
MicroFilter: Real Time Filtering of Microblogging Content

Ryadh Dahimene
ryadh.dahimene@cnam.fr

Cédric du Mouza
cedric.du_mouza@cnam.fr

CEDRIC Laboratory - CNAM
292, Rue Saint-Martin

Paris, France

ABSTRACT
Microblogging systems have become a major trend over the
Web. After only 7 years of existence, Twitter for instance
claims more than 500 million users with more than 350 bil-
lion delivered update each day. As a consequence the user
must today manage possibly extremely large feeds, result-
ing in poor data readability and loss of valuable informa-
tion and the system must face a huge network load. In this
demonstration, we present and illustrate the features of Mi-
croFilter (MF in the the following), an inverted list-based
filtering engine that nicely extends existing centralized mi-
croblogging systems by adding a real-time filtering feature.
The demonstration proposed illustrates how the user expe-
rience is improved, the impact on the traffic for the overall
system, and how the characteristics of microblogs drove the
design of the indexing structures.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

Keywords
Microblogging; Twitter; Filtering

1. MOTIVATION
Microblogging web services such as Twitter or Indenti.ca

have become a major trend over the Web 2.0 as well as an
important communication vector. In less than six years,
Twitter has grown in a spectacular manner becoming now
the most widely used Microblogging system in the world
with more than half a billion users in January, 20131.
For different reasons (security, advertisement, control pol-

icy, . . .), microblogging systems rely on a fully centralized
architecture. Each post published by an account is received
by the system that forwards it to all followers of the pub-
lishing account. Different parameters impact consequently
the overall performances of the posting: (i) the high update
frequency of some accounts (e.g. newspapers, tech-blogs like
@techcrunch that posts more than a tweet per hour, jour-
nalists), and (ii) the average number of followers, between

1http://www.telegraph.co.uk/technology/9837525/Half-a-
billion-people-sign-up-for-Twitter.html

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

30 and 200 depending on the system considered (see [4] for
Twitter), with accounts which reach millions of followers
(e.g. celebrity account @ladygaga has more than 36,5 mil-
lion followers).
From the service provider point of view, the system must

consequently face a tremendous amount of posts to forward.
For instance Twitter, which claimed in Jully 2011 more than
200 million tweets a day, must deliver daily over 350 billion
tweets2. This traffic overload (especially for high-followed
accounts) represent from an architectural point of view a
scalability bottleneck. From the user’s point of view, the
amount of posts received from the 30-200 accounts he fol-
lows, among these some very-productive ones, leads in the
very large feeds of posts. This results in poor data readabil-
ity and potentially loss of valuable information. A direct
consequence is the high dynamicity of the graph: to avoid
flooding, users follow temporary an account to cover a pecu-
liar event, and then unsubscribe because they can’t manage
the continuous flow of posts [3] [2].
For the data analyst, leveraging the users manually intro-

duced filters may also provide useful insights that can help
analyse the huge microposts datasets.
Based on these observations we introduce the MicroFil-

ter system in order to improve the user experience and
reduce the network load of such a systems. We introduce
filtering in microblogging systems motivated by the main
idea that if a user A follows another user B for some top-
ics, consequently he wants to receive only a subset of B’s
posts that matches his interest, expressed as keywords. To
scale, the MF structure must efficiently retrieve for an in-
coming post all followers of a publishing account whose filter
is satisfied by the post. MicroFilter is, to the best of our
knowledge, the first attempt to manage filters in existing
centralized microblogging systems, and to efficiently intro-
duce them in the underlying graph index.
The goal of this demonstration is to illustrate the benefits

of the MicroFilter filtering engine. We will present how
the user can interact with the MF powered microblogging
system and how he can avoid the flooding phenomenon. This
demonstration will also show the approach benefits from the
service provider point of view, i.e. the impact on computing,
storage, and network load.

2. FILTER INDEXING
To improve microblogging systems performances we pro-

pose keyword-based filters. We name the social graph whose

2http://latimesblogs.latimes.com/technology/2011/07/twitter-
delivers-350-billion-tweets-a-day.html

633

edges are labeled by filters the filtered social graph (FSG).
We propose and compare in [1] three indexing structures
using different factorization criteria. Based on our conclu-
sion regarding space and computation costs, we decide to
implement the PTF (Publisher-Term-Follower) for our Mi-
croFilter filtering engine.
In the PTF -index, (as Publisher− Term− Follower in-

dex), a key is an account n ∈ N , and the value is the cor-
responding posting list PostingsPTF (n). We factorize the
posting list on the terms, so each term t is associated to a list
of the followers of n that choose t as a filter for the posts of n.
So PostingsPTF (n) = {(t1, {n1

t1 , n
2
t1 , . . .}), (t2, {n

1
t2 , n

2
t2 , . . .})

, . . .}, with ni ∈ Γ−(n) and tjni
∈ label(ni, n).

