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ABSTRACT
Branching processes model the evolution of populations of agents
that randomly generate offspring (children). These processes, more
patently Galton-Watson processes, are widely used to model bio-
logical, social, cognitive, and technological phenomena, such as
the diffusion of ideas, knowledge, chain letters, viruses, and the
evolution of humans through their Y-chromosome DNA or mito-
chondrial RNA. A practical challenge of modeling real phenomena
using a Galton-Watson process is the choice of the offspring dis-
tribution, which must be measured from the population. In most
cases, however, directly measuring the offspring distribution is un-
realistic due to lack of resources or the death of agents. So far,
researchers have relied on informed guesses to guide their choice
of offspring distribution. In this work we propose two methods to
estimate the offspring distribution from real sampled data. Using
a small sampled fraction of the agents and instrumented with the
identity of the ancestors of the sampled agents, we show that ac-
curate offspring distribution estimates can be obtained by sampling
as little as 14% of the population.

Categories and Subject Descriptors
G.3 [Probabilty and Statistics]: Probabilistic algorithms; I.6.8
[Simulation and Modeling]: Types of Simulation—Monte Carlo;
G.2.2 [Discrete Mathematics]: Graph Theory—trees

Keywords
Branching processes; graph characterization; sampling and estima-
tion; MCMC

1. INTRODUCTION
Branching processes, more markedly Galton-Watson (GW) pro-

cesses, have been used to model a variety of phenomena, ranging
from human Y-chromosome DNA and mitochondrial RNA evolu-
tion [5], to epidemics on complex networks [6], to block dissemi-
nation in peer-to-peer networks [8]. The GW process can be repre-
sented as a growing tree, where agents are nodes connected to their
offspring (children) by edges. The number of offspring is a random
variable associated with a distribution function. A GW process is
completely characterized by its offspring distribution, assumed to
be i.i.d. for all nodes. A practical challenge when modeling real
world systems from a GW process is knowing the offspring distri-
bution of the process, which must be measured from the population.

In most applications, however, directly measuring the offspring
distribution is unrealistic due to the lack of resources or the inac-
cessibility of agents (e.g. death). It is not reasonable to assume
that one can collect genetic material from the entire human popula-
tion or that in the branching process of chain letter signatures (see
Chierichetti et al. [3] for further details), one may collect all pos-
sible branches of the chain letter created by forwarding the letter.
So far, researchers have relied on informed guesses to guide their
choice of offspring distribution.

In this work we propose two methods to estimate the offspring
distribution from real sampled data. Our goal is to accurately es-
timate the offspring distribution by sampling and collecting ances-
tors ids of a small fraction of the agents. We study the case where a
sampled agent reveals the identity of its ancestors and the trees are
generated in the supercritical regime (i.e., average offspring > 1),
assuming that the maximum offspring number is upperbounded by
a (possibly large) constant and that tree has spanned over a finite
number of generations and hence, is finite.

We show that accurate offspring distribution estimates can be
obtained by sampling as little as 14% of the population. The first
estimation method we propose consists of the exact computation of
the likelihod function, whereas the second approximates this func-
tion via Metropolis–Hastings with importance sampling.

A related problem is characterizing graphs using traceroute sam-
pling. Traceroute sampling from a single source can be thought as
sampling a tree where nodes have different offspring (degree) dis-
tributions depending on their position with respect to the source.
This is an important well known hard problem [1,4] and it remains
open to date. Our results have the added benefit of shedding some
light also into the traceroute problem.

The outline of this work is as follows. Section 2 describes the
network and sampling models. In Section 3 we first show how to
estimate the offspring distribution through exact inference, show-
ing it does not scale. We then propose an Markov Chain Monte
Carlo (MCMC) method of performing approximate inference that
works for small and medium sized trees (up to 2,000 nodes). In
Section 4 we evaluate both methods using a set of 900 syntethic
datasets, comprising small and medium trees. For small trees, ex-
act inference yielded accurate estimates and outperforms the ap-
proximate estimator. On the other hand, approximate inference can
handle larger trees, while obtaining significant improvement over
more naïve approaches. Finally Section 5 presents our conclusions
and future work.

