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ABSTRACT
Data mining social media has become a valuable resource for
infectious disease surveillance. However, there are consider-
able risks associated with incorrectly predicting an epidemic.
The large amount of social media data combined with the
small amount of ground truth data and the general dynamics
of infectious diseases present unique challenges when evalu-
ating model performance. In this paper, we look at several
methods that have been used to assess influenza prevalence
using Twitter. We then validate them with tests that are de-
signed to avoid and illustrate issues with the standard k-fold
cross validation method. We also find that small modifica-
tions to the way that data are partitioned can have major
effects on a model’s reported performance.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
Algorithms, Reliability, Experimentation

Keywords
data mining, regression, machine learning, Twitter

1. INTRODUCTION
The rapid adoption of social media and the internet in

general has opened the door for novel developments in epi-
demiology [11, 7, 1, 12, 2, 13, 3, 5]. Much of this research
has been aimed at data mining social media services such as
Twitter or Facebook. Due to its openness, Twitter has been
of particular interest [9, 15, 12, 4]. The site’s microblogging
and mobile communication features make it particularly use-
ful for determining current levels of disease.

Given the rapid rise of social media usage, assessing dis-
ease prevalence using social media will become increasingly
important. It is therefore prudent to continuously validate
the underlying models [2, 1, 3]. Methods for validation as-
sume that the training and testing data are independent of
each other. While this assumption is never completely true,
it is often sufficient. However, due to the strong spatial and
temporal nature of infectious disease dynamics – along with
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a lack of multiyear social media datasets – this assumption
may result in an inaccurate model.

In this paper, we take previously published models [3, 6,
13] and perform a battery of tests to check for potential is-
sues. We do this by comparing the results of a traditional
influenza related tweet dataset to a dataset of tweets that
has not been filtered for a specific topic, a dataset of tweets
related to a topic that is irrelevant to influenza, and a set
of frequencies generated from random sine waves. In addi-
tion, we compare 10 fold and leave-one-out validation where
the testing data are either from a different region or time
than the training data. We find that (i) seemingly irrele-
vant tweets are moderately successful in assessing influenza
prevalence, (ii) generated frequencies are often as good as
measured frequencies from social media, and (iii) the choice
of the validation method greatly affects the model’s reported
performance.

2. DATA SETS

2.1 Influenza Prevalence
The CDC defines ILI (influenza like illness) as an illness

with a fever and a cough or sore throat without a known
cause other than influenza. Because ILI is indistinguishable
from influenza, except through expensive tests, most data is
reported as ILI prevalence instead of influenza prevalence.
We used the percentage of doctor’s visits that were for ILI
between October 2, 2011 and May 26, 2012, as reported by
the CDC,1 to serve as the ground truth. The CDC provides
this data both on a national level and as a set of 10 HHS
regions.

2.2 Tweets
We collected 238,506,796 tweets from the continental United

States between October 2, 2011 and May 26, 2012 – a 34
week span – through Twitter’s API. The tweets were ac-
quired by requesting all tweets with high-resolution geospa-
tial information within a bounding box that covers the con-
tinental United States. By limiting our requests to tweets
with high-resolution geospatial data, we potentially intro-
duced a bias in the data. However, this allowed us to avoid
being rate limited by Twitter, guaranteeing that the dataset
contained every tweet from Twitter, subject to the above
parameters.

Each tweet consists of geospatial information, the time
that the tweet was sent, and the contents of the message

1http://www.cdc.gov/flu/weekly/pastreports.htm
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Y 1 2 3 4 5 6 7 8 9 10
R .87 .88 .63 .91 .98 .95 .95 .98 .89 .90

Table 1: Predicting region Y’s ILI prevalence simply
based on the other 9 regions’ current prevalences
with a multivariable regression illustrates the strong
relationship between the regions’ disease levels.

tweeted, along with other information such as the user’s
profile picture and sign up date. The quality of the tweet’s
geospatial information varies greatly based on how the user
sent it. For example, a tweet sent from a laptop may only
have information from which city or state it originated from.
In our case, we limited our search to tweets with longitude
and latitude coordinates indicating that the tweets most
likely came from gps equipped devices such as cell phones.
A tweet contains at most 140 characters of text. Note that
we did not limit our collection to tweets with a specific set
of keywords.

