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ABSTRACT
Social media sites such as Twitter and Facebook have emer-
ged as popular tools for people to express their opinions
on various topics. The large amount of data provided by
these media is extremely valuable for mining trending top-
ics and events. In this paper, we build an efficient, scalable
system to detect events from tweets (ET). Our approach
detects events by exploring their textual and temporal com-
ponents. ET does not require any target entity or domain
knowledge to be specified; it automatically detects events
from a set of tweets. The key components of ET are (1) an
extraction scheme for event representative keywords, (2) an
efficient storage mechanism to store their appearance pat-
terns, and (3) a hierarchical clustering technique based on
the common co-occurring features of keywords. The events
are determined through the hierarchical clustering process.
We evaluate our system on two data-sets; one is provided by
VAST challenge 2011, and the other published by US based
users in January 2013. Our results show that we are able to
detect events of relevance efficiently.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval

Keywords
Tweets Processing, Event Detection, Text Anaytics, Hierar-
chical Clustering, Data Mining

1. INTRODUCTION
In recent years, netizens have started using social media

services not only to interact with friends, but also to share
their opinions and ideas about what they find interesting.
Twitter, a micro-blogging service, provides such a facility
to its users by allowing them to post 140 characters long
‘tweets’. A recent study by an analyst group, Semiocast,
states that Twitter has now passed the half-billion account
mark as of July 1, 20121. Very large numbers of tweets

ET with the latest results is demonstrated at http://
cdeproject.iiit.ac.in/et/
1http://semiocast.com/publications/2012 07 30 Twitter
reaches half a billion accounts 140m in the US
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are posted daily on a variety of topics, ranging from casual
chitchats to global news like elections and earthquakes.

1.1 Motivation
An important characteristic of Twitter is its real time na-

ture. Its availability on web as well as mobile devices (cell
phones) enables users to post tweets at any time and place.
This ease of publishing messages on Twitter makes it a pop-
ular source of data to detect real-world events. There have
been many events which were highlighted by Twitter users
almost at the same time or before they were identified by the
traditional news media. For example, Twitter revealed the
2010 cholera outbreak in Haiti two weeks before the health
officials2. There are many applications that use Twitter to
track earthquakes. The tragic earthquake that struck Japan
in 2011 was identified within seconds because of the spikes
in tweets from affected area, compared to the typical 2 to
20 minutes taken by scientific alerts3. Another prominent
category of events detected by Twitter is sports. During the
2010 FIFA World Cup, Twitter observed huge traffic when
a big goal was scored. Instead of 750 tweets per second
on an average day, there were 2, 940 tweets per second, after
Japan scored against Cameroon4. Analysis of tweets related
to such events gives a better understanding about user views
and sentiments associated with the events.

Traditionally, events are detected from well-formatted, elab-
orately written documents like news articles and social strea-
ms like blogs, emails [18, 8, 3, 7]. These approaches can
not be directly applied to tweets for three reasons. First,
tweets are posted at a rapid rate, and thus produce a large
amount of data, requiring scalable and efficient approaches.
Secondly, because of the length restriction on tweets, the
ideas are presented in brief and may not have enough infor-
mation. Moreover, tweets are informally written and often
contain grammatically incorrect text with misspellings and
abbreviations. Thirdly, in most traditional approaches, it is
assumed that all the documents are associated with some
events, but that is not true with tweets. Tweets are inher-
ently noisy and heterogeneous in nature. A study by Pear
Analytics5 states that half of the tweets are pointless and

2http://mashable.com/2012/01/10/twitter-epidemic-
choler-haiti/
3http://www.justmeans.com/Japan-Earthquake-on-
Twitter-Social-Media-Trends-During-Disaster/46835.html
4http://www.huffingtonpost.com/2010/06/20/world-cup-
2010-twitter-tr n 617751.html
5http://www.pearanalytics.com/blog/2009/twitter-study-
reveals-interesting-results-40-percent-pointless-babble/
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do not convey any valuable information. These tweets are
mainly related to personal updates of users, spam and self
promotion. Processing such tweets not only increases the
processing time, but also degrades the quality of results.