2. MODEL
We assume that the underlying tree comes from a Galton-Watson

(GW) process. The GW process models the growth of a popula-
tion of individuals that evolves in discrete-time (n = 0, 1, 2, . . . )
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Figure 1: (a) Branching process tree. (b) Samples with 2 and 3
targets, respectively.

as follows. The population starts with one individual at the 0-th
generation (n = 0). Each individual i at the n-th generation pro-
duces a random number Y (n)

i of individuals at the (n+ 1)st gener-
ation, called offspring. The offspring counts of all individuals are
assumed to be i.i.d. random variables. An instance of the GW pro-
cess is therefore described by a sequence of integers {Xn} which
denotes the number of individuals at each generation.

Formally, the GW branching process is a discrete-time Markov
Chain {Xn}Ln=1, where L is the number of generations, given by
the following recursion

Xn+1 =

Xn∑
i=1

Y
(n)
i ,

with X0 = 1, where the Y (n)
i ≥ 0 are i.i.d. random variables

with multinomial distribution θ = (θ0, . . . , θW ), ∀i ≥ 1, n ≥ 0,
where W is the maximum number of offspring of an agent. The
GW process can be seen as a generative process of a tree G =
(V,E), whereXn is the number of nodes at the nth generation and
Y

(n)
i is the offspring count of the ith node at the nth generation.

For simplicity, we assume that θ0 = 0 and that the number of
generations is fixed, so that all tree leaves sit exactly at generation
L. Assuming finiteL is a better mapping to real populations, which
have grown over a finite period of time. On the other hand, our
results can be easily adapted to the case where θ0 > 0 and the
leaves are located at different levels.

Since the numbers of offspring are mutually independent, the
probability of a given tree G is

P (G|θ) =

W∏
j=1

θ
cj(G)

j , (1)

where cj(G) =
∑
i,n 1{Y

(n)
i = j} is the number of nodes with

offspring count j. Fig. 1a depicts an example of tree generated
from θ = (0.3, 0.6, 0.1) with L = 2. In this case, P (G|θ) =
0.31 · 0.62 = 0.108.

Sampling Model
A node is said to be observed when the sampling process explic-
itly reveals its presence in the original graph (e.g. node look up is
performed or node spontaneously advertise its presence). The ob-
served path, however, consists of the observed node and its path to
the root. A sample is a set of observed paths.

Let V be the set of nodes of the unlabeled graph G and V ′ ⊂ V
a set of randomly observed nodes. Let S be the sampled tree
formed by the union of the paths from all nodes v ∈ V ′ to the
root of G. For instance, Fig. 1b shows sampled trees S1 formed
by V ′ = {a, b} and S2 formed by V ′ = {a, b, c}. We assume
that nodes in V ′ are sampled from V with probability p. Although
p may be unknown in some settings, it can be approximated as

|V ′|/|V ′′| from any subset of nodes V ′′ obtained via another inde-
pendent sampling process.

We now show how to compute P (S|G), assuming that V ′ is
known, i.e., we know which nodes in S are observed. However, it
is easy to modify the following analysis to the cases where (1) we
only know |V ′| or (2) we know the topology of S, but not which
or how many nodes are observed. Let CG,S be the number of ways
in which S can be mapped onto G. Clearly, CG,S = 0 if S is not
a subgraph of G. Conditioning on a given mapping, we must have
exactly |V ′| nodes chosen as targets and |V | − |V ′| not chosen as
so. Therefore,

P (S|G) = CG,S · p|V
′| · (1− p)|V |−|V

′|. (2)

