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ABSTRACT
Diffusion processes in complex dynamic networks can arise,
for instance, on data search, data routing, and information
spreading. Therefore, understanding how to speed up the
diffusion process is an important topic in the study of
complex dynamic networks. In this paper, we shed light on
how centrality measures and node dynamics coupled with
simple diffusion models can help on accelerating the cover
time in dynamic networks. Using data from systems with
different characteristics, we show that if dynamics is
disregarded, network cover time is highly underestimated.
Moreover, using centrality accelerates the diffusion process
over a different set of complex dynamic networks when
compared with the random walk approach. For the best
case, in order to cover 80% of nodes, fast centrality-driven
diffusion reaches an improvement of 60%, i.e. when
next-hop nodes are selected by using centrality measures.
Additionally, we also propose and present the first results
on how link prediction can help on speeding up the
diffusion process in dynamic networks.
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1. INTRODUCTION
Complex networks currently pervade our daily

lives [8, 9, 18]. Investigating the spread of information, or
the diffusion process, in complex networks is key from both
theoretical and applied perspectives [3, 14, 17, 23, 33].
Furthermore, the understanding of diffusion processes
becomes even more challenging if considering dynamic
complex networks [2] (e.g., the topology as well as the
network elements may change over time). Dynamic
systems arise in many different areas, for instance, from
packet switching networks in the Internet to disease
spreading on social networks [13].

There is a lot of research investigating diffusion processes
in complex networks that relies on a static view of the
network [1, 5, 7, 15, 22, 26]. Moreover, several works are
interested in the proportion of nodes covered by the
information spread, no matter the time needed to achieve
this task [3, 11, 17, 22]. Some papers deal with the
acceleration of diffusion processes, but their proposed
algorithms typically use additional information, as explicit
social relationships [14, 23]. As a consequence, most
previously proposed diffusion algorithms either not
necessarily achieve the performance they should or rely on
complementary, but not necessarily available, information.

In this paper, we investigate the fast centrality-driven
diffusion in complex dynamic networks. First, we show
that the traditional models of diffusion process, which
disregard system dynamics, underestimate the time
information takes to reach all nodes (i.e., the cover time).
For the analyzed network, the cover time in a static view of
the network is underestimated in about 20 times compared
with the time when real system dynamics is modeled.
Second, results show that using centrality accelerates the
diffusion process over complex dynamic networks with
different characteristics. For instance, diffusion based on
betweenness centrality needs only 40% of the time spent by
a random walk algorithm to reach 80% of the network
nodes. Third, we present results on how to improve the
network cover time when link prediction is applied.

The remainder of this paper proceeds as follows. We
introduce the adopted network model and centrality
measures in Section 2. The diffusion algorithms we
consider are presented in Section 3. Section 4 describes the
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datasets we use. The impact of considering system
dynamics and applying centrality measures is presented in
Section 5. Section 6 discusses how link prediction can help
the diffusion process. Related works are discussed in
Section 7. Finally, Section 8 presents our concluding
remarks and plans for future work.

2. NETWORKMODEL
Let a network be a graph G(V, E), where V is the set of

nodes and E is the set of links. The network dynamics,
observed during T time units, is represented by a set of
graphs Gt = {G1,G2, ..., Gn}. Each graph Gt = (Vt, Et) is a
snapshot from the network model during 1 ≤ δ ≤ T time
units, i.e., we use δ as a tuning factor to determine how
many (n = "T/δ#) snapshots we take into account in the
analysis.

In short, large (low) values of δ provide a higher (smaller)
level of information aggregation in each snapshot and a lower
(higher) perception of the network dynamics. As pointed
out in [13], the model presented here derives static graphs
that capture both temporal and topological properties of the
system, accumulating the contacts over some time to form
edges at each snapshot.

In this paper, w.l.o.g., we assume that the set of nodes
remains unchanged over time. As a consequence, there is
no node join or departure and the network dynamics is
restricted to topology dynamics, i.e., link changes. More
precisely, Gt is reduced to Gt = (V, Et). This model may
represent, during a certain period of interest, a large
number of real networks, such as router-level networks, low
churn P2P systems, (online) social networks, and so on.

