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ABSTRACT
Microblog platforms such as Twitter are being increasingly
adopted by Web users, yielding an important source of data
for web search and mining applications. Tasks such as Named
Entity Recognition are at the core of many of these applica-
tions, but the effectiveness of existing tools is seriously com-
promised when applied to Twitter data, since messages are
terse, poorly worded and posted in many different languages.
Also, Twitter follows a streaming paradigm, imposing that
entities must be recognized in real-time. In view of these
challenges and the inappropriateness of existing tools, we
propose a novel approach for Named Entity Recognition on
Twitter data called FS-NER (Filter-Stream Named Entity
Recognition). FS-NER is characterized by the use of filters
that process unlabeled Twitter messages, being much more
practical than existing supervised CRF-based approaches.
Such filters can be combined either in sequence or in parallel
in a flexible way. Moreover, because these filters are not lan-
guage dependent, FS-NER can be applied to different lan-
guages without requiring a laborious adaptation. Through
a systematic evaluation using three Twitter collections and
considering seven types of entity, we show that FS-NER per-
forms 3% better than a CRF-based baseline, besides being
orders of magnitude faster and much more practical.
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H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Experimentation, Performance
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1. INTRODUCTION
Microblogging activity is reshaping the way people com-

municate. The major microblog platform, Twitter, has more
than 500 million users and records over 340 million messages
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daily, yielding a unique source of data for web search and
mining applications such as sentiment analysis, recommen-
dation and entity relation extraction, to name a few. Such
applications usually require identifying free-text references
to named entities such as people, organizations, places, com-
panies, and others [14] − a task commonly known as Named
Entity Recognition (NER).

Dominant NER approaches are either based on linguistic
grammar-based techniques or on statistical models. Gram-
mar-based NER approaches are dependent on a specific lan-
guage, while statistical NER approaches typically require a
large amount of manually annotated training data. Both ap-
proaches have demonstrated to be successful when applied
to data obtained from typical Web documents, but they are
ill suited when it comes to Twitter data [6, 16]. Twitter
messages are composed of a small amount of words and
they are written in informal, telegraphic, sometimes cryp-
tic style. These characteristics make hard the identification
of entities. Also, Twitter messages keep coming at a fast
pace in the stream, and we cannot afford to gather informa-
tion from external sources on-the-fly, nor to produce training
data continuously. Instead, given the restrictions imposed
by the data streaming paradigm, NER approaches to Twit-
ter data must operate with limited computing and training
resources.

In this paper we propose a novel NER approach, called FS-
NER (Filter Stream Named Entity Recognition), which is an
alternative better suited to deal with Twitter data. Essen-
tially, the NER process is viewed as a coarse grain Twitter
message flow (i.e., a Twitter stream) controlled by a series of
components, referred to as filters. A filter receives a Twitter
message coming on the stream, performs specific processing
in this message and returns information about possible en-
tities in the message (that is, each filter is responsible to
recognize entities according to some specific criterion). Fil-
ters can be as simple as considering capitalized letters or
using dictionaries, and thus are extremely fast, being able
to perform real-time entity recognition. However, if used in
isolation, these filters are not likely to provide satisfactory
recognition performance. On the other hand, when these
filters are used in combination, the aggregate performance
increases significantly. Performance improvement is mainly
explained by the independence and complementarity that
exist among diverse filters. Specifically, FS-NER employs
five lightweight filters, exploiting nouns, terms, affixes, con-
text and dictionaries. These filters are extremely fast and
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independent of grammar rules, and may be combined in se-
quence (emphasizing precision) or in parallel (emphasizing
recall).

To evaluate the effectiveness of our approach, we per-
formed a systematic set of experiments using Twitter data.
We employed three collections: one containing messages in
English, another containing messages in Portuguese, and a
third one containing messages in different languages. Our
evaluation is based on identifying seven types of entity and
we employ state-of-the-art CRF-based baselines. Our re-
sults show that, despite the simplicity of the filters used,
our approach is still able to outperform the baselines with
improvements of 3% on average, while being orders of magni-
tude faster and thus more appropriate to the data streaming
paradigm followed by Twitter.

Thus, this paper presents the following contributions: (1)
a discussion on the main design challenges involving NER on
Twitter data, (2) the proposal of a novel approach based on
the filter-stream paradigm to tackle NER on Twitter data
and (3) a detailed experimental evaluation that compares
the performances of FS-NER and CRF-based approaches
for the NER task.

The remainder of this paper is organized as follows. Sec-
tion 2 addresses related work. Section 3 discusses the main
challenges involved when performing NER on Twitter data.
Section 4 describes our FS-NER approach. Section 5 presents
our experiments and results. Finally, Section 6 presents our
final considerations and discusses future work.

2. RELATED WORK
Problems related to Named Entity Recognition were first

introduced in 1995 as part of MUC-6 (Message Understand-
ing Conference). Identifying entities in unstructured text
is a nontrivial task and several approaches have been de-
veloped to address it [8]. In general, these approaches are
devised to recognize entities such as names of people, orga-
nizations, locations, among others. With the evolution of
the area, new types of entity and domain were considered
targets of interest. Traditionally, most work on entity recog-
nition has been carried out on the context of a same subject
area or preestablished domain, such as news [2, 3, 17]. We
refer the reader to [14] for a comprehensive survey of the
area.

