first describe a base case when we only have raw publi-

cation texts. In other words, we are given a word-document
matrix X, that we wish to decompose to factors θ and φ.
A reconstruction error such as a Squared Frobenius norm
can be used to quantify the goodness of the approximation,
LSMF (θ, φ) = ‖X−θφ‖2F . The objective is non-convex over-
all, but is individually convex in each of the two factors θ and
φ. This allows for the application of block gradient descent
to solve the unconstrained optimization.

We could introduce orthogonality constraints. Adding
these constraints to our previous formulation would restrict
θ and φ to be cluster indicator matrices and lead to the
following biconvex optimization:

Min‖X − θφT ‖2F s.t. θ ≥ 0, φ ≥ 0, θT θ = I, φTφ = I

However, this would be an over-constrained problem as or-
thogonal factor approximations for X may not exist. For
example, it is easy to see that the constraints restrict the
elements in both θ and φ to be less than unity, which would
give a very poor approximation if elements in X are ex-
tremely large. This is resolved in [1] by adding a T × T
factor matrix Σ to account for the difference in scales of
X, and provide additional degrees of freedom to get a close
low-rank approximation for X. The optimization is:

Min ‖X − θΣφT ‖2F s.t.θ ≥ 0, φ ≥ 0,Σ ≥ 0, θT θ = I, φTφ = I
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Figure 1: Reconstruction Error vs Number of Iterations plots: (a) SMF: Unconstrained, Constrained and
Multiplicative Updates and (b) SMF Multiplicative Updates vs Dual Ascent, and (c) BMF Dual Ascent.

Refer to [1] for multiplicative gradient descent updates.

2.2 Clustering Authors, Documents and Words
We extend the previous formulation when we also have

author information. We seek non-negative factors θ, η and
φ for matricesX(D×W ) and Y(A×D) and choose weighted sum
of the reconstruction losses for X and Y as the objective.

LBMF (θ, η, φ) = α‖X − θΣ1φ‖2F + (1− α)‖Y − ηΣ2φ‖2F

First, we look at normalization constraints, which constrain
row sums of the factors to be unity, and view each row of θ,
η and φ as a distribution. We enforce L1 regularization on
factor matrices to enforce sparsity. Also, we want our ma-
trix factors θηT and ηφ to be low rank. This regularization
can be approximated by penalizing the Frobenius norms of
θ, η and φ. We optimize the objective using projected gra-
dient descent. PGD makes an update for the unconstrained
optimization and then projects the modified factors to the
constrained space at each iteration.

For a hard clustering assignments, orthogonality constraints
present a natural choice. Under these constraints, however,
PGD becomes intractable as there are no efficient ways to
project a matrix to the space of orthogonal matrices. Here
we resort to a Dual Ascent approach. In each iteration of
the algorithm, we exactly solve for the primal variables θ, η,
φ that minimize the augmented lagrangian using gradient
updates, and then make partial updates on the dual vari-
ables in the direction of the positive gradients. To ensure
non-negativity, we also project the factor components to the
positive quadrant after each iteration.

2.3 Clustering Authors, Documents and Words
with Citation information

Finally, we also add citation information. Let Z be the
D × D citation matrix. Let Dij be the number of times i
cites j or j cites i. Thus, maintaining the matrix factoriza-
tion objectives in our earlier formulation, we also want to
decompose Z into ηηT .

LTMF (θ, η, φ) = α‖X − θηT ‖2F + β‖Y − ηφ‖2F + γ‖Z − ηηT ‖2F

Here, the matrix differentials cannot be computed in closed
form due to the appearance of the quadratic term ηηT .
Hence, we resort to an equivalent relaxation, where we in-
troduce and additional matrix ψ to approximate ηT and en-
force a constraint that ψ and ηT are close to each other. We
choose the weights α, β and γ by hold-out cross validation.

3. EXPERIMENTS
We evaluate our approach on the Cora (2480 authors, 2410

documents and 2961 words) and NIPS datasets (2037 au-
thors, 1740 documents and 13649 words). Figure 1 plots the
decrease in reconstruction error of various formulations with
iterations. We note that variations with different penalty
functions converge at a similar rate. On the other hand,
for 1-matrix tri-factorization, multiplicative updates con-
verge much quicker than Dual Ascent. The Dual Ascent
algorithm shows a characteristic decline within each epoch
(which corresponds to minimizing w.r.t. the primal variables
for a particular value of dual variables), and an upward spike
that corresponds to a partial update of the dual variables in
the optimization problem. Overall, the objective decreases,
but at a much slower rate than multiplicative updates. For
2-matrix tri-factorization, Dual Ascent retains its character-
istic shape, but convergence is slower and needs many more
iterations. In general, orthogonal constraints provide more
interpretable results (in terms of a manual judgment of top-
ics) than simplex constraints. To illustrate the topic mod-
eling ability of the models, we give a glimpse of the topics
extracted by the 3-Factor orthogonal NMF on factorization
of the document word and author word matrices respectively
in Table 1 and 2.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Report Learning Neural Results University
Revised Machine Networks Problem Department
Research Reinforcement Network Method Statistics
Internal Knowledge Recurrent Approach Science
Journal Learn Training Model Computer

Table 1: 3 Factor Orthogonal NMF topics on XD×W

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Paper Learning Research Algorithm Model

Algorithm Machine Office Model Paper
Results Concept Supported System Data
Model Theory Partially Show Models

Algorithms Task Naval Performance Class

Table 2: 3 Factor Orthogonal NMF topics on XA×W

In conclusion, collective NMF with constraints seem to
provide a flexible framework to co-cluster data to induce
desirable properties in resulting matrix factors.
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