Centrality metrics intend to determine the most
important (central) nodes in a network [24]. There are
many possible definitions of node importance, and
correspondingly as many centrality metrics. Hence, we
consider the following most common centrality measures
found in literature:

1. Degree - The degree centrality dv of node v is defined
as the ratio between the node degree, d(v), and the
maximum node degree in the network:

dv =
d(v)

max∀v∈V d(v)
· (1)

2. Betweenness - The betweenness βv of node v is the
fraction of shortest paths connecting all pairs of nodes
that pass through v. In other words, let σ(j,k) represent
the number of shortest paths between nodes j and k,
and σ(j,k)(v) the number of those paths that traverse
node v. The betweenness of v is thus defined as:

βv =
X

j #=v #=k∈V

σ(j,k)(v)

σ(j,k)
· (2)

3. Closeness - The closeness γv of node v captures how
close it is from all other reachable nodes in the network.
Given π(v, k), the length of the shortest path between
v and any other reachable node k, γv is defined as:

γv =

2

4

X

k #=v,k∈V

π(v, k)

3

5

−1

· (3)

As the network evolves over time, we recompute the
centrality metrics accordingly for the current snapshot.
Thus, in each snapshot Gt, nodes may have distint
centrality values.

3. DIFFUSION IN DYNAMIC NETWORKS
Suppose a node u needs to send a message to a node v. At

the beginning of each snapshot Gt, each node can store the
messages they have or forward those messages to any of its
neighbor nodes. A path u → v is then set over the dynamic
network graph until reaching node v. Note, however, that
even if there is no direct path between u and v at any given
snapshot, a path may exist between this node pair over the
evolving network due to the topology dynamics.

At each snapshot, information can be relayed over a set
of nodes in different ways. Basu et al. [4] describe the Store
or Advance (SoA) model in which each node can forward
a message only to one of its direct neighbors, and that is
assumed to take one snapshot. We may use a flooding or
a selective forwarding algorithm to spread information over
the network. A flooding diffusion process sends information
to all reachable nodes in the graph at the same time. For
example, in the SoA model, all directly connected neighbors
receive the message. In contrast, the selective forwarding
algorithm forwards the message to one randomly selected
reachable node at each snapshot. The (random) sequence of
nodes selected this way is a random walk over the graph [21].

We extend the SoA model with centrality measures (see
Section 2). Such an extension induces a biased selection of
nodes to receive the forwarded information at each step,
thereby accelerating diffusion and thus reducing the
network cover time. In other words, at each forwarding
step, the neighbor node with the highest degree,
betweenness, or closeness value is chosen to receive the
forwarded message. Hence, a walk over preferential nodes
is performed. The resulting process is similar to the
random walk on a graph, except that next-hop nodes now
are chosen based on the highest centrality measures. We
thus refer to these diffusion algorithms that take into
account centrality measures as degree walk, betweenness
walk, and closeness walk, respectively. The intuition behind
using centrality measures to drive the next-hop selection in
the diffusion process relies on using nodes that present
higher relative importance in the network according to
some metric as relays to accelerate the information
diffusion, whereas with low communication overhead.

We briefly analyze the overhead of the discussed
approaches in terms of the amount of information spread
over the network to cover it. Two types of information
traverse the network: (i) data information, with size τd;
and (ii) control information, with size τc. Data information
can be, for instance, a chunk of video in peer-to-peer live
streaming applications, whereas control information carries
the node centrality measure. Clearly, τc % τd.

Considering flooding, the total amount of information
spread over the network is proportional to If = τd|V|

2. In
the centrality-based algorithms, information exchange is
instead divided into two steps. First, the neighborhood of
a given node has to send the centrality measure to it. Let
us consider, w.l.o.g., that dm is the mean neighborhood
size. The total amount of information in the first step is
equal to τcdm. Second, the node with the largest measure
is chosen and one message is delivered. The total amount
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of information in this second step is τd. Consider also that
the average path length in the network is πa. For
centrality-based algorithms, the total amount of
information spread over the network is Ic = πa(τd + τcdm).
As typically, for practical large networks, πa % |V|, one
may expect that applying centrality-driven algorithms
generates much less overhead in the network than flooding.
Further, the overhead for the centrality-driven algorithms
is close to the random walk case.

Finally, we remark that we are not considering here the
costs for calculating the centrality measures at each node.
We are interested only in analyzing how centrality
measures can speed up the diffusion process in complex
dynamic networks. Methods for distributively assessing
network centrality with low computational and message
costs can be found in the recent literature [10,31].

4. DATASETS
Our experiments use two datasets representing different

types of real networks, levels of network dynamics, and
topological properties. These datasets are:

1. Infocom dataset [27]: This dataset contains the
amount of two-day contacts between different pairs of
iMotes devices (The iMotes are small sensor
platforms with Bluetooth.) distributed to about 70
students and researchers in the Infocom 2006
Conference. In addition to the mobile devices, a
number of stationary nodes have been deployed in
different floors of the conference hotel. The mobility
of attendees has been logged. We consider snapshots
with duration δ = {1, 15} in minutes.