Considering NER on Twitter data, few studies have been
developed in this context so far. Ritter et al. [16] considered
techniques usually applied to traditional NER and adapted
them to Twitter. However, despite the reasonable results
obtained, the dependency provided by the use of NPL tech-
niques makes the framework slow and difficult to apply to
a variety of situations. In another work [11], Liu et al. use
the kNN (k -Nearest Neighbors) algorithm and a CRF-based
approach for composing a semi-supervised system. The gen-
eral idea is to use kNN to label tweets in a word level, and
then apply linear CRFs in order to execute a fine-grained
classification over the results obtained by the kNN algo-
rithm. However, the use of two systems increases complex-
ity. The choice of features becomes a major problem, since it
is needed to deal with a satisfactory combination of them to
fulfill the function of both systems together. Not only that,
the combination of the two systems can decrease runtime
performance. More recently, Li et al. [10], have proposed a
two-step, unsupervised NER approach targeted to Twitter
data, called TwiNER. This approach deals with streams, but

due to the adopted strategies it is not capable of processing
tweets in real time and only identifies if a phrase (text seg-
ment) is an entity or not, i.e., it does not determine the class
of the identified entity.

Due to the scarcity and high cost to obtain a considerable
amount of labeled tweets, learning transfer is a relevant is-
sue. However, using formal sources to train an entity recog-
nizer and then applying it to Twitter data, Locke and Mar-
tin [12] have concluded that due to the Twitter nature it is
difficult to transfer learning from one domain to another. In
another study [5], Finin et al. describe how to efficiently use
the Amazon Mechanical Turk to annotate data from Twit-
ter. Jung [9] suggests that using clusters of related tweets
can alleviate the lack of contextual data. His results show
an increase in precision. However, he did not investigate
how precision impacts other metrics such as recall and F1.
Michelson and Macskassy [13] applied NER techniques to
tweets in order to discover topics of interest to the users.

Despite the importance of supporting NER on Twitter
data, only few works concern the main aspects needed to
produce scalable and practical approaches for such an envi-
ronment. As previously mentioned, social network platforms
such as Twitter produce content in several languages and in
real-time. Considering current approaches, most of them
require long time for training a recognition model or are re-
stricted to a specific language, making them very costly or
unfeasible to adapt to other languages. On the other hand,
our approach, which is based on the filter-stream paradigm,
relies on filters that are lightweight processing components
that receive messages coming on the Twitter stream. Al-
though simple, our language-independent filters can be effi-
ciently combined in order to boost recognition performance,
thus alleviating many of the challenges related to NER on
Twitter data.

3. DESIGN CHALLENGES
Recent work [11, 12, 16] has reported several difficulties

and impediments for applying NER techniques to Twitter
data, and called for more flexible and effective methods to
carry out the NER task in such a more challenging environ-
ment. In this section, we discuss the main design challenges
faced in this task.

Large volume of data. Twitter produces a huge vol-
ume of data every day due to the large number of users
and the intense interaction among them. This means that
more efficient methods and tools are needed to deal with
NER on Twitter data. For instance, approaches that re-
quire an iterative process to generate their models may have
their performance heavily affected. Considering real scenar-
ios, the use of such approaches may become a bottleneck in
terms of computing performance. Probabilistic approaches
that rely on iterative learning process should use lighter and
more efficient features to address NER in this environment.

Lack of formalism. Microblog platforms, and Twitter
in particular, are environments that are dominated by the
lack of language formalism. Thus, mispellings, abbrevia-
tions, punctuation misuse, and grammatical errors are very
common in this context. This drastically affects the effec-
tiveness of language-based NER approaches when recogniz-
ing entities and their relationships.

Language diversity. Despite the predominance of some
languages, such as English, Japanese, Portuguese and Span-
ish, Twitter presents an enormous diversity in this aspect [7].
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A particular challenge happens when it is necessary to iden-
tify entities in languages, such as Bengali [4], for which the
NER process is intrinsically more complex due to specific
grammar characteristics. Thus, the need of processing dif-
ferent languages may introduce difficulties to the NER task
on Twitter and approaches that excessively rely on features
provided for a specific language may become inadequate in
this environment.

Real-time nature. Twitter is characterized to be very
dynamic in terms of interaction between its users. Thus,
large volumes of tweets are posted during short periods of
time, which requires real-time processing capabilities in or-
der to provide up-to-date information.

Lack of contextualization. The fact that tweets are
short messages may result in insufficient contextual evidence
on the text for judging the terms in order to recognize en-
tities. Commonly, NER approaches employ the contextual
information around a term or related sentences to discard
terms that are not references to entities. As an example,
suppose we want to recognize the occurrence of company
names in the tweet “RT: I bought at J&J.”. In this context,
“J&J” may be evaluated as a candidate term. However,
based only on the available information, recognizing “J&J”
as a company name can be misleading, since there is no other
evidence to ensure that.