Consider an arbitrary ordering of the subtrees connected to the
root of a tree, whether it is G or S. Orderings of G and S do
not need to have any correspondence. Computing CG,S can be
done recursively by first computing cij , the number of ways the
i-th subtree connected to the root of S can be mapped to the j-
th subtree connected to the root of G, for all i, j. For instance, in
Fig. 1, the second subtree of S2 can be mapped to the first subtree of
G in a unique way, but in two different ways to the second subtree
of G. Now consider the matrix C = [cij ]n×m. If we define the
operator

|Cn×m| =

{∑m
j=1 c1j |C1j |, n ≥ 1∑m
j=1 c1j , n = 1,

(3)

where C1j is C after removal of the 1st row and jth column, then
we can show that CG,S = |C|. In the simple case of G and S2

shown in Fig. 1b, we have C =

[
1 1
2 1

]
and hence, |C| = 1 ·

1 + 1 · 2 = 3. We can visually check that this is indeed the number
of ways to map S2 onto G. Therefore, P (S2|G) = 3p3(1− p)3.

Inference on the structure of the tree G from the partial obser-
vation S is possible because we can compute P (S|G′) for any G′.
This, in turn, allows us to do inference on the offspring distribution
by considering how likely G′ is to be generated from θ by using
P (G′|θ) and weighting by how likely S is to be sampled givenG′.
In the next section we propose two estimation methods based on
this idea.

3. ESTIMATORS
We consider the problem of estimating the offspring distribution

θ of the GW process that generates a tree G given a sample S
consisting of the union of random observed paths when nodes are
observed with probability p.

Two approaches to this problem based on Maximum Likelihood
Estimation are proposed in this paper. While the former consists
of the exact computation of the likelihood function P (S|θ), the
latter approximates this function via Metropolis-Hastings with im-
portance sampling.

3.1 Exact inference
The graphical model in Fig. 2 depicts the statistical relationship

between S, θ and G. The shaded node, S, is the only observable
variable, while the white nodes, θ and G are unobservable. This
figure shows that to find the relationship between S and θ, we have
to sum over the variable G, i.e., over all possible trees given the
number of generations L and the maximum degree W . Let GL,W
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Figure 2: Graphical model representing network generation
and sampling. White nodes are unobservable and shaded node
is observable.

Table 1: Growth of the space of trees as a function of L, for
W = 3.

L 1 2 3 4 5

|GL,3| ≈ 3 39 6× 104 2.3× 1014 1.2× 1043

|Gnon-iso
L,3 | ≈ 3 19 1.5× 103 6.1× 108 3.8× 1025

be the set of all possible trees given L and W . It follows that

P (S|θ) =
∑

G∈GL,W

P (S,G|θ)

=
∑

G∈GL,W

P (S|G,θ)P (G|θ)

=
∑

G∈GL,W

P (S|G)P (G|θ), (4)

where from line 2 to line 3 we use the fact that S is conditionally
independent on θ given G (see Fig. 2). However, |GL,W | grows
exponentially both in L and W , which limits this approach to very
small trees. In fact, we can show that

|GL,W | =

{
W, L = 1∑W
i=1 |GL−1,W |i > |GL−1,W |W , L > 1.

Solving the recursion yields log(L−1) |GL,W | = O(W ), where
log(.) is the repeated logarithm. Note however that isomorphic
trees are being counted more than once. Therefore, we can reduce
the computational cost by counting only non-isomorphic trees (ap-
propriately weighted by their multiplicity).

Let Gnon-iso
L,W be the set of non-isomorphic trees of GL,W . It is

possible to show that

|Gnon-iso
L,W | =


W, L = 1

(W+1)(
W+|Gnon-iso

L−1,W |
W+1

)
|Gnon-iso
L−1,W

| − 1, L > 1.

Table 3.1 illustrates some values of |GL,W | and |Gnon-iso
L,W | forW = 3

and L = 1, . . . , 5. As we can see, counting only non-isomorphic
trees reduces significantly the state space, but it is still not feasible
to compute eq. (4) except for rather small numbers such as W =
3 and L = 4. Nevertheless, we utilize this approach to perform
inference more efficiently. In the following, we explain how to
enumerate trees in Gnon-iso

L,W and how to compute their multiplicities.