2. SopCast dataset [30]: The second dataset represents a
real P2P network of a live video streaming
application. The important characteristic of this
dataset is the high level of system dynamics. This
dataset includes all the data exchanged among clients
(peers) watching a private SopCast channel
(http://www.sopcast.org/), without any outside
interference. Sopcast is a widely popular P2P-TV
application, in which peers establish partnerships and
exchange data among themselves to receive the live
streaming video. We have collected one-hour of
exchanging data. We consider δ = 1 second snapshots
in order to catch the dynamic behavior of the
network. The total number of 334 nodes have their
data exchanging process logged.

5. SPEEDING UP A DIFFUSION PROCESS
In this section, we analyze the impact of the network

dynamics and the adoption of centrality walks on the
diffusion process in dynamic complex networks. In order to
compare the performance of the diffusion algorithms, we
define ηt as the ratio of reachable nodes at snapshot Gt:

ηt =

P

∀u∈Vt
rt(u)

|Vt|
, (4)

where rt(u) is the total number of nodes reachable from
node u over snapshot Gt. In other words, to avoid a bias on
only considering the result for the best positioned node for
diffusion, we take the conservative approach of considering
the average case scenario for all nodes in the network.

5.1 On how dynamics impacts network walks
We first investigate how dynamics impacts on the

diffusion process using the SopCast dataset. The network
cover time for the static G graph is very fast. Using
flooding, 100% of nodes are reached in the second
snapshot. Centrality-driven algorithms cover all the
network in the third snapshot; a random walk algorithm
needs four snapshots in order to accomplish the diffusion
process. The cover time over the dynamic Gt=1,...,n,
instead, is much larger. Figure 1 shows the result.
Disregarding dynamics underestimates the cover time
needed for spreading information over the network in 20
times. In a large set of real systems, it is important to
estimate the diffusion time as accurately as possible [32].
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Figure 1: Impact of dynamics on diffusion processes.

We remark that not only the dynamics influences the
diffusion time. Figure 1 shows that using centrality
measures for forwarding decisions also improves the
diffusion process. In the SoA model, using centrality
metrics decreases the diffusion time, for the same portion
of covered nodes, with respect to using a simple random
walk. In other words, choosing the most central nodes
accelerates the diffusion process, considering the total time
for spreading some information over a portion of nodes.
Further, as expected, the best results concerning cover time
are reached by the flooding algorithm, but at the price of a
very high overhead. Finally, the degree walk performs
similarly to the more costly betweenness and closeness
walks, reinforcing the idea of adopting the centrality
measure with the lowest computational complexity [29].

5.2 System knowledge and network walks
As centrality measures accelerate diffusion process, it is

important also to analyze how system knowledge contributes
for improving the diffusion itself. Here, system knowledge is
proportional to the snapshot size δ we use for modeling the
set of graphs that represents the system dynamics.

For the Infocom dataset, Figures 2(a) and 2(b) show that
choosing snapshots with δ = 15 instead of snapshots with
δ = 1 accelerates the diffusion process as well as increases
the total number of users that receives the message from
85% to 100%. Interestingly, for the scenario with δ = 15
snapshots, the betweenness walk approximates better the
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Figure 2: Impact of the system knowledge (δ) on the ratio of reachable nodes.

flooding algorithm and spreads faster the information when
compared with the other centrality walks.

As the adopted dataset (Infocom) represents the
contacts among conference participants, it is important to
know how the logged users behave. In this particular
system, higher system knowledge (i.e., higher δ) helps on
choosing the key participants with the largest betweenness
values. These participants act as bridges connecting
different community/clusters in the network and can be
interpreted as the most popular participants who know a
large number of people. Besides, they tend to have high
mobility, reaching 100% of logged conference participants.

6. LINK PREDICTION
If nodes (peers, participants, and so on depending on the

modeled network) could predict that a given convenient link
is likely to appear soon, they may take the risk of waiting
until that link appears instead of forwarding the message at
once. For instance, in the illustrative scenario presented in
Figure 3, a given node v must send a data to node u. During
the initial period (t = 0), node v has no option other than to
forward data to node a hoping that the data will eventually
reach node v at some point in the future. Nevertheless, if
node v could predict that the link v → u will exist in the
very near future (e.g. during t = 1 in Figure 3(b)), node v
may then choose to wait a while and deliver the data directly
to node u. If node v is unable to predict the existence of
the link v → u in the near future, data dissemination to
node u will last for 3 time units (considering that each data
hop takes one time unit). In contrast, if node v predicts
the existence of the link v → u, data dissemination will
last for 2 time units. If node v fails in its prediction, data
dissemination will be penalized. In this case, node v would
wait 4 time units until the data reaches node u.