1.2 Overview and Features of our system
To deal with the above challenges, in this paper, we build

a system, ET, to detect meaningful events from tweets effi-
ciently. The important steps and features of our approach
are as follows. Given a set of tweets, the time-span of this
set is divided into fixed-length tunable time intervals, and
tweets are segregated accordingly. Frequent keywords are
found from these intervals, and keywords that show a sudden
increase in their frequencies across consecutive time blocks
are considered as event representative keywords. For each
keyword, we maintain a list of the intervals in which it is
frequent along with the frequency increases in those inter-
vals. This list effectively captures the appearance pattern of
a keyword, and is used to remove trivial bursty keywords.
The event representative keywords that belong to the same
event are grouped together using a hierarchical clustering
technique. The similarity score between two keywords is de-
fined using the common co-occuring textual features and
similarity in their appearance patterns. The co-occuring
textual features have to be computed only once for each
keyword, and they are discovered only from the time blocks
where the keyword is frequent. The appearance pattern of a
keyword can be derived from the associated list of the key-
word requiring no extra processing. These aspects make the
clustering task very fast compared to most state-of-the-art
techniques. At the end of the clustering process, each cluster
represents one event. To make the events more interpretable
and informative, we also use some frequent co-occuring tex-
tual features of the associated keywords. ET is able to de-
tect events that cover a large variety of topics, ranging from
small events like ‘Car accidents’ to big events like ‘Golden
Globes Awards’ and ‘Plane Crash’.

In the rest of the paper, we first provide an overview of re-
lated work (Section 2). In Section 3, we describe our system
and its components in detail. Thereafter experiments and
results are presented in Section 4, followed by conclusion.

2. RELATED WORK
The concept of event detection has its origin in the concept

of topic detection. Since then many approaches have been
proposed to mine events from news and broadcasting data.
Most of the approaches [2, 1, 4, 17] used a document-pivot
clustering technique to detect novel events from a stream
of news stories. In contrast to this technique, feature-pivot
clustering [3] first finds event related bursty features from
the data/stream, and then applies clustering on these fea-
tures to identify events. Fung et al. [3] represent an event as
a minimal set of bursty features (unigrams). The bursty fea-
tures are identified by their frequency distributions, which
are modelled with binomial distributions. These features
are grouped into bursty events by considering their prob-
ability of co-occurrence and frequency distributions. He et
al. [5] use document frequency - inverse document frequency
(df.idf) to build a signal for each feature in time domain.
Discrete Fourier Transformation (DFT) is used to transform
the signal in time domain to frequency domain. Features
showing a spike in the frequency domain are extracted as
bursty features.

While these approaches work well for well written articles,
they do not work for tweets. Tweets are written informally
with a lot of abbreviations and mistakes. Since tweets are
very short, statistical concepts like tf.idf can not be directly
used on them [6].

Now, we consider recent work done in detecting events
from tweets and other social media. Popescu et al. [13] pro-
pose a supervised classification method to decide whether,
given a set of tweets involving an entity, the tweets fo-
cus on a single main event about that entity or not. An
earthquake reporting system is built by Sakaki et al. [15]
which uses the real-time nature of tweets to detect earth-
quake events. To detect tweets associated with the tar-
get event (earthquake), they use Support Vector Machine
(SVM) classifier which uses the keywords and context of a
tweet, as features. Twitris [12] is a semantic web appli-
cation that uses tweets and their spatio-temporal features
to gather information about real-world events. It also facili-
tates the browsing of related news and information using ad-
ditional resources such as news feeds and Wikipedia. Lana-
gan et al. [9] use Twitter to automatically identify events
of interest from a set of tweets generated at any moment
of a live game of sports like football. TEDAS [11] detects
Crime and Disaster related Events (CDE) from tweets us-
ing a CDE-focused crawler. They use spatial and tem-
poral information of tweets to detect new events. While
these papers find events pertaining to a specific entity like
‘Julia Roberts’,‘earth quake’ or domain like ‘sports’, ET
finds generic events which poses different set of challenges.
TwiCal [14] extracts an open-domain calendar of significant
events from Twitter and classifies the extracted events into
important event categories. They employ an NLP-based ap-
proach to find named entities and event phrases from tweets.
The extracted events are categorized into types based on la-
tent variable models.