Counting only non-isomorphic trees
Once again consider the tree in Fig. 1a. Despite of the fact that
by swapping the two subtrees directly connected to the root of G
we obtain another tree G′, both G and G′ contribute with the same
amount to (4) since they are isomorphic and hence, P (S|G) =
P (S|G′) and P (G|θ) = P (G′|θ). Ideally, we would like to avoid
generating isomorphic trees when enumerating G ∈ GL,W in the
computation of P (S|θ).

A straightforward way to enumerate all trees in Gnon-iso
L,W is: (1) to

enumerate non-isomorphic trees in Gnon-iso
L−1,W and assign a numeric

id to each of them; and (2) construct trees in Gnon-iso
L,W by attaching

to a root node trees from Gnon-iso
L−1,W where ids are in non-increasing

order. Note that two trees are isomorphic in this construction if the
sets of ids of the subtrees connected to the root node are permuta-
tions of each other, which cannot occur due to the ordering.

In what follows we compute the probability that sample S is ob-
served given the offspring distribution θ through the enumeration
of non-isomorphic trees. Let m(L)

i be the multiplicity of the i-th
tree, say Gi, in the labeled space Gnon-iso

L,W . Eq. (4) is equivalent to

P (S|θ) =
∑

Gi∈Gnon-iso
L,W

m
(L)
i P (S|Gi)P (Gi|θ). (5)

The multiplicity m(L)
i can be calculated from the ids of subtrees

directly connected to the root node in Gi and their multiplicities.
More precisely, m(L)

i is simply the number of permutations of the
ids multiplied by the product of the multiplicities of each subtree.
For instance, if there are j subtrees connected to the root with dis-
tinct ids (1), . . . , (j), then m(L)

i = j! ×
∏j
k=1m

(L−1)

(k) . In the
general case, where ids can appear more than once, we have

m
(L)
i =

j!×
∏j
k=1m

(L−1)

(k)∏|Gnon-iso
L−1,W

|
id=1

(∑j
k=1 1{id = k}

)
!
.

The first estimator we propose is

θ̂Exact = arg max
θ

P (S|θ), (6)

where P (S|θ) is computed as in (5).

Maximum Likelihood Estimation
After obtaining a sample, we write the summation in Eq. (5) as a
function of θ, say L(θ) = P (S|θ). Unfortunately, this likelihood
function is a sum of a potentially enormous number of terms and
using the log-likelihood is not helpful in this case. We apply several
tricks to solve this optimization task.

One simple trick to reduce the number of terms consists of group-
ing together trees that have the same configuration in terms of off-
spring counts, i.e., that account for the same P (G|θ). Note that
there are many such trees even when considering non-isomorphic
trees only, although they correspond to different values of P (S|G).

Also note that this is a constrained maximization problem. Since
θ is a probability distribution, 0 ≤ θi ≤ 1 for i ∈ {1, . . . ,W} and∑W
i=1 θi = 1. We can turn it into a non-constrained maximization

problem by replacing θi = eαi

Z
for i ∈ {1, . . . ,W} where Z =∑W

i=1 e
αi , setting αW = 1 (for regularization purposes) and then

maximizing w.r.t. α. Note that αi can now assume any value in
R for i ∈ {1, . . . ,W − 1}. Nevertheless, one must be careful
when using this parameter transformation since the products of the
exponentials can quickly lead to overflows. Therefore, we use log
representation and the logsumexp trick.

After this transformation, the maximization problem becomes

arg max
α
L(α) =

∑
j

cj
e
∑W
i=1 xjiαi

Zyj

where cj is the sum of the coefficients of the terms corresponding to
the same j-th configuration of P (G|θ), xji is the number of nodes
with offspring i in the j-th configuration and yj =

∑W
i=1 xji. In
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order to compute the likelihood function and its gradient more effi-
ciently, we express them in matrix notation as

L(α) = cT · (exp(Xα)/Zy)

∇L(α) = exp(Xα)/Zy − exp(Xα)/Zy+1

where c = [cj ], X = [xji], α = [αi], y = [yj ], Zy = [Zyj ], the
“/” symbol corresponds to division of two vectors element-wise
and 1 is a column vector with all entries equal to 1.