Based on this simple example, it is clear that a link
prediction mechanism must be both simple enough to be
cost effective and accurate enough to make the miss rate as
low as possible. We here propose a link prediction
mechanism based on a 2-state Markov model, in which a
given link exists in state E and does not exist in state !E.

(a) Gt=0 (b) Gt=1

Figure 3: Two consecutive snapshots illustrating the
appearance of a link.

Figure 4 illustrates our simple link prediction mechanism.
According to this model, the link v → u may exist or not
during a given snapshot. At time t, if the link exists, it
does not exist at time t + 1 with probability equal to λ and
it keeps existing at time t + 1 with probability equals to
(1 − λ). Similarly, if the link does not exist at time t, it
exists at time t + 1 with probability equals to ρ and
remains inexistent with probability (1 − ρ).

Figure 4: Model for link state dynamics.

To have a temporal view of the state evolution of each
link, we define Et

v→u as the existence of link v → u at time
t. We make Et

v→u = 1 if the link v → u exists at time t
and Et

v→u = 0, otherwise. Let Et+1
v→u represent the

existence of the link v → u in the next snapshot Gt+1. We
may predict Et+1

v→u as a moving average of the past b
sampled values of the link v → u. Each past value of the
link state (Et

v→u, Et−1
v→u, . . . , Et−b

v→u) is weighted by a factor
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Figure 5: Data dissemination speed-up using link prediction.

α that decreases exponentially. In this way, Equation 5
shows the predicted probability of Et+1

v→u:

P (Et+1
v→u

) =
Et

v→u
+ Et−1

v→u
∗ α + Et−2

v→u
∗ α2 + . . . + Et−b

v→u
∗ αb

1 + α + α2 + ... + αb
,

(5)

where α (0 < α < 1) is a decreasing factor. In this sense,
older sampled values quickly have their importance reduced
in Equation 5. From this sequence of b sampled values, we
can also parametrize λ and ρ in the model of Figure 4.

Clearly, the joint choice of values for b and α influences
the behavior of the link prediction. We then perform a first
study on considering the combination of different values for
b and α ranging from 5 to 50 and 0.1 to 0.9, respectively.
Figures 5(a) and 5(b) show the impact of link prediction
on the centrality walks for diffusion in the Infocom and
Sopcast datasets, respectively. In these figures, we show
the mean speed up compared with the values found using
the same centrality walk without link prediction for
different combined samples of (b, α) in the aforementioned
ranges. These combined samples (b, α) are ordered in the
x-axis in decreasing outcomes of mean speed up. For both
datasets, we clearly note that link prediction accelerates
the diffusion process. For instance, using the betweenness
walk, the data diffusion speed up reaches a factor of 4.3%.
For the SopCast dataset, even if it is a random-like graph,
we observe a speed up factor up to around 11.6% when we
use the degree walk.

These preliminary results encourage further investigation
on link prediction as an accelerating factor for centrality-
driven diffusion processes, including possible techniques or
heuristics to determine convenient combinations of b and α
for particular networks. This is a venue we intend to explore
in future work.

7. RELATED WORK
There is a large number of previous works that

investigate searchability in networks [1, 5, 7, 15, 22, 26]. In
this context, searchability is the process of sending a
message from a source node to a given destination node in

the network. Most of these works exploit local information
intending to enhance the data delivery process. In other
words, nodes do not randomly select a neighbor node to
forward the data that must reach a given end node. Nodes
choose a neighbor node using some metric, expecting that
the selected node will be closer to the end node.

For example, Lukose et al. [22] exploit local information
about the node neighborhood to propose a heuristic to
enhance searchability in power-law networks. Their search
strategies use nodes with higher degrees to make the data
delivery process faster (i.e., close to the shortest path
between the source and the destination). To achieve this,
at each step, each node chooses the highest degree node
among its neighbors to receive the message to be delivered.
Kim et al. [15] use a similar approach to select the next
hop of the data delivery process. They compare three
heuristics for that: a random choice, a deterministic node
choice using the maximum degree among the neighbors,
and a probabilistic choice favoring the selection of neighbor
nodes with higher connectivity.