The two most related approaches to ET are EDCoW [16]
and Twevent [10], that automatically detect generic events
from tweets. EDCoW builds a signal for each individual
word using wavelet theory to capture the burst in the word’s
appearance. It removes trivial words using their correspond-
ing auto-correlations, and clusters the remaining signals based
on the cross correlation between them using modularity based
graph partitioning. While this approach yields good results,
it lacks in scalability and computational efficiency. Build-
ing signals for each word and computing cross correlation
for each pair of the signals takes a lot of computation time.
Further, cross correlation only takes into account the sim-
ilarity between the bursts of two words, without consider-
ing the similarity between the content associated with two
words. This may cluster two events that are not related
but happened in the same time span. Twevent [10] uses
event segments constructed using the statistical information
provided by Microsoft Web N-Gram service and Wikipedia,
to present events. Thus the speed of segmentation relies on
this service. The bursty segments are identified based on the
tweet frequency of a segment. Out of these segments, noisy
and trivial segments are removed manually. To find the
similarity between the detected segments, Twevent divides
the time window into sub-windows, computes frequencies of
segments in each sub-window and, finds cosine similarity be-
tween sets of associated tweets for each sub-window. This
amounts to a lot of additional computations, as computing
frequencies of the segments in each sub-window requires an-
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Figure 1: ET Framework

other scan of the whole set of tweets. Similar segments are
clustered using Jarvis-Patrick clustering algorithm. After
clustering, they use anchor text in Wikipedia to re-rank the
events such that more realistic events get more importance.
This may give less importance to events like ‘having fever’
and ‘bomb explosion’, as they are not found in Wikipedia
articles. Such events are actually of great importance to
spread awareness.

ET uses bigrams as candidate keywords which reduces
the computations caused by the large number of bursty un-
igrams and removes the bottleneck of using any N-Gram
Service. Li et al. [10] found that over half of the segments
are bigrams and there are rarely any segments of more than
3 grams. This observation supports our reasoning for using
bigrams. Further, n-grams can be captured by ET while
clustering the related bigrams based on their content simi-
larity. We filter trivial bursty bigrams automatically with-
out requiring any human intervention and extra computa-
tions. Unlike EDCoW, ET uses burst as well as content
similarity to group related keywords. To compute this simi-
larity, unlike Twevent, we divide the time window from the
start, so frequencies need not be computed again. To com-
pute content similarity, we first find co-occuring frequent
features of each segment using only those time windows in
which the segment is frequent. Once these features are ob-
tained, the tweets need not be accessed again, and similar-
ity is computed based on the common co-occuring features.
This speeds up the entire process of clustering keywords.

3. ET SYSTEM
Figure 1 depicts our entire event detection framework.

First component, Temporal Segmentation of Tweets (b), di-
vides the tweet stream (a) into sets of temporally coherent
tweets (c). Each set is processed to detect event represen-
tative bigrams (d). At the end of this process, we get a dic-
tionary that stores these keywords and related information
(e). This dictionary is used to compute content and appear-
ance pattern similarity between these bigrams/keywords (f).
These similarities are used as a distance metric in the hierar-
chical clustering technique (i). Each cluster in the resultant

clustering represents an event (j). In the rest of the sections,
we describe the main components of ET.

3.1 Event Representative Keywords
In this section, we present our model for extracting event

representative keywords. We divide the total time span of
tweets into fixed length time blocks, and notice the frequen-
cies of keywords in each time block to identify an increase
in their occurrences. The event representative keywords are
the keywords which show a significant increase in their fre-
quencies in a particular time interval. Consider the frequen-
cies of a particular keyword in these intervals. If the dif-
ference of its frequencies in two consecutive time blocks is
high, it can be inferred that some trend/event involving that
keyword has started in the second time block. Given a set of
tweets U , spanning over a time duration d, we divide d into
a set of fixed length time blocks {d1, . . . , dn}. The duration
of each time block is fixed as b, and n = d/b. Accordingly,
all the tweets in U are segregated into n non-overlapping
subsets, {U1, . . . , Un}, where Ui contains all the tweets that
were written during time block di. The value of b can be set
by users based on the kind of events they are interested in:
short spanned or long spanned events. Typically for short
spanned events, b is usually set to one day, but for long
spanned events, it is set to one week.

As mentioned earlier, instead of using unigrams, we use
bigrams as the candidate keywords. We start processing
tweets from U1 and go till Un. Each tweet t in Ui is tok-
enized into words, and stop words are removed. Each pair
of remaining consecutive words is taken as a bigram. For
each such bigram kj , we count the number of occurrences
(absolute frequency) of kj in Ui. After all the tweets in Ui

are processed, we get the final values of absolute frequencies
for all the bigrams in Ui. Now, the proportionate frequency
of bigram kj in interval Ui is calculated as follows:

PF (kj) =
AF (kj)

AF (k1) +AF (k2) + ...+AF (kn)
(1)