The maximization then goes as follows. We sample 10, 000
points uniformly from RW−1. The one with the maximum value
of l(.) will be α(0), the starting point to be used with the BFGS1

(limited to 100 iterations, relative convergence tolerance of 10−8,
step size 10−3). The estimate θ̂ can be obtained from α̂ by expo-
nentiating and then normalizing the latter.

3.2 Approximate inference with MCMC
The previous approach only applies to small problems due to the

enormous number of terms in the summation (5). To solve larger
problems, we approximate eq. (4) using MCMC.

Let h = P (S|G) and f(G) = P (G|θ). Since f(G) defines a
probability distribution on the space GL,W , it follows that

P (S|θ) =
∑
G

hf(G) = Ef [h]. (7)

where Ef [.] denotes expectation w.r.t. distribution f .
Monte Carlo simulation approximates expectations (integrals, more

generally) by sampling from a desired distribution f [2]. The prob-
lem here is that we cannot sample from f because we don’t know θ.
However, we can sample from some other distribution g and com-
pensate for the fact that in g some trees are more (or less) likely to
appear than in f by using importance sampling. More precisely,

P (S|θ) =
∑
G

hf(G) =
∑
G

h
f(G)

g(G)
g(G) = Eg

[
h
f(G)

g(G)

]
.

(8)
Recall from Section 2 that we can generate trees using the GW

process from a given offspring distribution θ0. Hence we can set

g(G) =
1

Z P (S|G)P (G|θ0) , (9)

where Z is a normalizing constant2. Substituting eq. (9) into (8)
yields

P (S|θ) = Eg

[
P (S|G)P (G|θ)

1
ZP (S|G)P (G|θ0)

]
≈ Z
m

m∑
i=1

P (Gi|θ)

P (Gi|θ0)
,

where Gi ∼ g(G). Note that Z
m

is not a function of θ and do not
need to be considered when maximizing θ. Therefore, the second
estimator we propose is

θ̂Approximate = arg max
θ

m∑
i=1

P (Gi|θ)

P (Gi|θ0)
. (10)

In order to draw Gi ∼ g(G), we use the Metropolis-Hastings
algorithm where each state Xj of the Markov Chain is a tree. We
start the chain in a state X0 consistent with S, in particular, we set
X0 = S. The transition kernel Xi → Xi+1 we use is shown in
Algorithm 1. The new tree Xi+1 is accepted with probability

1We use R implementation in package stats.
2We could have set g(G) = P (G|θ0) instead, but our approach
restrict us to generating trees that are consistent with the sample
and thus, is more efficient.

Algorithm 1 Transition Kernel(Xi, Xi+1)
v ← internal node selected uniformly at random from Xi
dv ← degree(v)
if dv = 1 then

action← add
else if dv = W then

action← remove
else . 1 < dv < W

if U(0, 1) < 0.5 then . U(0, 1) is the uniform dist.
action← add

else
action← remove

end if
end if
if action = add then

Tv ← GaltonWatson(θ0, L− l)
v.child[dv + 1]← Tv . adds new branch
dv ← dv + 1

else if action = remove then
shuffle(v.child) . shuffle children
v.child[dv]← nil . removes “right-most” branch
dv ← dv − 1

end if

r = min

(
1,
P (S|Xi+1)P (Xi+1|θ0)q(Xi+1 → Xi)

P (S|Xi)P (Xi|θ0)q(Xi → Xi+1)

