
Zero-cost Labelling with Web Feeds for Weblog Data
Extraction

George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, M. S. Joy
Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom

{G.Gkotsis, K.Stepanyan, A.I.Cristea, M.S.Joy}@warwick.ac.uk

ABSTRACT
Data extraction from web pages often involves either hu-
man intervention for training a wrapper or a reduced level
of granularity in the information acquired. Even though the
study of social media has drawn the attention of researchers,
weblogs remain a part of the web that cannot be harvested
efficiently. In this paper, we propose a fully automated ap-
proach in generating a wrapper for weblogs, which exploits
web feeds for cheap labelling of weblog properties. Instead of
performing a pairwise comparison between posts, the model
matches the values of the web feeds against their correspond-
ing HTML elements retrieved from multiple weblog posts.
It adopts a probabilistic approach for deriving a set of rules
and automating the process of wrapper generation. Our
evaluation shows that our approach is robust, accurate and
efficient in handling different types of weblogs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Induction

Keywords
data extraction, weblogs, wrapper induction

1. INTRODUCTION
The problem of web information extraction dates back

to the early days of the web. Although exact numbers of
weblogs are not known, it is evident that the size of the bl-
ogosphere is large. In 2008 alone Technorati reported to be
tracking more than 112 million weblogs, with around 900
thousand blog posts added every 24 hours (http://techno
rati.com/blogging/article/state-of-the-blogosphere-

introduction/). The volume of information published on
weblogs justifies the attention of information retrieval, preser-
vation and socio-historical research communities but is not
the only challenge. Weblogs, due to their built-in personal-
isation options through plugins, themes and custom HTML
code, exhibit large diversity and increase the complexity of
generating a universal data extraction approach.

Our approach focuses on one of the most prominent char-
acteristics of weblogs, the web feeds. Web feeds, commonly
provided as RSS, are XML documents that allow access to
the content of a website, such as a weblog, through a ma-
chine interpretable document. Until now, the feeds have

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

been used as the sole sources of information and are there-
fore limited to a fixed number of entries, which is typically
10 [3]. Our approach is not to treat the web feeds as the
only sources of information, but as a means that allows the
self-supervised training and generation of a wrapper auto-
matically.

Our research makes the following main contributions. 1)We
use web feeds for training and generating a wrapper. The
generated wrapper is described in simple rules that are in-
duced by following a probabilistic approach. We provide
a simple algorithm that is noise-tolerant and takes into ac-
count the information collected about the location of HTML
elements found during training. 2)We make use of CSS
Classes as an attribute that can supplement the more tradi-
tional XPath manipulation approach used to describe data
extraction rules. 3)To the best of our knowledge, we are the
first to propose a self-supervised methodology that can be
applied on any weblog and features unique levels of granular-
ity, automation and accuracy. We support all of the above
through evaluation.

2. PROPOSED MODEL
Figure 1 presents an overview of the overall approach,

which involves the execution of three steps.

Step 1: Feed Processing and Capturing of Post
Properties
The first step includes the task of reading and storing the
weblog properties found in the web feed. Similarly to stan-
dard RSS readers, we focus on the entries that contain the
post title, author, main content and publication date.

Step 2: Generation of Filters
The second step includes training the wrapper through the
cross matching of information found in the web feed and
the corresponding HTML documents. This step leads to
the generation of information, captured through the filters,
which describes where the weblog data properties reside.
The concept of a filter has already been used in research re-
lated to web information extraction. Baumgartner et al.[1]
used the term filter as the building block of patterns, which
in turn describe a generalised tree path in the HTML parse
tree. In our approach, the filter is described using three
basic attributes: the Absolute Path, the CSS Classes and
the ID of the HTML element. Once the HTML element is
matched against its value, a filter is generated which de-
scribes it in these three attributes. The matching of the
elements is treated differently for different properties: for

73

the title we look for absolute and complete matchings, for
the content we use the Jaro-Winkler metric [4] which returns
high similarity values when comparing the summary (feed)
against the actual content (web page), for the date we use
the Stanford NER suite for spotting and parsing the values
(http://nlp.stanford.edu/software/CRF-NER.shtml), and
for the author we use partial and absolute matching with
some boilerplate text (i.e. “Written By” and “Posted By”).