Here, k1, ...kn are all the bigrams that are mentioned in in-
terval Uj . AF (kj) and PF (kj) denote the absolute and pro-
portionate frequency of kj . If PF of a bigram kj is greater
than a threshold value γ, kj is considered as a frequent bi-
gram in Ui. We build an index in which, for each such
bigram kj , we maintain a list of pairs of the form (Ui, h. Ui

represents the interval in which kj is frequent and h shows
the increase in frequency in this interval (i.e. difference be-
tween frequencies of kj in Ui and Ui−1). To compute this
difference, we store the frequency of kj in the previous in-
terval. If a bigram k is frequent in intervals U1, U3, and
U4 with increases h1, h3 and h4 respectively, k is stored as
follows:

k → L[(U1, h1), (U3, h3), (U4, h4)] (2)

Here, k is stored as a key in the index, while the list L of
pairs is stored as the value of k. Note that a pair is added
to the list only if kj is frequent in the current interval. This
way we reduce the storage requirements while maintaining
the appearance pattern of a keyword. The second compo-
nent of the pair, h, shows the increase of the frequency in
the current interval. If it is high, it means that there is a
sudden increase in the frequency and may indicate an event.
If h is very low for all the frequent intervals of a keyword, it
means that the keyword does not show a significant increase
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in any of them. These keywords do not represent an event,
and are considered as trivial keywords. Processing such triv-
ial keywords not only adds unnecessary computations, but
also diminishes the accuracy of the system. We are able to
filter such keywords without requiring any extra precessing.
A candidate keyword should have at least one frequent in-
terval showing a high increase. Such keywords are deemed
event representative keywords. The index/storage mecha-
nism described above is also utilized in the next section for
clustering similar event representative keywords.

3.2 Clustering of Keywords
Once we get a set of event representative keywords, the

next step is to cluster the keywords that are related to the
same event. It can be said that two keywords belong to the
same topic, if they are associated with similar content. But
to say that they belong to the same event, it is important to
see that they follow similar appearance patterns too. Our
similarity metric considers both of these aspects.

3.2.1 Content Similarity
We compute the content similarity between two keywords

by finding similarity between the sets of their associated
tweets. In most approaches, the whole dataset is considered
to find these sets of tweets. But, in our approach, we con-
sider tweets from only the time blocks in which the keywords
are frequent. It is intuitive that most of the tweets, which
are related to the event, belong to the frequent time blocks
of the keyword. Thus, considering only frequent time blocks
reduces a lot of computations, while maintaining the quality
of the results.

To gather such set of tweets for a keyword k1, we utilize
the index built in the previous section to find the list of
frequent blocks of k1, and gather tweets from these blocks.
From this set of tweets, we find a set of bigrams that fre-
quently co-occur with k1. To find such frequently co-occuring
bigrams (FCB) of k1, we compute proportionate frequen-
cies of all the bigrams that co-occur with k1. The bigrams
that have frequencies higher than a threshold value are col-
lected and added to the set FCB(k1). The same procedure
is repeated to find FCBs for each keyword. Thereafter, the
content similarity between a pair of keywords is found by
just using the FCBs, without going through the associated
tweets for each pair again and again. The main bottleneck
in computing similarity is the access time to go through the
tweets. Since we access the tweets only once, the procedure
becomes very efficient. The content similarity between two
keywords k1 and k2 is defined using the Jaccard similarity
coefficient.

C Sim(k1, k2) =
FCB(k1) ∩ FCB(k2)

FCB(k1) ∪ FCB(k2)
(3)

C Sim(k1, k2) focuses on the common frequently co-occuring
bigrams between k1 and k2. Higher C Sim(k1, k2) means
that k1 and k2 are content similar. FCBs effectively cap-
ture the main contextual features of a keyword. Since they
are found frequent in the time blocks wherein the keywords
are frequent, there are high chances that they are also re-
lated to the event. This way, our similarity measure ensures
that keywords that are similar are not just textually similar,
but are similar in the context of the event.

3.2.2 Similarity of Appearance Patterns
For two keywords to be related to the same event, it is im-

portant that they follow similar appearance patterns. Our
intuition here is that, if two keywords are frequent in the
same set of time blocks, they follow closely similar frequency
patterns, and thus may relate to the same event. While mak-
ing the keyword index, for each keyword, we maintained a
list of pairs of the form - [frequent interval, increase]. Thus,
no further processing is required to find the common fre-
quent time intervals (FI) of two keywords.