)
. (11)

where q(Xi → Xj) is the probability that the transition kernel
proposes transition Xi → Xj . It is easy to include the calculation
of q(Xi → Xi+1) and q(Xi+1 → Xi) in the transition kernel
implementation. In particular, let Ni and Li denote the number of
nodes and leaves in Xi, respectively. Hence, if action = add,

q(Xi → Xi+1) =
0.51{dv>1} × P (Tv|θ0)

Ni − Li − 1
,

q(Xi+1 → Xi) =
0.51{dv+1<W}(dv + 1)−1

Ni+1 − Li+1 − 1
,

otherwise,

q(Xi → Xi+1) =
0.51{dv<W}d−1

v

Ni − Li − 1
,

q(Xi+1 → Xi) =
0.51{dv−1>1} × P (Tv|θ0)

Ni+1 − Li+1 − 1
,

where 0.51{dv>1} accounts for the fact that if v has degree > 1,
action add is chosen with probability 0.5, but when dv = 1, add is
always chosen. The case for remove is similar3.

Maximum Likelihood Estimation
After obtaining roughly independent samplesGi ∼ g(G), we write
the summation in the RHS of eq. (8) and perform maximization as
in the case of exact inference.

4. EXPERIMENTS AND RESULTS
We first describe the experiments used to assess the performance

of the two estimation methods, henceforth referred to as EXACT
and APPROXIMATE, respectively. We then compare methods w.r.t.
the distance between the estimated distribution and θ using the
Kullback-Leibler (KL) divergence, which is a widely used way
to measure distance between distributions. In addition, we show

3All calculations should be performed in log space.
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some results in detail to illustrate the Mean Squared Error (MSE)
per distribution parameter and how performance increases with the
sampling probability. In general, EXACT performs best but is only
feasible for small datasets. Nevertheless, APPROXIMATE exhibits
comparable performance and can cope with larger datasets (up to
2,000 nodes).

4.1 Experiments description
Based on the size of GL,W , we define two classes of estimation

problems: small and medium size problems. For medium size ones,
we would like to compare the methods’ performance for short and
long tail offspring distributions, hereby represented by truncated4

Poisson and Zipf distributions, respectively. Parameters of these
distributions were chosen so that their average is d̄.

In what concerns the sampling process, we choose three sam-
pling probabilities representing low, medium and high sampling
rates for each class. The set of values of p has to be different for
each class for two reasons. The practical reason is that as the tree
size grows, the cost to sample it grows linearly on p and we may be
limited by a budget. The second reason is that, if there is no such
constraint, while values of p such as 0.5 are reasonable for small
problems, they will likely reveal all nodes from the top levels for
large problems. Hence, taking the empirical distribution from the
first levels per se would be an accurate estimator. Inside each class,
consider the following distributions and sampling probabilities:

1. Small size: W = 3, L = 3, d̄ = 2.1

• θ(1) = (0.2, 0.5, 0.3)

• p ∈ {0.1, 0.2, 0.5}
2. Medium size: W = 10, L = 5, d̄ = 3.15

• θ(2) ∼ truncated Poisson(λ = 3)

• θ(3) ∼ Zipf(α = 1.132, N = 10)

• p ∈ {0.5, 1.0, 5.0} × 10−2

Average tree sizes per class are ≈ 17 and ≈ 454, respectively.
In order to test the inference methods, we build a set of estima-

tion problems as follows. For each distribution θ(i), i = 1, . . . , 3,
we generate 10 trees tij , j = 1, . . . , 10 from a GW process with
height L + 1 (30 trees in total). Next, for each of the 90 pairs
(tij , pik), k = 1, 2, 3, we generate 10 samples sijkl, l = 1, . . . , 10
(900 samples in total).

We assume each sample sijkl constitutes a separate estimation
problem (also referred to as dataset to avoid confusion with MCMC
samples). This can be interpreted as if we had one tree (originated
from the GW process), and a single opportunity to sample it. No
other samples can be obtained from the same tree, nor other trees
are available for sampling. Ideally, we would like to try both meth-
ods with each problem, but EXACT is only feasible for small prob-
lems. Before presenting the results, we briefly discuss implemen-
tation issues related to APPROXIMATE.