We trained our models on 6 subsets generated from this
data. The first subset was simply the entire dataset grouped
by each week. The second subset was limited to tweets that
contained at least one of the following ILI related keywords:
‘flu’, ‘cough’, ‘fever’, ‘headache’ or ‘head ache’. We defined a
third subset of the data using the keywords ‘zombie’, ‘zed’,
‘undead’ and ‘living dead’. Since these keywords are pre-
sumably unrelated to ILI, this subset serves as a test for
odd model behavior. The other three subsets are the same
as the first three, but also divided based on which region the
tweet came from. We used the 1000 most common words in
each of the subsets as the list of keywords for the models.
In the ILI dataset, this includes all of the words that were
tweeted an average of at least one time per week. The other
subsets were also of the top 1000 words to avoid biasing
caused by a difference in the amount of data being fed into
the models. We did not filter out stop words because, as
mentioned by Culotta [3], stop words such as ‘I’ or ‘have’
provide valuable information if the tweets also have an ILI
keyword. Because of daily fluctuations in Twitter use, all
keyword trends are measured by their frequency.2

In addition to these 6 datasets, we ‘simulate’ keyword fre-
quencies by generating another two datasets. We generate
one-thousand sine curves with random wavelengths and add
noise generated by a normal distribution with a standard
deviation of 0.1 to each point. They are then divided by
1000 to be of the same scale as the actual frequencies. We
add .001 to each point to avoid negative frequencies. We
also generate one for regional data where the wavelengths
are fixed across regions but the noise is not. As with the
irrelevant tweet dataset, these serve as control groups.

3. MODELS

3.1 Regression on Tweet Count
Following previous work [6, 3], we first consider using a

linear regression of the raw count of tweets that contain at
least one of the keywords, as defined above, to predict the
CDC’s ILI prevalence:

logit(CDCRate) = β0 + β1logit(x) + ε (1)

2The datasets and associated code are available at
http://github.com/salathegroup/w3cRio

Figure 1: Results from (a) SVM regression, (b) mul-
tivariable regression, and (c) single regression for
each dataset compared to the CDC’s national re-
ported ILI levels during the 2011-2012 influenza sea-
son. Each data point is the result of a model trained
on the other 33 week’s data.

Where β0 and β1 are coefficients, ε is the error function,x is
the number of Tweets containing at least one of the keywords
and logit(x) = log(x/(1 − x)).

3.2 Multivariable Regression
To gain more information from the tweets, we consider

multivariable regression [3, 10].

logit(CDCRate) = β0 +

n∑
i=1

βilogit(xi) + ε (2)

Where xi is the frequency of the ith keyword.

3.3 Select Best Keyword
It has been argued that multivariable regression is prone

to overfitting [6, 3]. An alternative solution to multivariable
regression is to perform regression on the keyword that cor-
relates the best with the training data, and use it for the
regression model.
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Model Flu All Irrelevant Generated
Count .4184 .4344 .0089 .3529
Multi .7681 .8774 .6300 .8367
Best .6946 .6583 .7991 .7313

SVMr .7557 .8580 .7382 .8766

Table 2: Average correlation of the models’ predic-
tions and the CDC’s national ILI prevalence.

Model Flu All Irrelevant Generated
Multi .3493 .6468 .2860 .2713
Best .1575 .2381 .3158 .6653

SVMr .4538 .7378 .4270 .7113

Table 3: Mean correlation of the results of a model
trained on 9 regions and evaluated on the last.

3.4 SVM Regression
We consider a form of regression that utilizes a SVM (sup-

port vector machine) which has been shown to predict ILI
prevalence well [13]. A SVM defines a multi-dimensional hy-
perplane that divides the training data. While this hyper-
plane is generally used in classification problems to divide
two classes, it also allows for regression based on a sample’s
distance from the plane [14].