The appearance similarity between keywords k1 and k2 is
defined as follows:

A Sim(k1, k2) =
FI(k1) ∩ FI(k2)

FI(k1) ∪ FI(k2)
(4)

Here also, we use Jaccard coefficient to find common fre-
quent time intervals. For each keyword, we find the frequent
interval with the highest increase. We call this interval as
‘start interval’, as it is the interval when event has started.
If two keywords have the same start time interval, they are
given high similarity score.

3.2.3 Overall Similarity
Once we have both appearance and content similarities,

the overall similarity between two keywords can be found as
follows:

Sim(k1, k2) = α · C Sim(k1, k2) + β ·A Sim(k1, k2) (5)

Here, the values of α and β can be tuned to vary the impact
of content similarity and appearance pattern similarity on
the overall score. Usually, the value of α is kept higher
than the value of β to give more importance to the content
similarity. We show some experiments with different values
of α and β in the next section.

3.2.4 Hierarchical Clustering
We cluster the keywords using an agglomerative hierarchi-

cal clustering technique. The algorithm does not require the
number of clusters to be specified before hand; just a sim-
ilarity threshold has to be specified. Once we compute the
similarity between each pair of keywords, we use it to build
a similarity matrix. The algorithm starts with merging the
keywords with the highest similarity score. After merging
the keywords k1 and k2, we compute the similarity score be-
tween this cluster (new clust) and any other keyword ki as
follows:

Sim(new clust, ki) = max{Sim(k1, ki), Sim(k2, ki)} (6)

Accordingly, the similarity matrix is updated. The rows for
keywords k1 and k2 are removed from the matrix, and a
new row for the merged cluster is added to the matrix. This
process is repeated till there is a keyword/cluster pair with
similarity score higher than the threshold. When the pro-
cess stops, we get the resultant clustering, where each cluster
represents a set of keywords associated with one event. The
resultant number of clusters and the size of the clusters vary
according to the value of the similarity threshold. Flat clus-
tering algorithms like k-means, do not work effectively in
this case, as it is difficult to predict the number of clusters
or the value of k beforehand. Further, the results of such
algorithms are different for different initial patterns and val-
ues of k. These algorithms are prone to converge at a poor
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Figure 2: Day-wise Frequency of Tweets, Bigrams and Unigrams

local optima if the initial seeds are not selected properly6.
Hierarchical clustering fits here because of its deterministic
and predictive behaviour. The resultant clustering only de-
pends on the similarity threshold, which can be varied by the
user to analyse the data. Once we have the clusters/events,
we rank them in the descending order of the size the clus-
ter. The cluster with the maximum number of keywords is
ranked at the first position.

4. EXPERIMENTS AND RESULTS
In this section, we give details about the datasets used,

experimental settings and a comprehensive analysis on the
obtained results. We evaluate the impact of using unigrams
and bigrams as candidate keywords on the results, and show
that bigrams are more effective and efficient. Further, we
show the importance of content similarity and appearance
pattern similarity on the clustering. We show that the pre-
cision of the algorithm is better than that of the existing
systems and the running time of this algorithm is less than
that of most state-of-the-art systems.

4.1 Dataset Description
We use two datasets for the evaluation of ET. The first

dataset is provided by the VAST 2011 challenge. The dataset
contains a total of 1023077 microblogs posted by users in
May 2011. It contains microblog messages collected from
various devices with GPS capabilities. The second dataset
contains 33579 tweets collected during a one week period
from January 13 to January 19, 2013. These tweets are
associated with the broadcasting domain, and contain in-
formation about various TV shows, movies, games, popular
videos and songs.

4.2 Experiment settings
The performance of our system and the resultant events

depend on some parameters: first is the time block value.
The messages in VAST dataset span over 20 days, so we set
the value of each time block as one day. For broadcasting
dataset, we set it to 6 hours. Thus, each day is divided
into 4 time blocks. The second parameter is the frequency
threshold γ to get the frequent bigrams. The value of this
parameter depends on the frequency distributions of key-
words. From the distributions, we find the most prominent
frequency range for the keywords, and set the value of this
threshold to a slightly higher value than this range. The

6http://nlp.stanford.edu/IR-book/html/htmledition/
references-and-further-reading-17.html#sec:hclstfurther
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third parameter includes the values of α and β which indi-
cate the weightages of content and appearance similarities
respectively. These values have considerable impact on the
resultant clustering, and have to be set carefully. Users can
analyze the results by changing these values and see the im-
pact. This analysis helps in understanding the events, their
content and their appearance patterns. We here show the
results for three different combinations of α and β.