Data stream orientation. Twitter is also characterized
by transmitting messages in the form of data streams, which
results in a quick spread of tweets over the network. There-
fore, it is necessary to take into account the rapid emer-
gence of new contexts and scenarios in which entities are
mentioned.

4. PROPOSED APPROACH
The challenges discussed in the previous section make

clear the need for alternative NER approaches to deal with
Twitter data. In this section, we describe FS-NER (Filter-
Stream Named Entity Recognition), our novel approach pro-
posed to perform the NER task. FS-NER adopts filters that
allow the execution of the NER task by dividing it into sev-
eral recognition processes in a distributed way. Further, FS-
NER adopts a simple yet effective probabilistic analysis to
choose the most suitable label for the terms in the message
being processed. Because of this lightweight structure, FS-
NER is able to process large amounts of data in real-time.

4.1 Structure and Design
Let S = <m1,m2, . . . > be a stream of messages (i.e.,

tweets), where each mj in S is expressed by a pair (X,Y ),
beingX a list of terms [x1, x2, . . . xn] that compoundmj and
Y a list of labels [y1, y2, . . . , yn], such that each label yi is
associated with the corresponding term xi and assumes one
of the values in the set {Beginning, Inside, Last, Outside,
UnitToken}. While X is known in advance for all messages
in S , the values for the labels in Y are unknown and must be
predicted. For example, the tweet“RT: I love NEW YORK”
could be represented by ([x1 = RT:, x2 = I, x3 = love, x4 =
NEW,x5 = Y ORK], [y1 = Outside, y2 = Outside, y3 =
Outside, y4 = Beginning, y5 = Last]).

In order to properly predict labels for Y , we need to pro-
vide correct and representative data to generate a recogni-
tion model. In the case of FS-NER, a filter is a processing
component that estimates the probability of the labels asso-
ciated with the terms of a message. A set of features is used

to support the training process of the filters (such features
include information like as the term itself, or if the first let-
ter of the term is in uppercase). If a term in X satisfies
one of these features, we say that the corresponding filter is
activated by the term.

Using the training set, we may count the number of times
a filter is activated by a given term and, by inspecting the
number of times that a given label was assigned correctly,
we may calculate the likelihood of a label being assigned to
each term xi by each filter, as expressed by the equation

P (yi = l|X ∧ F = k) = θl (1)

where F is a random variable indicating that a filter k is
being used and θl is the probability of associating the label l
with the term xi. The probability θl is given by Equation 2,
where TP is the number of true positive cases and FN is
the number of false negative cases for the term xi.

θl =
TP

TP + FN
(2)

Thus, after trained, a filter becomes able to recognize entities
present in the upcoming messages. It is worth noting that
each filter employs a different recognition strategy (i.e., a
different feature), and thus different predictions are possible
for different filters.

In sum, filters are simple abstract models that receive as
input a list of terms X and a term xi ∈ X, and provides
as output a set of labels with the respective likelihood asso-
ciated with each of them, denoted by {l, θl}. Thus, a filter
can be defined by

(X,xi)
input
−−−→ F

output
−−−−→ {l, θl}.

During the recognition step, the set {l, θl} is used to choose
the most likely label for the term xi. However, if used in
isolation, filters may not capture specific patterns that can
be used for recognition. Fortunately, we may exploit fil-
ter combinations in order to boost recognition performance.
Specifically, we may combine filters either in sequence (i.e.,
if we want to prioritize recognition precision), or in parallel
(i.e., if we want to prioritize recognition recall). If combined
in sequence, all filters must be activated by the input term,
and the corresponding set {l, θl} is obtained by treating the
combined filters as an atomic one using Equation 1. In this
case, it is expected that filters when combined sequentially
are able to capture more specific patterns1. In contrast, if
combined in parallel, the combined filters are not consid-
ered as an atomic one. Instead, they simply represent the
average of the corresponding likelihoods, as expressed by the
equation

1

Z(F)

K∑

k=1

P (yi = l|X ∧ F = k) (3)

1For example, consider the term “New”. It would activate a
filter by stating that if the term is “New”, then the likelihood
of label l is θTl . The same term would also activate another
filter by stating that if the first letter of the term is in upper-
case, then the likelihood of label l is θNl . If these two filters
are combined sequentially, the combined filters would state
that if the term is “New” and the first letter is in uppercase,
then the likelihood of label l is θT∧N

l .
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where Z(F) is a normalization function that receives as in-
put a list of filters F and produces as output the number of
filters activated by term xi.

Therefore, we may propose specific recognition models, in-
volving different combination alternatives such as the ones
depicted in Figure 1. Each proposed model may be then for-
mally described using the expressions defined by Equations 1
and 3. For example, the filter combination in Figure 1 com-
prises three filter sequences, (F1, F4), (F2) and (F3), which
converge to filter F5. Thus, the recognition model that de-
scribes this filter combination comprises three sequential fil-
ters given by P (yi = l|X∧F1∧F4∧F5), P (yi = l|X∧F2∧F5)
and P (yi = l|X ∧F3 ∧F5), which are then combined in par-
allel. This leads to the following recognition model M for
the filter combination in Figure 1:

M =
1

Z(F)
(P (yi = l|X ∧ F1 ∧ F4 ∧ F5)

+ P (yi = l|X ∧ F2 ∧ F5) + P (yi = l|X ∧ F3 ∧ F5)).