4. MODEL VALIDATION
Models are evaluated by dividing the dataset into training

and validation sets. The way that the sets are divided has
the potential to greatly affect the measured performance of
the models [10]. Examples of these issues are

1. Too much data used in training results in few points
to compare to the model’s results.

2. Too little data used in training results in a poorly fitted
model.

3. If the testing data is too similar to the training data,
overfitting may not be detected.

4. If the testing data is too different from the training
data, the model will perform badly regardless of it’s
sophistication.

As a concrete example of issue 3, consider the commonly
used method of reserving one region’s data for validation.
As information about other regions gives a fair bit of infor-
mation about a region (see table 1), there is a risk that a
model will present good results in the testing data even if the
model has not learned the system’s underlying dynamics.

Aside from a simple percentage split, we allow for 10-fold-
cross validation. In cross validation, the dataset is divided
into k equally sized splits. Each split is used to test a model
that was trained on the remaining k − 1 parts. In addi-
tion, we allow for leave-one-out cross validation where each
datapoint is used to test a model that was trained by the
remaining data.

5. RESULTS
We first evaluate the models with the national level data

through leave-one-out validation (figure 1) and 10-fold-cross

validation (table 2). In the case of 10 fold validation, we
repeated the evaluation 100 times with different, randomly
generated splits. With both validation methods, multivari-
able and SVM regression performed similarly. We corrob-
orate Culotta’s finding that multivariable regression per-
forms better than regression on just the count of relevant
tweets contrary to Ginsberg et al.’s findings in Google search
queries. For a discussion on why this may be, see [3]. Be-
cause of its much lower performance, we ignore it for the
rest of the analysis.

When we repeat this procedure on a regional level with
each region being a ‘fold’, we observe similar behavior (table
3, fig 2). However the accuracies are lower in every case.
This suggests that a model with what appears to be better
performance may not necessarily be better than one with
a lower level of performance if the first model’s testing set
was temporally separated while the second model’s testing
set was spatially separated.

It may appear that both multiple regression and SVM
regression have similar accuracies in the regional data, how-
ever their results from the generated dataset are noticeably
different. The intuitive conclusion would be that SVM re-
gression performs better than multiple regression. This is
not necessarily so. In the case of SVM regression, real Twit-
ter data is barely a better predictor of ILI than generated
sine curves. This calls into question the benefits of using so-
cial media with SVM regression, if randomly generated data
performs nearly as well.

Interestingly, the dataset that was not filtered resulted
in a higher correlation in 3 of the 4 models. This may be
due to the filtering process removing potentially insightful
tweets that do not contain any of the keywords. Another
possibility is that reducing the number of tweets makes the
data’s trends more susceptible to random fluctuations and
thus noisier.

6. CONCLUSIONS
In this paper we evaluated several well known regression

models on their ability to accurately assess disease preva-
lence from tweets. We found that even irrelevant tweets and
randomly generated datasets were able to assess disease lev-
els comparatively well. This could serve as a ground level
for evaluating other models: if a model can do only slightly
better with seemingly relevant data than with seemingly ir-
relevant or random data, then it is probably not learning
much from the tweets and its ability to fit the data can be
attributed to other factors.

The ability for even randomly generated curves to fit the
data may be explained by either spatial or temporal auto-
correlation. For example in 5 fold cross validation, a model
may simply interpolate between points in the dataset instead
of gaining information from the tweets. Future work could
look at other diseases that have less predictable long term
dynamics, such as gastroenteritis or asthma. Another pos-
sibility is that – especially in the full dataset – tweets about
other events that happened around the same time that ILI
peaked could be chosen by the model as a predictor, but
clearly this would not be expected to replicate across multi-
ple years.

Finally, we found that the way that the training and test-
ing data were divided had a strong effect on the reported
performance of a model. Future work could build a mathe-
matical model to explore these effects and develop a method
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Figure 2: As with figure 1, but results for region 10
from models trained on regions 1-9.

to evaluate models in a way that best measures their true
performance.
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