4.3 Evaluation of Detected Keywords
VAST Dataset: Fig 2(a) shows the number of tweets

published on each day. It can be clearly seen from the plot
that the tweets posted on the last 3 days are considerably
more than those on other days. In Fig 2(b) and Fig 2(c), we
have plotted the number of frequent bigrams and the number
of frequent unigrams, detected on each day. These figures
clearly depict the advantages of using bigrams as event rep-
resentative keywords and not unigrams. The daily count is
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much higher for unigrams than it is for bigrams. This results
in a huge amount of computation, and because of many false
positives, it also degrades the quality of the resultant events.
Further, it can be seen from Fig 2(a) and Fig 2(b) that both
bigrams and tweets follow a similar pattern. The days when
more tweets are published, the numbers of frequent bigrams
are also high. Unigrams on the other hand, follow a com-
pletely random pattern. The number of detected unigrams
are almost in the same range every day.

ET detected 902 unique frequent bigrams at the end of
processing tweets from all the days. Keywords which were
found frequent in most of the intervals, showing no consid-
erable increase in any of them were removed by the sys-
tem. ET removed 10 such keywords automatically. Fig 3(b)
shows the frequency distributions of such removed keywords.
The keywords ‘Best Friend’ and ‘Good Day’ are frequent
in almost all the intervals and the frequencies only show a
slight deviation from the frequency threshold for all the days.
They show no significant increase on any day. Fig 3(a) shows
the frequency distributions of some retained event repre-
sentative keywords. These keywords show high frequencies
only on particular days, indicating the existence of events
on these days. Keywords ‘Plane Crash’ and ‘Smoke Cloud’
show a sudden increase on the days 14 and 18 respectively.
Keyword ‘Amazing Convention’ has high frequencies on 3
days - 5, 12, 17. After the removal of trivial keywords, we
cluster the remaining 892 event representative keywords.

Broadcasting Dataset: We divide this dataset into 6
hour windows. For each day, we get four intervals(0 to 3),
totalling to 28 intervals. Fig 4(a) shows the tweets distribu-
tion across all these intervals. The X axis labels show [day,
interval] pairs. Pair (1, 0) indicates 1st day and 0th inter-
val, i.e. the first 6 hours of day 1. The figure shows that
most of the tweets are posted on last 6 hours of day 1 (Jan
13/Sunday) and first 12 hours of day 2 (Jan 14/Monday).
This is because a lot of events happened on Sunday like
Golden Globes Awards, Super bowl games, etc., and peo-
ple are writing about it during the next 12 hours. Fig 4(b)
shows the frequent bigrams detected in each interval. They
follow almost the same distribution as tweets except for one
change. The Numbers of bigrams detected from intervals
(1, 3) and (2, 1) are almost same, but the number of tweets
posted in (1, 3) is much less than that of (2, 1). Though
number of tweets in interval (2, 1) is too high, these tweets
cover less distinct events compared to what the tweets in
(1, 3) cover. We detected a total of 116 frequent bigrams
from all the intervals. Out of these bigrams, 15 bigrams
are found trivial and are removed by ET. Some examples
of such bigrams are ‘watch tv’, ‘watch movies’, ‘laying bed’,
‘fall asleep’, etc. The remaining 101 event representative
bigrams are clustered to find events.

4.4 Evaluation of Clustering
Table 1 and Table 2 show the final clusters of related

event representative keywords for the broadcasting dataset
and the VAST dataset respectively. To evaluate how inter-
pretable the detected keywords are, we gave these clusters
of keywords to humans to interpret the events. Such inter-
preted events are also provided in the table. We also provide
the time intervals on which these events happened. From
broadcasting dataset, we have detected events like ‘Golden
Globes Awards’, ‘Super Bowl’, ‘Sandy Hook Controversy’,
‘Bad Girls Club Atlanta Season 10’, etc. An event like
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Bigrams

Figure 4: Normalized frequency of Tweets and Bigrams on
each (Day, Interval) pair for Broadcasting Data

‘Downton Abbey wins at Golden Globes’ is also captured
by ET. From VAST dataset, events like ‘Plane crash’, ‘Dis-
ease Outbreak’, ‘Bomb threats’, ‘Conventions’ and ‘Car ac-
cidents’, are detected.