Figure 1: Example of a filter combination.

Once trained, the recognition models are used to select the
most likely label for each term in the upcoming messages.

4.2 Filter Engineering
One of the most crucial steps in the recognition process is

the choice of the features. In FS-NER, features are encap-
sulated by filters. Therefore, choosing the right filters are
decisive for the proper performance of our approach. Thus,
below we discuss the basic filters used by FS-NER. They
are the term, context, affix, dictionary and noun filters. Al-
though in this paper we consider only the aforementioned
filters, many others may be devised.

Term. The term filter estimates the probability of a cer-
tain term being an entity. This filter has the ability to distin-
guish ambiguous terms discarding them when they present
low probability. For example, given the need to recognize
entities of type Place, the term “New” in “New York” would
probably be discarded if analyzed separately. This happens
because the term“New” is very common and appears in sev-
eral situations where it does not correspond to an entity of
type Place, thus requiring other features possibly provided
by other filters. On the other hand, “Nashville” would pos-
sibly achieve a higher probability of being an entity, since
it is a less common term usually assigned to the entity type
Place.

Context. The context filter is specially important since
it is able to capture unknown entities. Hence, this filter ana-
lyzes only the terms around an observed term xi considering
a window of size n and infers whether it is an entity or not.

Affix. The affix filter uses the fragments of an observa-
tion xi to infer if it is an entity. Advantageously, this filter
can recognize entities that have similar affix to the entities
analyzed before. Thus, this filter makes use of the prefix,
infix or suffix of the observation to infer its label yi.

Dictionary. The dictionary filter uses a list of names of
correlated entities to infer whether the observed term is an
entity. The dictionary is important to infer entities that do
not appear in the training data.

Noun. The noun filter only considers terms that have
just the first letter capitalized to infer if the observed term
is an entity. Although capitalized terms are a weak evidence
in Twitter data, this filter can recognize entities when wisely
used.

5. EXPERIMENTAL EVALUATION
In this section we present a detailed experimental evalu-

ation of FS-NER. This evaluation comprises two sets of ex-
periments. The first examines the recognition performance
of individual and combined filters, and the second compares
the recognition and run-time performances of FS-NER and
our CRF-based baselines. In all experiments, results are
shown in terms of precision, recall and F1, which are metrics
widely used in the information retrieval realm. FS-NER has
been implemented in Java, since this programming language
is highly portable and facilitates the use of our framework
in different domains and applications.

5.1 Setup
All five filters are used in ours experiments, i.e., the term,

context, affix, dictionary and noun filters. In the term filter,
the terms are case sensitive. The context filter, uses prefix
and suffix contexts with a window of size three, which pre-
sented the best result for F1 in all collections analyzed. The
affix filter uses a prefix, infix and postfix size of 1 to 3. The
dictionary filter, specifically, uses the same lists of entities
considered in [16] and others created from Wikipedia pages.
Three different collections of Twitter data, called OW , ETZ

and WT , are employed in the experiments. All experiments
adopt a 5-fold cross-validation and the final results are the
average over the five runs.

OW collection. This collection consists of approximately
2,000 manually labeled tweets. These tweets are related to
soccer teams playing in the Brazilian National League and
are all in Portuguese. In this collection, we seek to iden-
tify three types of entity, namely: player names (Player),
venue names (Venue) and team names (Team). It is worth
mentioning that the Portuguese language uses spelling tones
and accents, which further complicates the entity recogni-
tion task.

ETZ collection. This collection consists of approximately
2,400 manually labeled tweets and was used in [16]. Tweets
in this collection were randomly crawled and are all in En-
glish. There are three relevant types of entity: company
names (Company), geographic places (Place) and person
names (Person). The small amount of samples available in
relation to the large number of entities to be recognized is
the major challenge in this collection. Other types of entity
in this collection were discarded given that they correspond
to a small fraction of the existing entities.

WT collection. This collection consists of approximately
44,000 tweets semi-manually labeled and supplied by the
WePS3 task [1]. Tweets in this collection are related to
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organizations, and the type of entity we are interested in
recognizing is organization names (Org). The challenges re-
lated to this collection include the diversity of languages and
the different contexts in which an entity may appear. Most
tweets in this collection are written in English and Spanish,
but there are also tweets in Japanese and Portuguese.

5.2 Performance Analysis
Next we analyze the recognition performance of our FS-

NER approach. First we analyze the recognition perfor-
mance of individual filters, and then the recognition perfor-
mance of four specific filter combinations.