Step 3: Induction of Rules and Blog Data Ex-
traction
The final step transforms the filters into rules, in order to
calculate the scores and select a rule for each of the desired
properties. Essentially, a rule is the result of the transposi-
tion of a filter. This transposition can result in maximum
three rules. Hence, a rule is described by its type (one of the
three different attribute types of the filters), a value (the
value of the corresponding filter’s attribute) and a score,
which is used to measure its expected accuracy. The need
to calculate the score of each rule is justified by the inherent
“noise” of the filters. This noise is produced due to several
reasons (e.g. the value of the Absolute Path may vary across
the posts or more than one matching element may be found
in a single post). As seen in Algorithm 1, an iteration takes
place for each of the candidate rules which in turn is applied
to each of the training posts. For each successful match, the
score of the rule is increased by one. After all posts have
been checked, the value is divided by the number of train-
ing posts which the rule was validated against, in order to
represent a more normalised measurement. The rule having
the highest score – if any – is returned.

Algorithm 1 Rule induction algorithm

Inputs:

Collection of training posts P , Collection of
candidate rules R

Outputs:

Rule with the highest score
for all Rules r ∈ R do ⊲ Initialize all scores

r.score← 0
end for

Rule rs← new Rule()
rs.score← 0
for all Rules r ∈ R do

⊲ Check if application r(p) of rule r, on post p succeeds
for all Posts p ∈ P do

If r(p) =value-property of p then

r.score++
end for

r.score← r.score

|P |
⊲ Normalize score values

⊲ Check if this is the best rule so far
If r.score > rs.score then

rs← r

end for

return rs

3. EVALUATION
We evaluated our model against a collection of 240 we-

blogs (2,393 posts) for the title, author, content and pub-
lication date. For the same collection, we used the Google
Blogger and WordPress APIs (in the limits of free quota)
in order to get valid and full data (i.e. full post content)

Figure 1: Overview of the weblog data extraction

approach.

Table 1: Percentage of successfully extracted prop-

erties. Number of misses are in parenthesis.

Title Content Publication
Date

Author

Proposed
Model

97.3%(65) 95.9% (99) 89.4%
(253)

85.4%
(264)

Boilerpipe 0 77.4% (539) N/A N/A

and followed the 10-fold validation technique. As seen in
Table 1, the prediction accuracy is high (mean value 92%).
Furthermore, we compare the accuracy of the post content
extraction against Boilerpipe[2] and the results show that
we achieve 81.6% relative error reduction.

4. CONCLUSIONS
We have presented a method for fully automated weblog

wrapper generation. Based on the weblogs’ feeds, our model
realises an effective and zero-cost labelling technique. The
generated wrapper exhibits increased granularity, since it
manages to identify and extract several weblog properties,
such as the title, author, publication date and main content
of the post.

5. ACKNOWLEDGMENTS
This work was conducted as part of the BlogForever project

funded by the European Commission Framework Programme
7 (FP7), grant agreement No.269963.

6. REFERENCES
[1] R. Baumgartner, S. Flesca, and G. Gottlob. Visual

Web Information Extraction with Lixto. In Proceedings
of the 27th International Conference on Very Large
Data Bases, VLDB ’01, pages 119–128, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[2] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proc. of the 3rd ACM international conference on Web
search and data mining, pages 441–450. ACM, 2010.

[3] M. Oita and P. Senellart. Archiving data objects using
Web feeds. In Proc. of International Web Archiving
Workshop, pages 31–41, Vienna, Austria, Sept. 2010.

[4] W. E. Winkler. String comparator metrics and
enhanced decision rules in the fellegi-sunter model of
record linkage. Proc. of the Section on Survey Research
Methods American Statistical Association, pages
354–359, 1990.

74

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130401124512
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130401124512
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