3. DEMONSTRATION

3.1 System overview
Figure 1 shows the general architecture of MicroFilter.

At the storage level we find the microblogging system Fil-
tered Social Graph. For efficiency reasons and in order to
avoid costly disk inputs/outputs, the system indexes the mi-
croblogging data grabbed from the storage layer in main
memory using the PTF -index structure described in the
model section. The generated structures can fit in main
memory, and are used by MF to quickly route the incoming
tweets flow.
At the user layer, clients can interact with the MF filtering

Figure 1: Architecture of MicroFilter

engine using a classical browser interface. This client-server
model handles the interaction between users and the system
trough the system web interface. Clients can use the inter-
face to manage their filters and receive the posts that match
their interests.
The user typical use case scenario illustrated in the figure

1 is described as follows:
1. At the beginning the user U2 choose to follow the user

U1, he wants to receive U1 ’s update that are related
to the term m1, so that he explicitly filters the posts
with the filter m1.

2. The MicroFilter system stores the new edge in the
social graph by adding the new filterd following rela-
tionship in his in memory PTF -index.

3. The user U1 posts a new update which contains the
three terms m1, m7 and m12 using the web interface.

4. Now the system use the PTF -index to find users to
notify, it starts with the hashtable entry of the update
poster and find the users to notify. In this case U2.

5. Finally, the system can notify the right users for the
new update.U2 is then notified for U1 ’s update which
contains the term m1.

The described architecture is used by MicroFilter to han-
dle filtering over the continuous flow of posts we can meet
in the microblogging world.

3.2 Implementation
We have implemented the the PTF -index structure on

top of a JAVA platform. The users can interact with the
system through a browser interface. The users are able to
receive updates from accounts they follow. They can use
two different modes. The first mode rely on the all or noth-
ing paradigm i.e users retrieve all updates from their direct
neighbourhood (it is actually the current state in all mi-
croblogging platforms). In the second mode, the users can
activate the MicroFilter filtering engine and specify their
interests by setting a list keywords which represent their in-
terests. In this mode, the user can compare the average
matching times of his filters with the content and can ex-
perience the real time filtering. From the service provider
point of view, the challenging point consists on the ability to
handle the filtering for the complete dataset of users/tweets
and fit the inverted lists index in main memory.
The experiment we conduct in the demonstration consists

of indexing in main memory the whole filtered social graph
of our Twitter dataset (social graph + tweets for more than
148.5 million publisher-follower relationships, described in
[1]) and then launch a continuous flow of incoming tweets
(up to 15,7 million tweets) to evaluate how the system han-
dles the matching. By tuning some parameters (number of
users, size of filters) we can provide real time statistics on
matching time, memory occupation and network load gain
to illustrate the benefits of our approach. We observed that
the PTF -index exhibit a linear growth and can handle the
full 148.5 million edges dataset in 3.5 Gb of memory.

We observed also that the PTF -index can handle a post
with an almost constant matching time (15 µs in average).
A result is that with the PTF -index we are able to handle,
in a single centralized system, up to 66k posts per second. It
means that we can easily manage, for instance, the Twitter
historical peaks (around 12k tweets per second3).

4. REFERENCES
[1] R. Dahimene, C. du Mouza, and M. Scholl. Efficient

filtering in micro-blogging systems: We won’t get
flooded again. In SSDBM, pages 168–176, 2012.

[2] F. Kivran-Swaine, P. Govindan, and M. Naaman. The
Impact of Network Structure on Breaking Ties in
Online Social Networks: Unfollowing on Twitter. In
CHI, pages 1101–1104, 2011.

[3] H. Kwak, H. Chun, and S. B. Moon. Fragile Online
Relationship: A First Look at Unfollow Dynamics in
Twitter. In CHI, pages 1091–1100, 2011.

[4] H. Kwak, C. Lee, H. Park, and S. B. Moon. What Is
Twitter, a Social Network or a News Media? In WWW,
pages 591–600, 2010.

3http://blog.twitter.com/2012/02/post-bowl-twitter-
analysis.html

634

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130404100722
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130404100722
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