5.2.1 Analysis of Individual Filters
This analysis aimed to observe the behavior of the term

(FT ), context (FC), dictionary (FD), affix (FA) and noun
(FN ) filters when individually applied. Table 1 presents the
results. The term filter achieved the best F1 results. In
general, this filter was efficient to recognize entities and pre-
sented high values for precision and recall. However, when
analyzing the terms, this filter was not able to generalize
since it only recognizes terms that have been observed in
the training set. The context filter achieved the best pre-
cision results for most cases. Furthermore, this filter was
susceptible to recognize new entities, thus being quite use-
ful. The dictionary filter also showed high precision values
but relatively low recall ones. In most cases, this filter was
also able to generalize. The affix and noun filters showed
the highest values for recall, but low values for precision.
From these results we can see that the term, context and
dictionary filters are suitable for being individually applied
whereas the affix and noun terms are not, i.e., they must be
combined with other filters to improve their performance.
Also notice that in some cases the dictionary and noun fil-
ters were not useful because during the training step they
always predicted a wrong label when activated. However, as
we will show next, these filters become useful when used in
combination with the others.

5.2.2 Analysis of Specif c Filter Combinations
In our previous set of experiments, we showed that the

term, context and dictionary filters present a good perfor-
mance when individually applied whereas the affix and noun
filters must be applied with more caution. In addition, each
filter has a particular property that is assessed by precision,
recall and F1. Due to this and the many ways that our filters
can be combined, our next experiments seek by some intu-
ition to propose and analyze specific filter combinations that
might be useful for performing the NER task using FS-NER.
Thus, in what follows we evaluate four specific recognition
models centered on combinations of the term, noun and con-
text filters. The proposed filter combinations are based on
the results achieved by each filter individually and how com-
plementary they are.

Recognition centered on the term filter (TRM).
This combination is the simplest one and aims to recognize
entities based on terms previously analyzed. Because it re-
lies on the existence of these terms in the training set, this
filter combination is not able to generalize. The recognition
model of this filter combination is given by

Entity Type Filter Precision Recall F1

Player

FT 0.8914±0.05 0.6187±0.10 0.7276±0.08
FC 0.9470±0.05 0.2517±0.06 0.3941±0.08
FD 0.7990±0.09 0.4274±0.06 0.5539±0.05
FA 0.0965±0.01 0.9201±0.04 0.1743±0.02
FN 0.3028±0.05 0.7950±0.05 0.4373±0.06

Venue

FT 0.8526±0.07 0.6693±0.08 0.7449±0.03
FC 0.9092±0.05 0.4058±0.03 0.5602±0.03
FD 0.9166±0.01 0.4581±0.10 0.6050±0.10
FA 0.0421±0.01 0.7723±0.07 0.0798±0.02
FN 0.0000±0.00 0.0000±0.00 0.0000±0.00

Team

FT 0.8769±0.01 0.8406±0.03 0.8580±0.01
FC 0.9389±0.01 0.3317±0.03 0.4896±0.03
FD 0.8157±0.03 0.4431±0.03 0.5736±0.02
FA 0.3610±0.01 0.9049±0.02 0.5160±0.02
FN 0.5787±0.03 0.6034±0.02 0.5907±0.02

Company

FT 0.6908±0.10 0.3796±0.12 0.4824±0.11
FC 0.7200±0.11 0.1788±0.07 0.2805±0.08
FD 0.0000±0.00 0.0000±0.00 0.0000±0.00
FA 0.0415±0.01 0.6353±0.10 0.0777±0.02
FN 0.0000±0.00 0.0000±0.00 0.0000±0.00

Place

FT 0.6965±0.05 0.2499±0.08 0.3618±0.09
FC 0.7503±0.22 0.1018±0.06 0.1761±0.09
FD 0.9444±0.08 0.0775±0.03 0.1419±0.05
FA 0.0440±0.01 0.6466±0.05 0.0823±0.01
FN 0.0000±0.00 0.0000±0.00 0.0000±0.00

Person

FT 0.8089±0.08 0.3161±0.01 0.4539±0.02
FC 0.9246±0.03 0.1180±0.03 0.2083±0.04
FD 0.0000±0.00 0.0000±0.00 0.0000±0.00
FA 0.0958±0.02 0.7903±0.02 0.1705±0.03
FN 0.3015±0.03 0.7478±0.04 0.4281±0.03

Org

FT 0.7690±0.01 0.7503±0.01 0.7595±0.01
FC 0.7742±0.01 0.3109±0.00 0.4436±0.00
FD 0.4000±0.49 0.0002±0.00 0.0003±0.00
FA 0.1444±0.01 0.6591±0.00 0.2368±0.01
FN 0.0000±0.00 0.0000±0.00 0.0000±0.00

Table 1: Results when applying the filters individually.

M =
1

Z(F)
(P1(yi = l|X ∧ FT ) + P2(yi = l|X ∧ FT ∧ FC)

+ P3(yi = l|X ∧ FT ∧ FN )

+ P4(yi = l|X ∧ FT ∧ FC ∧ FN )).

Table 2 shows the results for the term filter combination.
As we can see, this filter combination was able to recognize
various entity types with high precision and good recall.