Table 3: Frequently Co-occuring Bigrams

Plane Crash crash landed, airport better, better protocols,
plane flames, airport fire

Bomb Threats bombs city, threats rampant, bomb threats, hope
people, people alright

Sandy Hook hook conspiracy, hook shooting, conspiracy video

Resultant clustering of the related keywords depends on
the content similarity and appearance pattern similarity val-
ues between keywords. To get the content similarity, we
have to find frequent co-occuring features/bigrams for each
keyword. We consider only the top 25 most frequent fea-
tures. Keywords having many common frequent features
are content-related to the same event. In Table 3, we show
frequent bigrams for the keywords ‘Plane Crash’ and ‘Bomb
Threats’.

10 12 14 16 18 20 22
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headache
muscle pain
breathing

Figure 5: Appearance pattern
for event ‘Disease Outbreak’

Most of these bi-
grams are actually the
main event keywords.
This happens because
most of the event key-
words co-occur exten-
sively which is cap-
tured by these bigrams.
There are rarely any
frequent bigrams which
are not related to the
event/event keyword. In

case of the event ‘Bomb Threats’, we found bigrams like
‘hope people’, ‘people alright’. These keywords without any
context seem trivial, but in the context of this event, they
depict the sentiments/emotions of people, and are impor-
tant to analyze an event. Moreover if an event has only one
or two event representative keywords, frequent co-occuring
bigrams of these keywords are added to the keywords list to
better understand the event. For example, the event ‘Sandy
Hook video’ has only one event representative keyword -
‘Sandy Hook’. It is not clear from this one keyword what
the event is about. Hence, frequent co-occuring bigrams of
‘Sandy Hook’ are added to the keyword list of this event.
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Table 1: Events Detected from Broadcasting Dataset

Event Representative Bigrams Event Time Interval(Day)

dense fog, advisory issued, rip current, statement issued,
issued january, nws melbourne

Dense Fog Advisory and Rip Current Statement
issued by NWS Melbourne

January 14, Interval-1

super bowl, tom brady, football game, playoff games,
seahawks game, falcons seahawks, falcons game, dirty birds,

nfl playoffs

Super bowl football nfl playoffs, Falcons (Dirty
Birds) vs Seahawks game, People excited to watch

Tom Brady

January 13, Interval-3

golden globes, globes tonight, downton abbey, red carpet, Golden Globes Awards, Red Carpet, Maggi Smith of
Downton Abbey (TV Series) wins at Golden Globes

Awards.

January 14, Interval-0

season bad, bad girls, girls club, club atlanta Bad Girls Club Atlanta Season 10 premiered on Jan
15

January 16, Interval-0, 1

patriots game, pats game, texans game Patriots game Vs Texans game January 13, Interval-3

sandy hook, hook conspiracy, hook shooting, conspiracy
video

People watching Sandy Hook shooting conspiracy
video.

January 14, Interval-1;
January 16, Interval-1

music video, video macmerk, macmerk feat, feat yungking Latest music video by Mac Merk Feat. Yung King January 15, Interval-2

dark thirty, gangster squad, haunted house Three movies released on same date: Zero Dark
Thirty, Gangster Squad, and A Haunted House

January 13, Interval-3;
January 14, Interval-0

Fig 5 shows the appearance pattern of some of the key-
words for the event ‘Disease Outbreak’. The keyword ‘head-
ache’ is frequent on 3 days: 19, 20, 21, keyword ‘muscle pain’
is frequent on days 20 and 21, and ‘breathing’ is frequent on
days 19 and 20. These keywords follow partial similar pat-
terns but are grouped as one event. On the other hand,
in Fig 6, for the event ‘Super Bowl’, the keywords ‘football
game’, ‘patriots game’ and ‘super bowl’ follow very similar
patterns. They are frequent in the same interval.
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Figure 6: Appearance pattern
for event ‘Super Bowl’

Importance of con-
tent and appearance
similarities: The re-
sults shown in Table 1
and Table 2 are ob-
tained by setting the
values of α and β 0.6
and 0.4 respectively.
It means that slightly
more weightage is given
to content similarity
than appearance simi-

larity. Now, we change the value of α to zero and that of β
to one. This means that we consider only appearance simi-
larity. The resultant clustering for the VAST dataset shows
the problem of duplicate events: There were four different
clusters detected for the event ‘Disease Outbreak’. Most of
the keywords in these clusters describe the same symptoms.
Keywords ‘bad diarrhea’ and ‘diarrhea annoying’ are put in
different clusters as one is more frequent on day 20, and the
other on day 21. On the other hand, for the broadcasting
dataset, three different events ‘Super bowl’, ‘Sandy Hook’
and ‘Golden Globes Awards’ are clubbed into one cluster,
as they are frequent in the same time interval - day 1, inter-
val 3. Content Similarity helps in alleviating both of these
problems.