Rosvall et al. [26] also investigate the searchability in
networks. However, they define the searchability of
networks in terms of the difficulty of sending a signal
between two nodes in a network without disturbing the
remaining network. Authors show that scale-free networks
are relatively difficult to search, considering the necessary
information to walk the shortest path from a starting point
to an end point. Moreover, authors show that real-world
networks with higher order organization, like a modular or
hierarchical structure, are even more difficult to navigate
than random scale-free networks [26]. Despite the
importance of investigating the interplay between
searchability of a network and its structure, authors
disregard the network dynamics. As we show in the
present work, the cover time of the information diffusion
process may be highly underestimated if network dynamics
is disregarded.

Several types of local information have been used
intending to enhance message delivery. For instance,
Adamic and Adar [1] investigate the selection of the next
step at each hop as the neighbor node with the best
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connectivity or the neighbor node which is the closest to
the target in an organizational hierarchy. In this latter
case, the metric calculation may be a problem to the
system, as it is unclear how such a metric evolves over time
and, in some cases, the determination of physical proximity
may be unfeasible. In turn, Şimşek and Jensen [7] show
that a simple product of the degree and homophily
measures can be quite effective in guiding local search.
According to their work, the more similar a neighbor node
is to the target and the higher the degree of this neighbor
node, the larger the probability for this neighbor node to
be close to the shortest path towards the target. In fact,
the data delivery process can be close correlated to the
network structure and its relationships formation, thereby
hidden metric spaces, underlying real networks, may
conduct to better delivery heuristics [5]. Therefore,
understanding the fundamental laws describing
relationships between structure and function of complex
networks is key in this area.

We point out that all these works highlight that a
central challenge in complex networks is directing messages
to specific nodes through a sequence of local decisions
made by individual nodes without global knowledge of the
network. Most of them rely (at least, partially) on the
node degree to take a local decision on the most suitable
next hop for the message forwarding among the neighbor
nodes at each step of the diffusion process.

Despite the importance of the problem, none of these
works discussed so far address an evolving network
environment. All network models present a static snapshot
of the complex network. As we show in the present work,
the cover time of the information diffusion process may be
highly underestimated if we disregard that the network
evolves. Network topology may change in a very short
period. As a consequence, all key local metrics used to
determine the next hop, such as the node degree, may also
change in a very short period. Therefore, given the
importance of taking into account network dynamics, there
is an ever-increasing interest in considering time-varying
graphs that are able to represent dynamic
networks [13,19,20]. In particular, there are several studies
investigating how key properties of the network, such as
node connectivity and centrality, behave in time-varying
graphs [12, 16, 25, 28]. Our present work follows this trend
further investigating the centrality-driven diffusion in
complex dynamic networks.

There is also a number of works that investigate the
information diffusion process in complex networks. For
example, in [14], authors show how to speed up
information diffusion by applying two concepts from
complex networks: community structure and popularity.
Nodes are split onto different communities and, for each
community, nodes with the greatest popularity are chosen
for receiving information. Popularity is measured by means
of the betweenness metric. In contrast, we are here
interested on analyzing the impact of using different
centrality measures, not only betweenness, for the
acceleration of the diffusion process.

Social relationships are also explored in [23] for
information forwarding. Authors define a new metric,
named people rank, in order to rank nodes in decreasing
importance within the network. The proposed measure,
somewhat similar to the page rank metric [6], requires the

knowledge of further information, as social relationships,
which is not always available, in order to improve the
diffusion. In our study, we need only topological
characteristics in order to rank the most important nodes.

Finally, authors in [3] also need social information from
network nodes in order to rank the very important (VIP)
nodes. These nodes, with their movements and
interactions, are able to communicate with all the
remaining of the network. Similar to [14], nodes are
divided into two subsets: global VIPs and local VIPs.
Although the approach we investigate here is also
concerned to nodes that act as bridges, the diffusion
process we consider does not need any kind of layered
organization.

8. CONCLUSION
In this paper, we investigate the adoption of

centrality-based metrics in diffusion processes in complex
dynamic networks. We show that, if network dynamics is
disregarded, a typical model for diffusion process may
significantly underestimate the network cover time.
Moreover, we show that a centrality-driven selection of the
next-hop for the information forwarding can accelerate the
diffusion process in dynamic networks with a relatively low
message cost. Such a biased selection based on centrality
metrics levels off a trade-off between a low cover time with
high message cost provided by flooding and large cover
time with low message cost provided by a simple random
walk. Additionally, we also bring some first results on how
to speed up the diffusion process, and thereby reduce the
network cover time, by adopting a link prediction scheme
in complex dynamic networks. We believe these
preliminary results encourage further investigation on link
prediction as an accelerating factor for centrality-driven
diffusion processes in dynamic networks. This is our target
for future work, including the research on possible
techniques or heuristics to determine convenient
combinations of the involved parameters for particular
networks.
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