Entity Type Precision Recall F1

Player 0.8916±0.05 0.6213±0.10 0.7294±0.09
Venue 0.8608±0.07 0.7304±0.10 0.7857±0.06
Team 0.8746±0.01 0.8495±0.03 0.8616±0.01

Company 0.7039±0.09 0.3993±0.12 0.5022±0.10
Place 0.6972±0.05 0.2550±0.08 0.3676±0.08
Person 0.8103±0.08 0.3181±0.01 0.4600±0.02

Org 0.7768±0.01 0.7985±0.01 0.7875±0.01

Table 2: Results for the term filter combination.

Recognition centered on the term filter with gen-
eralization (GTRM). This combination aims to provide
a strategy to analyze, integrally or partially, the terms of
a message. Thus, this strategy keeps the characteristics of
the term filter combination, at the same time that provides
some generalization ability. The recognition model of this
filter combination is given by

M =
1

Z(F)
(P1(yi = l|X ∧ FT ) + P2(yi = l|X ∧ FA ∧ FC)

+ P3(yi = l|X ∧ FD ∧ FN )).
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Table 3 shows the results for this filter combination. As
we can see, it achieved better results than the combination
solely centered on the term filter (TRM). This was due to
its ability to generalize, since this filter combination does
not rely only on the terms present in the training set.

Entity Type Precision Recall F1

Player 0.8411±0.04 0.6930±0.08 0.7573±0.06
Venue 0.8468±0.05 0.6809±0.09 0.7499±0.04
Team 0.8557±0.01 0.8667±0.02 0.8610±0.01

Company 0.6969±0.09 0.3858±0.10 0.4900±0.09
Place 0.7439±0.04 0.3102±0.07 0.4329±0.07
Person 0.6345±0.05 0.6098±0.03 0.6195±0.02

Org 0.7453±0.01 0.7924±0.01 0.7681±0.01

Table 3: Results for the generalized term filter combination.

Recognition centered on the noun filter (NON).
This combination aims to analyze the ability of our filters
to recognize entities based mainly on noun evidence found
in terms present in the tweets. The recognition model of
this filter combination is given by

M =
1

Z(F)
(P1(yi = l|X ∧ FT ∧ FN )

+ P2(yi = l|X ∧ FD ∧ FN) + P3(yi = l|X ∧ FA ∧ FN )

+ P4(yi = l|X ∧ FC ∧ FN)).

Table 4 presents the results of the noun filter combination.
As we can see, when properly applied, this filter is able to
provide good results. However, to obtain such results, it
is necessary to apply the noun filter in conjunction with
more reliable ones. This means that, despite being a weak
evidence in Twitter data, capitalization helps to recognize
entities with relative high precision.

Entity Type Precision Recall F1

Player 0.8305±0.04 0.6288±0.07 0.7137±0.06
Venue 0.8515±0.06 0.5852±0.12 0.6866±0.09
Team 0.8349±0.02 0.5670±0.02 0.6750±0.02

Company 0.7147±0.19 0.2178±0.07 0.3240±0.08
Place 0.6963±0.08 0.2023±0.04 0.3107±0.06
Person 0.6309±0.05 0.5765±0.03 0.6000±0.02

Org 0.7691±0.02 0.5325±0.01 0.6292±0.01

Table 4: Results for the noun filter combination.

Recognition centered on the context filter (CTX).
This combination exploits the ability to recognize entities
based only on the context around the current observation,
thus softening problems derived from terms out of the vo-
cabulary. Therefore, all filters but the term one are incre-
mentally combined with the context filter. The recognition
model of this filter combination is given by

M =
1

Z(F)
(P1(yi = l|X ∧ FC) + P2(yi = l|X ∧ FC ∧ FA)

+ P3(yi = l|X ∧ FC ∧ FD) + P4(yi = l|X ∧ FC ∧ FN)

+ P5(yi = l|X ∧ FC ∧ FA ∧ FD)

+ P6(yi = l|X ∧ FC ∧ FA ∧ FN )

+ P7(yi = l|X ∧ FC ∧ FD ∧ FN )

+ P8(yi = l|X ∧ FC ∧ FA ∧ FD ∧ FN)).

Table 5 presents the results for the context filter combina-
tion. As we can see, among the filter combinations analyzed,

this was the one that achieved the highest precision values.
When considering recall, however, it presented the lowest
values. Despite that, this filter combination is the most re-
strictive and reliable among all proposed combinations due
to its high precision.

Entity Type Precision Recall F1

Player 0.9470±0.05 0.2517±0.06 0.3941±0.08
Venue 0.9092±0.05 0.4058±0.03 0.5602±0.03
Team 0.9391±0.01 0.3330±0.03 0.4911±0.03

Company 0.7200±0.11 0.1788±0.07 0.2805±0.08
Place 0.7503±0.22 0.1018±0.06 0.1761±0.09
Person 0.9246±0.03 0.1180±0.03 0.2083±0.04

Org 0.7205±0.01 0.3178±0.00 0.4410±0.00

Table 5: Results for the context filter combination.