4.2 Implementation issues of APPROXIMATE

The main difficulty in the APPROXIMATE method is knowing
when to stop the approximation as, without knowing the true distri-
bution, we need a mechanism that tells us how close we are to the
steady state distribution of the Markov chain.

Recall that we use the Metropolis Hastings (MH) algorithm to
sample graphs from g(G) (see Eq. (8)). As with any MCMC method,

4Here truncated means that we took the original probability mass
function for values between 1 and W and normalized by their sum,
while setting the probability mass of other values to zero.

three questions must be addressed: (1) How long should the burn-
in period be? (2) What should the thinning ratio be? (3) What is
the minimum number of uncorrelated samples that we need? We
use the Raftery-Lewis (RL) Diagnostic [7] to address these issues5.

The RL Diagnostic attempts to determine the necessary condi-
tions to estimate a quantile q of the measure of interest, within a
tolerance r with probability s. We take the likelihood of the MH
samples as the measure of interest. The diagnostic was then applied
individually to each dataset with default parameters (q = 0.025,
r = 0.005 and s = 0.95). Results concerning the burn-in period
and thinning ratio are subsumed by the required number of sam-
ples and hence will be ommited. The minimum number of MCMC
samples for small datasets was less than 50,000 graphs and for
medium datasets, less than 500,000, in summary. We conducted
some experiments with more MCMC samples than those values,
but there was no significant improvement w.r.t. the estimation ac-
curacy. Therefore, the results described in the following refer to the
minimum number of samples suggested by the Raftery-Lewis test.

Last, recall from Section 3.2 that θ0 can be any distribution.
However, the closer it is to θ, the better is the convergence of the
MCMC. When estimating the offspring distribution in medium size
problems, we will assume that θ0 is binomial and set its parame-
ters so that the average is d̄. This implies assuming that the average
number of offspring can be estimated, but in fact a rough estimate
can be obtained by simply taking the average of the observed node
degrees from the first generations in the sample, whose edges have
a relatively high probability of being sampled. For small sized tree,
we simply set θ0 to be uniform.

4.3 Results
The estimation results span over a number of dimensions equal

to the number of parameters assumed in the multinomial distribu-
tion. We use the Kullback-Leibler (KL) divergence as an objective
criterion to compare the estimation methods in a single dimension.

Let the estimated offspring distribution be θ̂ = (θ̂1, . . . , θ̂W ).
The KL-divergence of θ̂ from θ is defined by

DKL(θ||θ̂) =

W∑
i=1

(log θi − log θ̂i)θi, (12)

when θ̂i > 0, i = 1, . . . ,W . When this condition does not al-
ways hold, as in our case, absolute discounting is frequently used
to smooth θ̂. Hence, we distribute ε = 10−7 of probability mass
among the zero estimates, discounting this value equally from the
non-zero estimates.

Table 2 shows the median KL-divergence obtained for each set
of problems (indexed by θ(i), i = 1, . . . , 3), for EXACT and AP-
PROXIMATE, when the sampling probability p is medium. Dashes

θ(1) θ(2) θ(3)

EXACT 1.86 - -
APPROXIMATE 2.98 0.58 0.78

Table 2: Median KL-divergence of estimators

indicate that EXACT could not find estimates for medium size prob-
lems in a reasonable amount of time. However, it outperfomed
APPROXIMATE in the estimation of θ(1). Note that although KL-
divergence implies some ordering within each column in terms of
accuracy, neither the relative ratios have a direct interpretation,

5We use the R implementation in package coda.
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Figure 3: Boxplots of the MSE per parameter for θ(1).

nor values accross different columns can be compared. We will
next evaluate the results w.r.t. the MSE of each parameter estimate,
which will allow us to conclude that the performance of APPROX-
IMATE is in fact very close to the one of EXACT for small datasets.