To understand the impact of appearance pattern similar-
ity, we now take α as one and β as zero. The keywords are
clustered only on the basis of their content similarity. Dif-
ferent events related to the same topic get clubbed together.
For the VAST dataset, events ‘Convention’, ‘Sham Wow
Convention’, ‘Antique Convention’ and ‘Comic Convention’
in Table 2 are clubbed into one cluster, and presented as a

single event. These events have a lot of common frequent
content features about the topic ‘convention’, but they fol-
low completely different appearance patterns. In some cases,
different text/words are used to describe the same event, and
this may result in multiple clusters for one event. This hap-
pened for the event ‘Super Bowl’. We got three different
clusters for this event. One cluster contains keywords about
‘Falcons game’, one about ‘NFL playoffs’ and other about
‘Super Bowl and football’. However, when we also consider
the appearance patterns of these keywords, they get clubbed
into one cluster, as shown in Table 1. Therefore, only a
combination of content and appearance similarities yields
accurate results.

Evaluation Metric: We use the same definitions of pre-
cision and recall as defined by Weng et al. [16]. Since the
dataset used by EDCoW and Twevent is not available, we
have evaluated ET on different datasets. Recall, defined as
the number of relevant events, can not be used as an eval-
uation matrix, as it varies for different datasets. We use
precision as an evaluation matrix, as it captures the accu-
racy of the system. Since there is no ground truth available,
we evaluate our results manually based on the knowledge
of real world events obtained from general search. For the
VAST dataset, ET detected a total of 23 events, out of which
2 events were trivial and insignificant. Thus, the precision of
the algorithm is 91% and the recall is 21. For the broadcast-
ing dataset, ET obtained a total of 15 events, out of which
only 1 event was not related to any realistic event, giving
the precision of 93% and recall of 14. Our experiments are
conducted on a machine with 2.13GHz Intel Core i3 CPU
and 4GB of RAM. ET takes about 157 seconds to detect
events from VAST dataset, processing about 1023K tweets.
This is quite efficient considering the specifications of our
machine.

5. CONCLUSIONS
We present a scalable and efficient system, called ET, to

detect real world events from a set of microblogs/tweets.
The key feature of this system is the efficient use of con-
tent similarity and appearance similarity among keywords,
to cluster the related keywords. We demonstrate the effec-
tiveness of this combination in our experiments. ET does not
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Table 2: Events Detected from VAST Dataset

Event Representative Bigrams Event Time
Interval(Day)

headache causing, cold cough, fever sick, fatigue beg, muscles dreadful,
pneumonia hurts, chills hurts, diarrhea annoying, upset stomach, extremely

sick

Disease Outbreak, People suffering from
severe disease.

19, 20, 21

plane submerged, submerged ground, airport fire, destruction airport,
dammage airport, death people, people inside

Plane crash on airport, death of people
inside.

14

threats reported, buildings blow, bomb crews, crews gearing, bomb threat,
police searching, searching bombs, emergency crews,

bomb threats reported, police and emergency
crews are searching for the bombs.

17

smog town, town explosion, ground shake, big boom, massive smoke, scary
stuff, heard blast, huge smoke, smoke cloud,

Smog Town explosion, huge smoke cloud. 18

cool convention, total bargain, missing stuff, large attendance, pretty
crowded, peeps convetion, heading convetion, things expensive, great deals

People excited about going to convention 5, 12, 17, 19

building terrible, capital building, scene panic, destruction fire, terrible
scene, buildings burning, burning ashes, chaotic fire, building unsafe, fire

crew, crew arrives,

Huge fire in the buildings near the capital
building.

15

fascinated antique, antique amazing, antique large, antique awesome, antique
convention

Antique Convention 5

fascinated sham, sham awesome, sham place, sham convention, Sham Wow Convention 12

better comic, comic everyinthing, comic pretty, comic convention Comic Convention 17

bad traffic, traffic move, car accident, terrible destruction Bad Traffic and Car accidents 3, 7, 13, 18

terrible car, destruction car, traffic car Terrible car accident 13

need any human expertise or knowledge from other sources
like Wikipedia, and still provides very accurate results. ET
is evaluated on two different datasets from two different do-
mains and it yields great results for both of them in terms
of the precision. In future, we will use a semantic knowledge
base like Yago to further improve the quality of the results.
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