In summary, when analyzing the above proposed filter
combinations, we see that each one presents a particular-
ity. For example, the term filter combination showed good
F1 results, but since it is not able to generalize, its use is
quite restricted. The noun filter combination, on the other
hand, presented good F1 results and was able to generalize,
but its results were, in general, inferior to those presented
by the term filter combination. The generalized term filter
combination, in turn, provided the best general results in
terms of F1 for all entity types but Venue, Company and
Org. Finally, the context filter combination was the most
reliable and restrictive among the filter combinations ana-
lyzed.

Table 6 presents a summary of the results obtained by the
proposed filter combinations for each entity type. Looking
at the figures, we find that, among the proposed filter combi-
nations, GTRM is the one that showed the best overall per-
formance. Thus, for the comparative experiments reported
next, we consider this filter combination as the representa-
tive of the FS-NER approach.

Entity Type Filter Combinations
F1(TRM) F1(GTRM) F1(NON) F1(CTX)

Player 0,73±0,09 0,76±0,06 0,71±0,06 0,39±0,08
Venue 0,79±0,06 0,75±0,04 0,69±0,09 0,56±0,03
Team 0,86±0,01 0,86±0,01 0,68±0,02 0,49±0,03

Company 0,50±0,10 0,49±0,09 0,32±0,08 0,28±0,08
Place 0,37±0,08 0,43±0,07 0,31±0,06 0,18±0,09
Person 0,46±0,02 0,62±0,02 0,60±0,02 0,21±0,04

Org 0,79±0,01 0,77±0,01 0,63±0,01 0,44±0,01

Average 0,64 0,67 0,56 0,36
Std. Dev. 0,19 0,16 0,17 0,14

Table 6: Summuary of the results obtained by the proposed
filter combinations.

5.3 Comparison with CRF-Based Approaches
The comparative analysis involves assessing the efficiency

both in terms of recognition performance and execution time.
As baselines, we used CRF-based approaches available at
http://crf.sourceforge.net. All experiments were per-
formed in similar conditions, also considering the OW , ETZ

andWT collections and all viable combinations of non-linear
filters for the approach FS-NER.

Table 7 shows the results obtained by competing approaches
for the different entity types, in terms of precision, recall and
F1. The CRF-based approaches are presented in two distinct
configurations. The first configuration, called SCRF(1), rep-
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resents the SCRF in its standard configuration. The sec-
ond configuration, called SCRF(2), is a modified version of
SCRF(1) that also uses the features exploited by FS-NER.
As can be seen in Table 7, for the OW collection the influ-
ence of noise caused by spelling errors does not significantly
affect the efficiency of the NER process. On the other hand,
the results obtained for the ETZ collection were not as im-
pressive. From an analysis of entity distribution for the three
collections, we noticed that the ETZ collection presents high
percentage of entities that are out of the known vocabulary,
e.g., 72% for entity type Person. This difference contributes
to the achievement of poor results as those presented by the
three evaluated approaches. Moreover, the small number
of samples in the ETZ collections, affected the recognition
process as a whole. For the WT collection, all approaches
obtained similar results. In general, the hardest problem in
this collection is to recognize precisely entities in different
contexts and subtle variations of entity names.

Entity Type Approach Precision Recall F1

Player

SCRF(1) 0.9245±0.05 0.5942±0.10 0.7207±0.09
SCRF(2) 0.8918±0.05 0.6358±0.07 0.7407±0.06
FS-NER 0.8411±0.04 0.6930±0.08 0.7573±0.06

Venue

SCRF(1) 0.9300±0.03 0.7135±0.07 0.8058±0.04
SCRF(2) 0.8737±0.08 0.6665±0.09 0.7502±0.04
FS-NER 0.8468±0.05 0.6809±0.09 0.7499±0.04

Team

SCRF(1) 0.8898±0.01 0.8368±0.03 0.8620±0.01
SCRF(2) 0.8659±0.01 0.8543±0.03 0.8598±0.01
FS-NER 0.8557±0.01 0.8667±0.02 0.8610±0.01

Company

SCRF(1) 0.8240±0.09 0.3782±0.11 0.5125±0.12
SCRF(2) 0.7281±0.10 0.3858±0.11 0.4981±0.10
FS-NER 0.6969±0.09 0.3858±0.10 0.4900±0.09

Place

SCRF(1) 0.7824±0.09 0.2346±0.09 0.3534±0.10
SCRF(2) 0.6952±0.08 0.2703±0.10 0.3834±0.11
FS-NER 0.7439±0.04 0.3102±0.07 0.4329±0.07

Person

SCRF(1) 0.7208±0.37 0.3107±0.04 0.3801±0.15
SCRF(2) 0.8041±0.06 0.3243±0.03 0.4613±0.04
FS-NER 0.6345±0.05 0.6098±0.03 0.6195±0.02

Org

SCRF(1) 0.7598±0.02 0.7123±0.01 0.7351±0.01
SCRF(2) 0.7506±0.03 0.7531±0.02 0.7511±0.01
FS-NER 0.7453±0.01 0.7924±0.01 0.7681±0.00

Table 7: Detailed results for F1 considering the FS-NER and
CRF-based approaches.