The effect of the sampling probability p

As we increase p, we gather more information about the original
graph and hence estimators will clearly perform better. We study
the performance gains w.r.t. the MSE of the parameter estimates.

Figs. 3(a-b) show boxplots of the MSE of the estimates θ̂i, i =
1, . . . ,W obtained by EXACT and APPROXIMATE, respectively,
for datasets coming from θ(1). Each boxplot shows minimum, 1st
quartile, median, 3rd quartile and maximum values, computed over
100 estimates (10 samples for each of the 10 trees). Colors corre-
spond to different sampling probabilities. In both cases, the median
MSE increases as we decrease p, as expected.

Similarly, Fig. 4 shows the results obtained by APPROXIMATE
for datasets that come from θ(2). In general, increasing the sam-
pling probability reduces the MSE, but not by a significant amount.
Results for θ(3) are similar and will be ommitted.

We conjecture that most of the information that allows us to es-
timate θ comes from the top levels of the tree. As we increase p,
we obtain many more observations from the bottom levels of the
tree, but only a few new observations from the top levels. While
edges closer to the root are observed with higher probability, edges
from lower levels are more rarely sampled and there is much more
uncertainty in those samples. This implies that increasing p should
not improve the estimates significantly after a certain point.

This short digression might lead the reader wonder whether the
values of p we use would sample so many edges from the top lev-
els that would be enough to take the empirical distribution of the
observed degrees at those levels as an estimate for θ. To show that
this is not the case, we compare the MSE results for APPROXI-
MATE with the empirical distribution of the observed degrees from
the top 1, 2 and 3 levels in a cumulative fashion. Intuitively, the
empirical distribution is biased towards smaller degrees, especially
if lower levels are taken into account, this being the reason why we
stop at three levels. For instance, regarding datasets that come from
θ(2) when the sampling probability is small (p = 5 × 10−3), the
fraction of sampled edges at the top three levels is 100%, 60% and
33%, respectively (relative to the number of edges from the root
to those levels). Considering the entire trees, the average fraction
of sampled edges is 2.3%. On the other hand, when the sampling
probability is large (p = 5× 10−2), the top three levels include re-
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Figure 4: Boxplots of the MSE of APPROXIMATE for θ(2).
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Figure 5: Median MSE of APPROXIMATE and empirical esti-
mates for θ(2).

spectively 100%, 97% and 85% of the total number of edges from
the root to those levels. In this case, the overall average is 13.51%.

Fig. 5 shows the median values of the MSE (also seen in the pre-
vious figure), but only for “small” and “large” p values, for the sake
of clarity. In addition, dashed lines display the median MSE ob-
tained when the empirical distributions are used as estimators. Es-
timates for p = 5×10−3 exhibit a one-order magnitude gain in ac-
curacy (for most parameters) relative to the best empirical estimate,
but estimates for p = 5×10−2 only yield significant improvements
at the tail of the distribution. In general, empirical distributions are
not good estimates, especially for distribution tails due to its bias
towards small degrees. One exception we found was in the case
of θ(3), where the probability mass at the tail is so large that high
degree nodes are likely to be observed at the top levels. However,
we observed in additional experiments that this is not the case for
long tailed distributions with larger support, such as W = 100.
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5. CONCLUSIONS
In this paper we propose and analyze two methods to estimate

the offspring distribution of a branching process from a sample of
random observed paths to the root. The former, based on exact
inference, is limited to small problems since the number of terms
to be computed in the likelihood function grows exponentially with
the maximum degree and number of levels. The latter approximates
the likelihood function using MCMC samples, and was able to han-
dle both small and medium size problems. For small problems, its
performance was similar to that of exact inference.

Finally, our experiments suggest that most of the information
about the offspring distribution contained in the sample comes from
the top levels, where nodes are observed with higher probability.
This suggests the possibility of designing estimators for the de-
gree distribution of a network sampled via traceroute from a single
source where observations from top levels are given more weight.
In particular, estimates from different levels could be combined
with weights inversely proportional to their variances.
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