Table 8 shows the comparison between the recognition
performance obtained by FS-NER and the CRF-based base-
lines, in terms of F1. In addition to the results obtained by
these approaches, the table also shows the results obtained
by the approach proposed in [16], which we call RCME
(name derived from the surnames of the authors). The
RCME column is used to verify how close are the results
obtained by FS-NER and the CRF-based approaches for the
RCME solution (which is considered an upper-bound, since
it uses additional information about the NER process). The
Diff column refers to the difference in terms of F1 between
FS-NER and SCRF(2). Column t represents the sum of the
difference values obtained by Student’s t-test and p-value is
the probability value associated with the t-test.

From Table 8, we can note that the differences between F1

results obtained by different approaches are minimal. An-
alyzing the difference we observed that FS-NER achieves
results that are, on average, 3% superior than those ob-
tained by the CRF-based approaches. In the cases of entity
types Venue, Place and Person the differences are above
3%. For the cases of entity type Company, the CRF-based
approaches presented better F1 results.

Regarding the results obtained by the RCME approach, it
is clear that there is a significant difference when compared
with the results obtained by FS-NER and CRF-based ap-
proaches. In principle, the RCME approach is constituted
by context, word clustering, dictionary, spelling, pos-tagging
and chunk features. Furthermore, this approach separates
the recognition process into two phases: segmentation and
classification. The first phase is related to the recognition
of the entity regardless of whether it belongs to one of the
three types of entity presented in the ETZ collection. The
second phase is responsible for associating one of the three
types of entity to the entity term. In this phase, the au-
thors use a supervised topic model called LabeledLDA [15].
Because of the lack of possibility of training the RCME ap-
proach in order to recognize entities in the other collections
and the high cost to prepare an adequate model considering
the needs of this approach, we are only able to speculate.
We speculate that the process of recognition being split into
two phases produces better results for the ETZ collection.

Entity Type RCME FS-NER SCRF(2) Diff. t p-value

Player - 0.76±0.06 0.74±0.06 0.02 1.33 0.25
Venue - 0.75±0.04 0.75±0.04 0.00 -0.04 0.97
Team - 0.86±0.01 0.86±0.01 0.00 0.43 0.69

Company 0.58±0.07 0.49±0.09 0.50±0.10 -0.01 -1.76 0.15
Place 0.73±0.05 0.43±0.07 0.38±0.11 0.05 2.06 0.11
Person 0.78±0.04 0.62±0.02 0.46±0.04 0.16 6.65 0.00

Org - 0.77±0.01 0.75±0.01 0.02 5.71 0.01

Average 0.69 0.67 0.63 0.03 - -
St. Dev. 0.10 0.15 0.18 0.06 - -

Table 8: Detailed results for F1 considering the RCME, FS-
NER and CRF-based approaches. Diff represents the difer-
ence between the FS-NER and CRF results.

5.4 Execution Time Comparison
In the last set of experiments we used 22,000 tweets from

the WT collection. We adopted this collection to better
highlight the difference of computational cost between the
competing approaches. For best judgment, the experiments
were executed 100 times for each iteration. During each
iteration about 2,200 new tweets were added to the previous
training set.

Figure 2 shows the results for the comparison of average
runtime, involving FS-NER and the CRF-based approaches.
From the results we observed a large difference in runtime
performance between the CRF-based approaches when com-
pared to FS-NER. The main difference between runtime re-
sults is due to the fact that FS-NER does not perform any
iterative training procedure in order to build the recogni-
tion model. On the other hand, the CRF-based approaches
require an iterative process to adjust their weights for the
features associated during the NER process. This could be
exacerbated for the CRF-based approaches, considering the
need to update the model for recognition. In this case, due
to excessive retraining, the performance of the CRF-based
approaches would be deteriorated. In contrast, because of
the lightweight structure of FS-NER, the cost for updating
the model is almost negligible when compared to the cost
associated with the CRF-based approaches.
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Figure 2: Comparative results for the runtime performance
in ms between FS-NER and the CRF-based approaches.

6. CONCLUSIONS AND FUTUREWORK
This paper focuses on the important problem of Named

Entity Recognition (NER) on Twitter data. Devising practi-
cal and effective approaches to NER in such scenario is par-
ticularly challenging. We have introduced a new approach,
FS-NER (Filter-Stream Named Entity Recognition), which
is more suitable to deal with Twitter data. The proposed
approach is based on a efficient structure composed of light-
weight filters. These filters exploit distinct features and can
be combined in sequence or in parallel. In addition, they
are independent of grammar rules and more suitable to the
data streaming paradigm followed by Twitter. To evaluate
the effectiveness of FS-NER, we used multi-lingual Twitter
data obtained from different domains and involving diverse
entity types. Our results reveal that FS-NER achieves sim-
ilar recognition performance when compared to CRF-based
approaches. On the other hand, in terms of computational
performance, FS-NER surpassed by large the CRF-based
approaches, indicating to be more practical to the Twitter
environment. As future work we intend to alleviate the de-
pendence on manually annotated data, automate the process
of filter combination and identify other application environ-
ments in which FS-NER is suitable.
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